基于视觉感知的图像处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量可以被人类和其它动物毫不费力完成的视觉任务,如在照片中识别朋友的面容,理解一个从未见过的物体是飞机还是轮船,用当前的机器视觉或图像处理系统却难以实现。人类及其他灵长类动物的视觉系统,能够实时而充分地感知外界的环境信息,并迅速地做出判断,无论从哪方面比较和衡量,都优于目前最好的机器视觉和图像处理系统。因此,探究人或灵长类动物视觉系统对外界场景进行感知和信息处理的过程,并以其为参照来设计能完成特定视觉任务的图像处理算法,即模拟人视觉感知的图像处理方法,已成为当前用计算机完成视觉任务的新的研究思路和热点。遵循这种研究思想,本文针对颜色迁移、彩色图像去色和用于全景拼接的图像排序等图像处理问题中所涉及的视觉感知现象和模型进行分析,进而提出能解决这三类问题的新的基于视觉感知的处理方法。具体工作如下:
     (1)颜色迁移。选择在(?)αβ颜色空间中完成颜色迁移的处理,该颜色空间是利用大量的自然界图像来进行驱动人的视觉感知的实验而得到的一个统计上各分量间相互独立的空间,其灰度和色彩分量分离,近似模拟视网膜->侧膝体中神经元对可见光信号的刺激响应和处理过程。针对已有颜色迁移算法仍存在的问题,提出了适用于复杂场景的多源图像颜色迁移算法;并从色彩相似度和结构相似度两方面对迁移合成图像质量进行衡量,提出了适用于颜色迁移算法的客观评价指标;大量实验结果验证了所提算法的正确性和评价指标的有效性。
     (2)彩色图像的去色。提出了两种彩色图像到灰度图像的转换算法:一种是采用数理统计分析的方法,尝试从图像中寻找色彩的差异值,并以此对物理明度分量进行增强;另一种是从彩色图像去色问题所涉及的视觉感知问题的角度进行分析。利用Helmholtz-Kohlrausch色貌效应所定义的主观亮度指标来确定彩色图像的物理明度和饱和度的顺序关系,并将该主观亮度指标与色调作为视觉注意选择算法PFT(Phase-spectrum of Fourier Transform)的两个输入变量,计算后获得图像的色彩显著性图。由于该色彩显著性图综合反映了原彩色图像的明度、饱和度和色调的显著性差异,最终得到的灰度图像更符合人的视觉感知。
     (3)用于全景拼接的图像序列排序。提出了两种全景图像序列自动排序算法:一种采用传统的图像处理方法,在梯度域计算得到图像的相似曲线,并以此作为特征来实现对图像序列的排序;另一种从视觉感知的层面出发,分析人在判断图像序列拍摄顺序时的处理方法,利用视觉注意力选择算法PQFT(Phase spectrum of Quaternion Fourier Transform)在频域中计算两两图像之间相位谱的偏移量,并以此为特征,得到一种新的图像序列排序算法。实验结果验证了这两种算法的有效性。
A number of visual tasks which can be effortlessly achieved by human and other animals have still remained seemingly intractable for computers。These tasks include recognizing the face of a friend in a photograph, understanding whether a new, never-seen object is a car or a stream boat. The visual system of human and other primate animals are complicated and accurate, and be able to sense the external environment immediately and then make judgment rapidly. No matter measure from which side, human vision system is better than the current best machine vision and image processing system. Exploring the sensing and information processing mechanism of the primate visual system, and using them as reference to design image processing algorithms provide new research approaches to accomplish visual tasks by computers; Such approaches are classified as image processing methods based on visual perception. In this paper, three image processing cased, which are color transfer, color image to grayscale conversion and image sorting for panorama image mosaic, are chosen as research cases, and new solutions to these cases based on visual perception phenomenons are studied. Our research work consists of three parts as following:
     In the first part, color transfer is studied. We choose to perform our algorithm under (?)αβcolor space, which is proposed by simulating the photostimulation signal processing by retinal ganlion cells and lateral geniculate nucleus. The data of (?)αβcolor space are expressed in an orthogonal decorrelation space robustly producing three principal axes, one is corresponding to simple changes in luminance and the other two that are reminiscent of the blue-yellow and red-green chromatic-opponent mechanisms found in the primate visual system. By analyzing the unsolved problems in current color transfer algorithms, we propose a new solution by using multi-source images as color references, which is applicable for re-colorizing images with complex scenes. Also, an objective evaluation index, considering color similarity between the result image and source image and structure similarity between the result image and object image, is proposed to measure color transfer algorithms. Experimental results verify the accuracy of our proposed algorithm and the effectiveness of the evaluation index.
     In the second part, we studied the problem of converting color images to grayscale ones, and proposed two new algorithms. One is based on mathematical and statistical analysis, aimed to find the differences between colors and map them to the physical luminance channels. The other algorithm is proposed by analyzing the visual perception phenomenon involved in image de-colorization. PFT (Phase-spectrum of Fourier Transform) visual attention selection algorithm is used to obtain the color saliency map of the color image, whose two input variables are carefully designed. One variable is a chromatic lightness term based on Helmholtz-Kohlrausch effect that corrects physical luminance based on the color's saturation component, and the other is the hue component of the color image. Hence, the saliency map synthetically reflects the differences of luminance, saturation and hue components of the color image, which makes the result grayscale image generated by the proposed algorithm looks more consistent with the visual perception.
     In the third part, image sorting for panorama image mosaic is studied, and two algorithms to solve this problem are proposed. The first solution is considered as a traditional image processing method:we define similar curves in the image's gradient domain, and take the curves as image characters to perform the sorting method. The second algorithm refers to the process of human judging the image sequences, and uses the visual attention selecting strategy-PQFT (Phase spectrum of Quaternion Fourier Transform) to perform sorting. In this case, images are converted into frequency domain pair wise, and the translation distances between any two images are calculated based on their phase spectrum. Experimental results demonstrate the effectiveness of the two proposed algorithm.
引文
[1]F.克里克著,汪云九等译.惊人的假说.长沙:湖南科学技术出版社,2007年6月.
    [2]National Academy of Engineering. Grand Challenges for Engineering, http://www.engineeringchallenges.org/,2008,36-38.
    [3]Rafael C.Gonzalez, Richard E.Woods.著,阮秋奇,阮宇智等译.数字图像处理(第二版).北京:电子工业出版社,2003年3月.
    [4]寿天德.视觉信息处理的脑机制.上海:上海科技教育出版社,1997年12月.
    [5]Schiller, P.h., and Logothetis, N.K. The color-opponent and broadband channels of the primate visual system. Trends Neurosc,1990,13:392-398.
    [6]Hubel, D. H. and Wiesel, T.N. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex. The Journal of Physiology, 1962,160:106-154.
    [7]Hubel, D. H. The visual cortex of the brain. Scientific American 209,1963,11: 54-62.
    [8]Hubel, D. H. Eye, brain and vision. Scientific American Library. San Francisco: W. H. Freeman,1988.
    [9]Ungerleider L G, Haxby J V. 'What' and 'where' in the human brain. Current Opinion in Neurobiology,1994,4:157-165.
    [10]M. Riesenhuber and T. Poggio. Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience,1999,2(11):1019-1025.
    [11]T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, and T.Poggio. A Theory of Object Recognition:Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex. AI Memo 2005-036/CBCL Memo 259, Massachusetts Inst. of Technology, Cambridge,2005.
    [12]L. Itti. Modeling Primate Visual Attention, In:Computational Neuroscience:A Comprehensive Approach (Jianfeng Feng Ed.), Boca Raton:CRC Press,2003. 635-655.
    [13]Livingstone M.& Hubel D. Segregation of form, color, movement and depth: Anatomy, physiology and perception. Science,1988,240(4853):740-749.
    [14]Fukushima, K. Neocognitron:A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980,36:193-202.
    [15]G. Wallis and E. Rolls. A Model of Invariant Object Recognition in the Visual System. Progress in Neurobiology,1997,51:167-194.
    [16]J. K. Tsotsos. Is Complexity Theory appropriate for analysing biological systems? Behavioral and Brain Sciences.1991,14(4):770-773.
    [17]A. Treisman G. and Gelade. A feature integration theory of attention. Cognitive Psychology.1980,12:97-136.
    [18]F. Crick. Function of the thalamic reticular complex:the searchlight hypothesis. Proceedings of the National Academies of Sciences USA,1984,81(14):86-90.
    [19]E. Weichselgartner and G. Sperling. Dynamics of automatic and controlled visual attention. Science,1987,238:778-780.
    [20]R. Desimone and J. Duncan. Neural mechanisms of selective visual attention. Annual Review of Neuroscience,1995,18:193-222.
    [21]L. Itti, C. Koch. Computational Modeling of Visual Attention. Nature Reviews Neuroscience,2001,2(3):194-203.
    [22]C. Koch and S. Ullman. Shifts in selective visual attention:towards the underlying neural circuitry. Human Neurobiology,1985,4:219-227.
    [23]R. J. Peters, A. Iyer, L. Itti, C. Koch. Components of bottom-up gaze allocation in natural images. Vision Research,2005,45(8):2397-2416.
    [24]L. Itti, C. Koch. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research,2000,40(10-12):1489-1506.
    [25]Triesch, J., Ballard, D.H., Hayhoe, M. M., Sullivan, B. T. What you see is what you need. Journal of Vision,2003,3(1):86-94.
    [26]Aude Oliva. Gist of the Scene. In:Neurobiology of Attention (L. Itti, G. Rees and J. K. Tsotsos Eds.), San Diego:Elsevier,2005,251-256.
    [27]L. Itti, C. Koch, and E. Niebur. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
    [28]E. Niebur, C. Koch. Control of Selective Visual Attention:Modeling the 'Where' Pathway. Neural Information Processing Systems,1996,8:802-808.
    [29]Wolfe, J.M. and Horowitz, T.S. What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience,2004,5:1-7.
    [30]V. Navalpakkam, L. Itti. Modeling the influence of task on attention. Vision Research,2005,45(2):205-231.
    [31]Poggio, T. Neuroscience:New Insights for AI? International Conference on Intelligent Agent Technology, IAT'06,2006,3-8.
    [32]Buchsbaum G, Gottschalk A. Trichromacy, opponent color coding and optmum color information transmission in the retina. In:Proceedings of Royal Society, London, Series B,1983,220:89-113.
    [33]Karl R. Gegenfurtner. Cortical mechanisms of colour vision. Nature Reviews Neuroscience,2003,4:563-572.
    [34]Nayatani Y. Simple estimation methods for the Helmholtz-Kohlrausch effect. Color Research Application,1997,22:385-401.
    [35]Nayatani Y. Relations between the two kinds of representation methods in the Helmholtz-Kohlrausch effect. Color Research Application,1998,23:288-301.
    [36]Smith, K., Landes, P.E., Thollot, J., and Myszkowski, K. Apparent greyscale:A simple and fast conversion to perceptually accurate images and video. In: Proceedings of Eurographics 2008,2008,27(2):193-200.
    [37]D. Marr and T. Poggio. A Computational Theory of Human Stereo Vision. In: Proc. Royal Soc. London B,1979,204:301-328.
    [38]J.P. Jones and L.A. Palmer. An Evaluation of the Two-Dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate Cortex. J. Neurophysiology, 1987,58:1233-1258.
    [39]Echhorn R, Reitboeck H J, Arndt M, Dicke P W. Feature linking via synchronization among distributed assemblies:Simulation of results from cat cortex. Neural Computation,1990,2:293-307.
    [40]马义德,绽琨,齐春亮.自适应脉冲耦合神经网络在图像处理中应用.系统仿真学报,2008,20(11):2897-2900,2930.
    [41]马义德,李廉,绽琨,王兆滨.脉冲耦合神经网络与数字图像处理.北京:科学出版社,2008.
    [42]D. L. Robinson, S. E. Petersen. The pulvinar and visual salience. Trends in Neurosciences,1992,15:127-132.
    [43]J. P. Gottlieb, M. Kusunoki, M. E. Goldberg. The representation of visual salience in monkey parietal cortex. Nature,1998,391:481-484.
    [44]C. L. Colby, M. E. Goldberg. Space and attention in parietal cortex. Annual Review of Neuroscience.1999,22:319-349.
    [45]Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso Poggio. Robust Object Recognition with Cortex-Like Mechanisms, IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(3): 542-551.
    [46]Meyers, E., and L. Wolf. Using Biologically Inspired Visual Features for Face Processing. International Journal of Computer Vision,2008,76(1):93-104.
    [47]Jhuang H., T. Serre, L. Wolf and T. Poggio. A Biologically Inspired System for Action Recognition, In:Proceedings of the Eleventh IEEE International Conference on Computer Vision (ICCV),2007,1:119-124.
    [48]Fred Hapgood. Reverse-Engineering the Brain At MIT, neuroscience and artificial intelligence are beginning to intersect, http://www.technologyreview.com/read_article.aspx?id=17111,2006.
    [49]Poggio, T. Neuroscience:New Insights for AI? International Conference on Intelligent Agent Technology, IAT'06,2006,3-8.
    [50]C. Siagian, L. Itti. Biologically-Inspired Robotics Vision Monte-Carlo Localization in the Outdoor Environment, In:Proc. IEEE International Conference on Intelligent Robots and Systems (IROS'07),2007,1:25-31.
    [51]L. Itti. Automatic Foveation for Video Compression Using a Neurobiological Model of Visual Attention. IEEE Transactions on Image Processing,2004, 13(10):1304-1318.
    [52]R J Peters, L Itti. Beyond bottom-up:Incorporating task-dependent influences into a computational model of spatial attention. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007),2007,2: 1-8.
    [53]J. M. Wolfe. Guided Search 2.0:A Revised Model of Visual Search. Psychonomic Bulletin and Review,1994, 1(2):202-238.
    [54]N. Bruce, J. K. Tsotsos. Saliency Based on Information Maximization. In: Advances in Neural Information Processing Systems,2006,18:155-162.
    [55]L. Itti, P. Baldi. Bayesian Surprise Attracts Human Attention. In:Advances in Neural Information Processing Systems, Cambridge, MA:MIT Press,2006,19: 624-636.
    [56]L.Itti, P.Baldi. Bayesian surprise attracts human attention. Vision Research, 2009,49:1295-1306.
    [57]L.Itti, P.Baldi. A Principled approach to detecting surprising events in video. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),2005,1:631-637.
    [58]L.Itti. Models of Bottom-up and Top-down Visual Attention. Ph.D.thesis, California Institute of Teehnology, Pasadena,2000.
    [59]D. Walther, C. Koch. Modeling attention to salient Proto-objects. Neural Networks,2006,19:1395-1407.
    [60]Breazeal, C., Seassellati,B. A Context-Dependent Attention System for a Social Robot. In:proceedings of International joint conference of Artifieial Intelligence, 1999,2:1144-1151.
    [61]K.Lee, H.Buxton, J.Feng. Cue-Guided Seareh:A Computational Model of Selective Attention. IEEE Trans. On Neural Networks,2005,16(4):567-574.
    [62]F. W. M. Stentiford. An attention based similarity measure with application to content based information retrieval. In:Proceedings of the Storage and Retrieval for Media Databases conferenee,2003,3:345-351.
    [63]A.Bamidele, F.W. M. Stentiford. An attention based similarity measure used to identify image clusters. In Proeeedings of 2nd European Workshop on the Integration of Knowledge,2005,2:125-132.
    [64]H.Greenspan, S.Belongie, R. Goodman, P. Perona, S.Rakshit, and C.H.Anderson. Overcomplete Steerable Pyramid Filters and Rotation Invariance. In:Proc. IEEE Computer Vision and Pattern Reeognition,1994,222-228.
    [65]X. Hou, L. Zhang. Saliency Detection:A spectral residual approach. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007,1:1-8.
    [66]Chenlei Guo, Qi Ma, Liming Zhang. Spatio-temporal Saliency detection using phase spectrum of quaternion Fourier transform. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008,1:1-8.
    [67]马奇.视觉注意和行为认知模型及其应用:[硕士学位论文].上海:复旦大学,2009.
    [68]马奇,张立明.快速注意力选择计算及其在图象质量评价中的应用.计算机辅助设计与图形学学报,2009,21(7):973-983.
    [69]Kenneth R.Castleman. Digital Image Processing. Upper Saddle River:Prentice Hall,1996:201-205.
    [70]Anthony J. Bell, Terrence J. Sejnowsk. The independent components of natural scenes are edge filters. Vision Research,1997,37(23):3327-3338.
    [71]S. J. Sangwine. Fourier transforms of colour images using quaternion orhypercomplex, numbers. Electronics Letters,1996,32(21):1979-1980.
    [72]B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature (London),1996, 381:607-609.
    [73]Ruderman D L, Cronin T W, Chiao C C. Statistics of Conresponses to Natural Images:Implications for Visual Coding. Journal of Optical Society of America, 1998,15(8):2036-2045.
    [74]Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley. Color transfer between images. IEEE Transaction on Computer Graphics and Applications, 2001,21(5):34-40.
    [75]Tomihisa Welsh, Michael Ashikhmin, Klaus Mueller. Transferring color to greyscale images. In Proceedings of ACM SIGGRAPH' 02, San Antonio, USA, 2002,20(3):277-280.
    [76]胡国飞,傅建,彭群生.自适应颜色迁移.计算机学报,2004,27(9):1246-1249.
    [77]作者姓名.基于直方图映射和分层的图象迁移算法研究.小型微型计算机系统,2007,28(6):1110-1114.
    [78]Yu-wing Tai, Jia-ya Jia, Chi-keung Tang. Local color transfer via probabilistic segmentation by expectation-maximization. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA,2005,1:747-754.
    [79]向遥,李宏等..基于高斯混合模型的区域颜色迁移.中国图象图形学报,2006,11:1728-1731.
    [80]向遥.古建筑虚拟色彩修复及漫游技术研究:[硕士学位论文].长沙:中南大学,2007.
    [81]Levin, Anat, Lischinski, Dani, Weiss, Yair. Colorization using optimization. ACM Trans. Graphics,2004,23 (3):689-694.
    [82]彭宏京,顾佳玲,段江.扩散张量加权梯度域图像彩色化方法.计算机辅助设计与图形学学报,2007,19(9):1114-1118.
    [83]Liron Yatziv, Guillermo Sapiro. Fast Image and Video Colorization using Chrominance Blending. IEEE Transactions on Image Processing,2006,15(5): 1120-1129.
    [84]Qing, Luan, Wen, Fang, Cohen-Or, Daniel, Liang, Lin, Xu, Ying-Qing, Shum, Harry. Natural image colorization. In:Proc. of Eurographics Symposium on Rendering(EGSR07),2007,1:345-350.
    [85]Tomasi.C., Manduchi.R. Bilateral filtering for gray and color images. In Proc. ICCV98, Bombay, India,1998,839-846.
    [86]D. Comanicu, P. Meer. Mean shift:A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell.,2002,24:603-619.
    [87]Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, David H. Salesin. Image analogies. In proceedings of ACM SIGGRAPH'01, New York, USA,2001,341-346.
    [88]Uri Lipowezky. Grayscale aerial and space image colorization using texture classification. Pattern Recognition Letters,2006,27:275-286.
    [89]Hideki Noda, Jin Korekuni, Michiharu Niimi. A colorization algorithm based on local MAP estimation. Pattern Recognition,2006,39:2212-2217.
    [90]Nie Dongdong, Ma Qinyong, Ma Lizhuang, Xiao Shuangjiu. Optimization based grayscale image colorization. Pattern Recognition letters,2007,28: 1445-1451.
    [91]Wyszecki,G., Stiles,W.S. Color Science:Concepts and Methods, Quantitative Data and Formulae. New York:Wiley,1982.
    [92]S.N. Yendrikhovskij, F.J.J. Blommaert, H. de Ridder. Optimizing colour reproduction of natural images. In Proceedings of IS&T/SID 6th Color Imaging Conference,1998,140-145.
    [93]Sabine Susstrunk, Stefan Winkler. Color image quality on the Internet. In Proc. IS&T/SPIE Electronic Imaging 2004:Internet Imaging Ⅴ,2004,5304:118-131.
    [94]David Hasler, Sabine Susstrunk. Measuring colourfulness for natural images. In Proc. IS&T/SPIE Electronic Imaging 2003:Human Vision and Electronic Imaging Ⅷ,2003,5007,87-95.
    [95]Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, Eero P. Simoncelli. Image quality assessment:from error visibility to structural similarity. IEEE Transactions on Image Processing,2004,13(4),600-612.
    [96]Guanhao Chen, ChunLing Yang, ShengLi Xie. Gradient-Based Structural Similarity for Image Quality Assessment. In proceedings of 2006 IEEE International Conference on Image Processing.2006,2929-2932.
    [97]Silvano Di Zenzo. A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing,1986,33:116-125.
    [98]R.N. Strickland, C.S. Kim, W.F. McDonnell, Digital Color Image Enhancement based on the Saturation Component[M], Opt. Eng.26,1987.
    [99]R. Bala and K. Braun. Color-to-grayscale conversion to maintain discriminability. In Proc. SPIE,2004,5293:196-202.
    [100]R. Bala and R. Eschbach. Spatial color-to-grayscale transformation preserving chrominance edge information. Proc. IS&T/SID's 12th Color Imaging Conference,2004,82-86.
    [101]A.A. Gooch, S.C. Olsen, J. Tumblin, B. Gooch, Color2Gray:salience preserving color removal, In Proceedings of SIGGRAPH,2005,634-639.
    [102]K. Rasche, R. Geist, J. Westall, Re-coloring images for gamuts of lower dimension, In Proceedings of Eurographics,2005,3:423-432.
    [103]Mark A. Ruzon, Scott Cohen, et al. Fast and Adaptive Color-to-Grayscale Conversion, In Proceedings of ACM SIGGRAPH 2006 Sketches,2006,124.
    [104]Mark Grundland, Neil A. Dodgson. Decolorize:Fast, contrast enhancing, color to grayscale conversion[J]. Pattern Recognition,2007,40:2891-2896.
    [105]Neumann L., Cadik M., Nemcsics A.:An efficient perception-based adaptive color to gray transformation. In Proceedings of Computational Aesthetics 2007, Eurographics Association,2007,73-80.
    [106]Calabria A., Fairchild M.:Perceived image contrast and observer preference i & ⅱ:The effects of lightness, chroma, and sharpness manipulations on contrast perception. Journal of Imaging Science & Technology,2003,47:479-493.
    [107]Smith, K., Landes, P. E., Thollot, J., Myszkowski, K. Apparent greyscale:A simple and fast conversion to perceptually accurate images and video. Computer Graphics Forum (Proc. Eurographics 2008),2008,27(2):193-200.
    [108]Yongjin Kim, Cheolhun Jang, Julien Demouth, Seungyong Lee. Robust Color-to-gray via Nonlinear Global Mapping. ACM Transactions on Graphics (ACM SIGGRAPH Asia 2009),2009,28(5):1-4.
    [109]David Connah, Marina Bloj, Graham D. Finlayson. An investigation into perceptual hue-ordering. In Proceedings of Sixteenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications.2008, 321-326.
    [110]David Connah, Graham D. Finlayson, Marina Bloj. A novel approach to hue ordering. In proceedings of Fourth European Conference on Colour in Graphics, Imaging, and MCS/08 Vision 10th International Symposium on Multispectral Colour Science,2008,289-291.
    [111]L.J.P. van der Maaten. An Introduction to Dimensionality Reduction Using Matlab. Technical Report MICC 07-07, Maastricht University, Maastricht, The Netherlands,2007.
    [112]贾俊平.应用统计学系列教材:统计学.北京:清华大学出版社,2005.
    [113]肖-泰勒(英),克瑞斯天尼(美)著,赵玲玲等译.模式分析的核方法,北京:机械工业出版社,2006,69-70.
    [114]Fairchild M., Pirrotta E. Predicting the lightness of chromatic object colors using CIELAB. Color Research and Application,1991,16(6):385-393.
    [115]Brown L.G. A survey of image registration techniques. ACM Computing Surveys,1992,24(2):325-376.
    [116]Brown M., Lowe D.G.. Recognizing panoramas. In:Proc. of Ninth IEEE International Conference on Computer Vision,2003,2:1218-1225.
    [117]Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool. SURF:Speeded Up Robust Features, Computer Vision and Image Understanding (CVIU),2008, 110(3):346-359.
    [118]Richard Szeliski. Image Alignment and Stitching:A Tutorial.Technical Report, MSR-TR-2004-92, December 2004.
    [119]华顺刚,曾令宜,欧宗瑛.一种快速的柱面全景图像拼接算法.数据采集与处理,2006,21(4):434-438.
    [120]赵辉,陈辉,于泓.一种改进的全景图自动拼接算法.中国图象图形学报,2007,12(2):336-342.
    [121]赵万金,龚声蓉,刘全,沈向军,刘纯平.一种用于图像拼接的图像序列自动排序算法.中国图象图形学报,2007,12(10):1862-1864.
    [122]吴宪祥,郭宝龙,王娟.基于相位相关的柱面全景图像自动拼接算法.光学学报,2008,29(7):1824-1829.
    [123]封靖波,苏志勋,刘秀平.一种基于相似曲线的全景图自动拼接算法.计算机学报,2003,26(11):1605-1608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700