全景环带凝视成像光学系统的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全景环带透镜是一种具有超大视场的透镜。它通过一个特殊的同时具有折反折表面的光学结构,把360°视场投影在一个平面上,形成一个圆环像。这种结构因为体积小,能实现全景实时监控,使用方便,正在越来越多地被应用于军事、医疗、监控等领域。
     由于全景环带透镜的视场很大,现存的全景环带光学系统焦距均较小(约1mm)。而对于某些领域,短焦距的全景环带光学系统远远不能满足要求。针对这种需求,本文对焦距约为10mm的超半球全景环带光学系统的光学/机械设计、加工和应用进行了全面而系统的研究。
     本文首先通过理论分析和设计实践,阐述了消色差结构在全景环带光学系统设计中的重要作用。提出使用全新的胶合式全景透镜代替普通全景透镜。设计并制造了焦距10.2mm,带有胶合式全景透镜的全景环带光学系统。
     为了进一步简化该全景光学系统的结构,减少透镜片数,提高光线透过率,本文提出在全景环带光学系统中引入衍射表面。设计实例表明,衍射表面对于全景光学系统的像差校正有着非常好的帮助,可以大大简化全景环带光学系统的结构。
     为了解决衍射表面在宽波段光谱效率不集中,成多个像的问题,本文又提出使用多层衍射结构代替普通的单片衍射透镜。通过理论分析计算,使用双层衍射结构的透镜,可以使可见光光谱范围内的光线在+1级的衍射效率均大于94%,并有效抑制其它级次的衍射效率,进一步简化光学系统。设计并加工制作了一套带有双层二元面的全景环带成像光学系统,对系统测试结果进行了详尽的分析,并对下一步工作提出了指导性建议。
     最后,本文为全景环带透镜的应用提出了一种全新的,同时使用两片全景环带透镜和一个CCD探测器实现立体成像的光学系统,并对该系统的原理进行了阐述。
     本文的主要创新有:对全景环带光学系统的光学特性进行了全面的分析,提出了带有普适性的全景环带光学系统的设计方法。设计并加工出一种新的全景环带成像光学系统,其系统焦距约为现有全景光学系统10倍。提出了使用胶合式全景环带透镜代替传统单片全景透镜;在后继转像透镜组中引入多层衍射表面等方法,对该光学系统进行了改进和完善,使得系统参数保持不变的情况下,系统结构得到很大简化。本文还针对各种方案分别进行了工程样机试制。同时,本文提出了全景环带光学系统在立体成像方面的全新应用。
Panoramic Annular Lens (PAL) is a special lens with super large Field of View (FOV). It projects a cylindrically panoramic view of 360°around the optical axis to an annular area on a plane. Because of its miniature and convenience, PAL is applied to many areas, such as military, medical and monitoring.
     PAL has a super large FOV. Therefore, nearly all existing Panoramic Annular optical systems have short focus. However, PAL with short focus cannot satisfy the need of viewing objects far away. In order to solve this problem, we worked over design, manufacture and application of PAL system with long focus comprehensively.
     In this dissertation, we firstly research into the imaging principle of PAL According to the analysis, we find the importancy of eliminating chromatic aberration, and we propose a new cemented PAL to replace tradional one-piece PAL. Advantage of new cemented PAL is demonstrated by analysis and calculation. A panoramic annular optical system with new cemented PAL is designed and produced.
     Secondly, we bring in diffractive structure for the sake of simplifying panoramic annular optical system with long focus. Examples indicate that the diffractive structure helps to reduce the aberration of panoramic annular optical system effectively. And the system can be much more simplified by this structure.
     However, for a single-piece diffractive suface, it is difficult to concentrated light in a wide spectrum to a certain order. To solve this problem, a new Multi-Diffractive Optical Element (MDOE) is proposed to replace ordinary single-piece Diffractive Optical Element (DOE). It is demonstrated by calculation that, this new structure can concentrate over 99.3% light in visible spectrum into +1 order. Prototype of an optical system with a MDOE structure is designed and manufactured. Testing results an analyzed in detail. Suggestions for the next work are proposed.
     Finally, a new application of panoramic annular stereo optical system is proposed. This system consists of two pieces of PAL and a CCD detector. Principle of this new system is described.
     Innovation of the dissertation:optical properties of panoramic annular optial system are analysed thoroughly. A universal method of designing panoramic annular optical system is propoed. A new panoramic annular optical system is designed and manufactured. Focal length of this system is 10 times of the existing systems. New cemented PAL is used to replace traditional one-piece PAL. MDOE is brought in to correct the chromatic aberration and to simplify the optical system effectively. Plenty of manufacture and design experience are described in the dissertation. A new panoramic annular stereo optical system is also proposed in this dissertation as an application of PAL.
引文
[1]陈晓冬,温世杰,郁道银.基于USB2.0的医用内窥镜超声探头旋转扫描成像系统.生物医学工程学杂志.2008(05).
    [2]佳能中国有限公司.2007.PowerShort A720IS相机使用者指南.http://gdlp01.c-wss.com/gds/9/0900009909/01/PSA720IS_CUG_ZH.pdf.
    [3]王之江,伍树东.成像光学.北京:科学出版社,1991.
    [4]Miyamoto K. Fish Eye Lens. J. Opt. Soc. Am.1964, Vol.54(8): 1060-1061.
    [5]王永仲.鱼眼镜头光学.北京:科学出版社,2006.
    [6]陈晃明,陈向颖.鱼眼镜头光学设计.北京理工大学学报.1989,9卷(3):35-42.
    [7]洪进先,刘月荣.超广角全景等距投影视景系统.实用新型专利,02230198.4.
    [8]Kumler J J, Bauer M L. Fish-eye lens designs and their relative performance. Proc. SPIE.2000, Vol.4093,360
    [9]Rees D W. Panoramic television viewing system. U.S. Patent No. 3,505,465.1970.
    [10]Charles J R R R. How to build and use an all-sky camera. Astronomy Magazine.1987, April.
    [11]Nayar S K. Sphereo:Recovering depth using a single camera and two specular spheres. Proceedings of SPIE:Optics, Illumination, and Image Sensing for Machine Vision Ⅱ.1988
    [12]Yagi Y A K S. Panoramic scene analysis with conic projection. Proceedings of the International Conference on Robots and Systems.1990
    [13]Hong J. Image based homing. Proceedings of the IEEE International Conference on Robotics and Automation.1991
    [14]Yamazawa K Y Y. Omnidirectional imaging with hyperboloidal projection. Proceedings of the International Conference on Robots and Systems.1993
    [15]Goshtasby A A G W. Design of a single-lens stereo camera system. Pattern Recognition.1993, Vol.26(6):923-937.
    [16]Bogner S. Introduction to panoramic imaging. Proceedings of the IEEE SMC Conference.1995:3100-3106.
    [17]Nalwa V S. A true omnidirectional viewer[R]. Holmdel:Bell Laboratories, 1996.
    [18]Nayar S K. Catadioptric omnidirectional camera. Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition.1997:482-488.
    [19]Chahl J S S M. Reflective surfaces for panoramic imaging. Applied Optics. 1997, Vol.36(31):8275-8285.
    [20]Baker S, Nayar S K. A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision.1999, Vol.35(2): 175-196.
    [21]Pajdla T, Roth H. Panoramic Imaging with SVAVISCA Camera-Simulations and Reality[R]. Prague:Department of Electrical Engineering Technion, Israel,2000.
    [22]Hicks R A, Bajcsy R. Reflective Surfaces as Computational Sensors. Second IEEE Workshop on Perception for Mobile Agents.1999:82-86.
    [23]Hicks R A, Bajcsy R. Catadioptric Sensors That Approximate Wide-angle Perspective Projections. Proc. of CVPR 2000.2000:545-551.
    [24]Gachter S, Pajdla T, Micusik B. Minor Design for an Omnidirectional Camera with a Uniform Cylindrical Projection when Using the SVAVISCA Sensor[R]. Center for Machine Perception, Czech Technical University,2001.
    [25]Su X, Zeng J. Catadioptric omnidirectional system with un-distorted imaging for horizontal scene. Proceedings of SPIE.2002, Vol.4927
    [26]曾吉勇,苏显渝.柱面场景无畸变的折反射全景成像系统.光电工程.2003,30卷(1):42-45.
    [27]曾吉勇,苏显渝.水平场景无畸变的折反射全景成像系统.光学学报.2003,23卷(5):636-640.
    [28]曾吉勇,苏显渝.抛物面折反射全景成像系统.光电子激光.2003,23卷(5):636-640.
    [29]Rosendal G, Dykes W. Lens system for panoramic imagery. US Patent 4,395,093.
    [30]Cox A. Panoramic lens. US Patent 4,484,801.
    [31]Powell I. Panoramic lens. Appl. Opt.1994, Vol.33(31):7356-7361.
    [32]Brachvogel H. Panoramic view objective using an aspherical lens. US Patent 4,395,093.
    [33]Greguss P. Panoramic imaging block for three-dimensional space. U.S. patent,4,566,763.1986.
    [34]Greguss P. State of art of 360-Degree panoramic holography. Proceedings of the Society of Photo-Optical Instrumentation Engineers.1983, Vol.370: 10-16.
    [35]Greguss P. A new device for panoramic infrared photography. Proceedings of the Society of Photo-Optical Instrumentation Engineers.1983, Vol.380: 93-99.
    [36]Greguss P. Panoramic imaging in biology and medicine. Proceedings of the society of photo-optical instrumentation engineers.1984, Vol.422:67-72.
    [37]Greguss P. The tube peeper:a new concept in endoscopy. Opt. Laser Technology.1985, Vol.17(1):41-45.
    [38]Greguss P. Panoramic holocamera for tube and borehole inspection. Proceeding of SPIE.1987, Vol.699:127-132.
    [39]Greguss P. Panoramic security. Proceedings of SPIE on Holographic Optical Security Systems.1991, Vol.1509:55-66.
    [40]Powell I. Panoramic lens. US Patent 5,473,474. December 5 1995.
    [41]Powell I. Design study of an infrared panoramic optical system. Appl. Opt. 1996, Vol.35(31):6190-6194.
    [42]-Lehner D L, Richter A G, Matthys D R, et al. Characterization of the panoramic annular lens. Experimental Mechanics.1996, Vol.36(4): 333-338.
    [43]Matthys D R, Gilbert J A, Fair S B. Characterization of optical systems for radial metrology. Proceedings of the SEM IX International Congress on Experimental Mechanics.2000:104-107.
    [44]Greguss P, Gilbert J A, Matthys D R, et al. Developments in radial metrology. Optical Testing and Metrology Ⅱ. SPIE Proceedings. C. P. Grover.1988, Vol.954:392.
    [45]Matthys D R, Gilbert J A, Greguss P. Endoscopic measurement using radial metrology with digital correlation. Optical Engineering.1991, Vol.30(10): 1455-1460.
    [46]Lindner J L, Gilbert J A. A panoramic system for vibration analysis. Proceedings of the SEM IX International Congress on Experimental Mechanics.2000:26-29.
    [47]Fair S B, Gilbert J A, Matthys D R, et al. Development of a phase-displacement equation for panoramic interferometry. Appl. Opt. 2000, Vol.39(19):3289-3294.
    [48]Fair S B, Matthys D R, Gilbert J A. Out-of-plane displacement analysis using panoramic ESPI. Proc. of the 1999 SEM Spring Conference on Theoretical, Experimental and Computational Mechanics.1999:257-260.
    [49]Weech G N E, Gilbert J A, Matthys D R. A stereoscopic system for radial metrology. Proc. of the 2001 SEM Annual Conference and Exposition. 2001:199-202.
    [50]Gilbert J A, Matthys D R. Digital image correlation of stereoscopic images for radial metrology. Proc. of SEM X International Congress.2004, Vol.223
    [51]Gilbert J A, Matthys D R, Lehner D L. Moire measurements using a panoramic annular lens. Second Intl Conf on Photomechanics and Speckle Metrology:Moire Techniques, Holographic Interferometry, Optical NDT, and Applications to Fluid Mechanics. Proc. SPIE.1991, Vol.1554B: 202-209.
    [52]Linder J L, Gilbert J A. Modal-Analysis using time-average panoramic holo-interferometry. Modal Analysis-the International Journal of Analytical and Experimental Modal Analysis.1995, Vol.10(3):143-151.
    [53]Matthys D R, Gilbert J A, Puliparambil J. Panoramic holointerferometry. Experimental Mechanics.1995, Vol.35(1):83-88.
    [54]土肥贞.全景摄影透镜.发明专利,02104126.1.
    [55]肖潇,杨国光.全景成像技术的现状和研究进展.光学仪器.2007,29卷(4):84-89.
    [56]姚炜勇,程惠全,朱方明.半球全景成像系统中的非线性映射研究.光电工程.2001,28卷(1):32-35.
    [57]谭志刚,白剑,杨国光.全景环形成像的嵌入式处理系统.光学仪器.2005,27卷(5):118-122.
    [58]肖潇,杨国光,白剑.基于Bezier曲面的快速插值算法改善全景图像的分辨率.光电工程.2008(1).
    [59]程惠全,姚炜勇,杨国光,等.全景环形成像的转像系统设计.光电工程.2002,29卷(2):16-19.
    [60]肖潇,杨国光,白剑.基于球面透视投影约束的全景环形透镜畸变校正.光学学报.2008(4).
    [61]侯慧杰,白剑,杨国光.全景环形透镜二维平面成像展开算法研究.光子学报.2007,35卷(11):1686-1688.
    [62]侯慧杰,白剑,杨国光.全景环形透镜三维空间成像展开算法的研究.光学仪器.2005,27卷(6):43-47.
    [63]朱方明,杨国光,姚炜勇.全景环形透镜环形象的线性化研究.光子学报.2001,30卷(9):1111-1114.
    [64]Zhao L F, Feng H J, Bai J. Panoramic optical annular staring inspection system for evaluating the inner surface of a pipe. Proceedings of SPIE on Optoelectronic Devices and IntegrationⅡ.2007, Vol.6838:68381.
    [65]李晓彤.几何光学和光学设计.杭州:浙江大学出版社,1997:252.
    [66]赵烈烽.高分辨环带成像系统特性及应用研究[博士学位论文].杭州:浙江大学,2008.
    [67]Focus Software I. ZEMAX Optical Design Program User's GuidefDB/CD]. Version 8.0 ed. Tucson:1999.
    [68]白剑,牛爽,杨国光,等.全景光学环带凝视成像技术.红外与激光工程.2006,35卷(3):331-335.
    [69]Boreman G D. Modulation transfer function in optical and electro-optical system. Proceedings of SPIE.2001, Vol.TT52:120.
    [70]加斯基尔J W.线性系统·傅里叶变换·光学.北京:人民教育出版社,1981.
    [71]庄松林等.光学传递函数.北京:机械工业出版社,1981.
    [72]马卫红.基于图像分析的光学传递函数测试技术研究[博士学位论文].中科院西安光学精密机械研究所,2005.
    [73]蒋筑英,李敛白.光学系统成像质量评价及检验文集.北京:中国计量出版社,1988.
    [74]麦伟麟.光学传递函数及其数理基础.北京:国防工业出版社,1979.
    [75]章慧贤.光学传递函数的发展及其应用.光学仪器.1996,18卷(4):28-31.
    [76]Rossi P, Brice D K, Doyle B L. Spatial distribution measured by the modulation transfer fuction. Nucl. Instr. Meth. B.2003, Vol.210:85-91.
    [77]Boreman G D, Yang S. Modulation transfer function measurement using three-and four-bar targets. Appl.Opt.1995, Vol.34(34):8050-8052.
    [78]Feltz J, Karim M. Modulation transfer fuction of charge-coupled device. Appl. Opt.1990, Vol.29(5):717-722.
    [79]Feltz J. Development of the modulation transfer fuction and contrast transfer fuction for discrete systems, particularly charge-coupled devices. Opt. Eng.1990, Vol.29(8):893.
    [80]波恩,沃尔夫.光学原理.北京:电子工业出版社,1959.
    [81]牛爽,白剑,侯西云,等.多片式全景环形成像透镜.ZL 200710068223.1.2009.
    [82]金国藩,严瑛白,乌敏贤.二元光学.北京:国防工业出版社,1998.
    [83]程惠全,姚炜勇,杨国光.基于二元光学色差校正的全景环形成象系统设计.光子学报.2001,30卷(9):1111-1113.
    [84]娄迪.谐衍射光学设计理论和应用研究[博士学位论文].杭州:浙江大学,2008.
    [85]吴剑.二元光学元件的激光直写及光刻技术的研究[硕士学位论文].杭州:浙江大学,2001.
    [86]Niu S, Bai J, Hou X Y, et al. Improvement in design of panoramic annular lens using cemented lenses. Proceedings of SPIE on Optical Design and Testing III.2008, Vol.6834:83428.
    [87]DALSA FTF4052M datasheet 20061030. Waterloo, Ontario, Canada: DALSA Corporation.
    [88]郁道银,谈恒英.工程光学.北京:机械工业出版社,1999.
    [89]Faklis D, Morris G M. Spectral properties of multiorder diffractive lenses. Applied Optics.1995, Vol.34(14):2462-2468.
    [90]Sweeney D W, Sommargren G E. Harmonic diffractive lenses. Applied optics.1995, Vol.34(14):2469-2475.
    [91]马韬.多层衍射光学元件设计理论及其在混合光学系统中的应用[博士学位论文].杭州:浙江大学,2006.
    [92]马韬.利用多层表面微结构提高DOE宽波段衍射效率.红外与激光工程.2008,37卷(1).
    [93]Nakai T. Diffractive optical element. U.S. Patent,6,587,272.2003.
    [94]Xitek.2000. Canon研制出世界上第一片用于照相机镜头的多层衍射光学镜片.http://www3.xitek.com/bingqiku/canon/eflens/doe-lens/doe-lens.htm.
    [95]Niu S, Bai J, Hou X Y, et al. Design of a panoramic annular lens with a long focal length. Appl.Opt.2007, Vol.46(32):7850-7857.
    [96]Geary J M. Introduction to lens design:With practical ZEMAX examples. Richmond, Virginia:Willmann-Bell,2002.
    [97]Laikin M. Lens design. New York, USA:Marcel Dekker Inc.,2001.
    [98]Smith W J. Modern lens design. New York:McGraw-Hill,2005.
    [99]肖潇.高分辨率全景成像系统及其视觉应用研究[博士学位论文].杭州:浙江大学,2009.
    [100]裴雪丹,崔庆丰,冷家开.入射角对双层衍射光学元件衍射效率的影响.光学学报.2009,29卷(1):120-125.
    [101]李荣彬,张志辉,李建广.单点金刚石车削加工的动态特性研究.机械工程学报.2003,39卷(10):136-139.
    [102]Jang G, Kim S, Kweon I. Single-camera panoramic stereo system with single-viewpoint optics. Optics Letters.2006, Vol.31(1):41-43.
    [103]白剑,牛爽,侯西云,等.利用全景环带成像透镜实现立体成像装置及其方法.发明专利,2008 10162300.4(已公开).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700