高分辨环带成像系统特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环带成像系统是全景成像系统的一种,在监视、监控、机器视觉等领域具有广阔的应用前景。全景成像系统通常可理解为是一种能把360°方位角空域内的景物投影到二维成像平面上的光学系统。不同于传统的三维透视投影法,环带成像系统采用了从柱面到平面的投影,因此具有不同的成像特性。
     环带成像系统的核心是环带镜头。本论文对环带镜头的特性、物像关系进行了深入的研究,提出了环带镜头的光瞳像差理论和环带镜头的双目立体视觉理论。在此基础上,本文还提出了一种基于液晶快门技术的高分辨环带成像系统,其视场超过水平面,并顺利完成了系统的设计、加工、装校和测试。文中对液晶快门进行了定性和定量的讨论,提出了双层的液晶盒结构,并将液晶快门安装在环带镜头的镜间。制作了带有镜间液晶快门和不带液晶快门的两款环带镜头,分辨率和MTF的对比测试结果证明加装液晶快门对成像质量降低的影响在本系统中可以忽略。
     本文对环带镜头中加装的液晶快门不能100%阻挡入射光而带来的拖影问题进行了深入的分析,并用遮阳机构解决了太阳光直射问题,用数字图像处理的方法进行了拖影补偿。对于视场超过水平面的环带图像,结合物像关系的分析,给出了图像展开的基准,并用实验进行了验证。
     论文具体研究内容如下:
     第一章介绍了课题研究背景,指出环带镜头可为实现全向和实时信息获取提供解决方法,对比了国内外现有的非凝视型和凝视型大视场成像技术,确定了本文的主要研究内容。
     第二章对PAL镜的光学特性进行了深入分析,指出了其像面照度优于一般全景镜头的特点。深入讨论了环带镜头的光瞳像差理论,建立了PAL镜的数学模型,提出了用多项式预报光阑球差的快速光线追迹法。
     第三章分析了常见的四种实现“非相似”成像的像高表达式,讨论了它们在环带成像系统中的像面放大率及畸变量。提出了利用满足f-θ投影关系的环带镜头实现双目立体视觉的理论,并结合管道内窥系统,提出了利用帧间图像测量物点距离,获取管道内径的方法,用环带镜头设计了一款管道内壁检测系统,给出了管道内径测量的实例和误差分析。
     第四章提出了一种将液晶盒作为光学快门的高分辨环带成像系统。为了考察液晶对成像质量的影响,设计并制作了带镜间液晶快门和不带液晶快门的两款高分辨、视场超水平面的环带镜头。对于成像系统读出的图像进行了预处理,重点讨论了如何补偿液晶不能完全关门所带来像面拖影。最后结合第三章分析的物像关系理论,研究了超水平面环带成像系统图像展开算法的特点,提出为了保证子午和弧矢方向放大率一致,图像展开的基准应为90°视场角所对应像面上的圆环,并给出了实验结果。
     第五章扭曲向列型液晶进行了定性的讨论和定量的分析,分析的结果可用于指导环带镜头中的液晶快关设计。最后给出了双层液晶盒结构的液晶快门,并给出了透过率的测试结果。
     第六章讨论了环带镜头的测试方法,包括分辨率测试和MTF测试。测试了两款环带镜头的光学性能,分析了测试系统中各组件对测试结果的影响,特别是CCD离散器件采样的影响。测试结果显示加装液晶快门并不会导致成像质量的明显下降,两款环带镜头的测试结果均符合我们的设计要求。
     最后一章对本文进行了总结,并提出了展望。
The annular lens imaging system, which is one kind of panoramic imaging systems, has broad application future in the areas of inspection, security, robot's vision, and et al. The panoramic imaging system are generally understood as a system, which can project the 360°surrounding objects into a two dimensional image plane. The annular lens imaging system has unique characteristics as it is using the Flat Cylinder Perspective (FCP) instead of traditional Central Point Perspective (CPP).
     The critical element of an annular lens imaging system is the annular lens. This thesis has detailed the characteristics of the annular lens and the object-image relation; proposed the pupil abberation theory and the dual-lens stereoscopic vision theory of the annular lens. According to that theories, we have designed manufactured, fabricated and tested an annular lens with high resolving power and large field of view, which is exceeding the horizontal line, based on the liquid crystal shutter (LCS) technique. This thesis has discussed the LCS both qualitatively and quantitatively; proposed the dual-layer structure LCS, and fixed the LCS inside the annular lens. We have built two types of annular lenses, one of which is equipped with a LCS and the other is not, and the results of resolving power and MTF tests shows the image degradation effect of the adding LCS is neglectable in our system.
     This thesis detailed the smears problems in the image plane caused by that the LCS cannot block the incident light to 100%, and also proposed the shading mechanical method to solve the direct sun shine problem and the image processing method to compensate the smears. For the annular image exceeding the horizontal line, we proposed the base line for the image transformation to keep the magnification ratio of tangential and sagittal directions. The detailed research contents are listed as follow.
     ChapterⅠintroduced the research background, pointed out that the annular lens technique can fulfil the requirement of realtime omnidirectional inspection. We compared the existing un-staring and staring panoramic imaging techniques, and determined the research aims.
     ChapterⅡanalyzed the optical characteristics of the PAL lens in detail, pointed out that the illumination on the image plane is more uniform than the other panoramic lenses. The sphere abberation of the entrance pupil of the annular lens was studied thoroughly, and the mathematic model of the PAL lens was made. A fast ray tracing method using polynomial abberation prediction was proposed.
     ChapterⅢanalyzed four image height expressions with not-resemble imaging characteristics, discussed their magnifying ratios and distortions. We proposed the dual-lens stereoscopic vision method using the annular lens using the f-θrelationship. When applied that method to the endoscopy of the pipes and bores, we proposed the method to measure the distance of the objects, i.e. the radius of the pipes, using the frames taken by a single annular lens. An bore endoscopy experiment system using the annular lens was made and the caused error was discussed.
     ChapterⅣproposed a design of an annular lens with high resolving power based on the LCS as the optical shutter. In order to find the image degradation caused by the LCS, we designed and fabricated two super hemisphere annular lens with high resolving power, one of which is equipped with a LCS and the other is not. We pretreated the readout images, and the methods to compensate the smears on the image plane caused by the LCS was discussed emphatically. Combining the object-image relation discussed in ChapterⅢ, we discussed the characteristics of annular image transformation, pointed out that in order to keep the tangential and sagittal magnifying ratios same, one should use the circle image corresponding to the field of angle of 90°as the base line. A corresponding experiment was given.
     ChapterⅤdiscussed the twisted nematic LCS both qualitatively and quantitatively. The results should guide the design of LCS. We designed a double-layer LCS, and tested the transmission of the LCS.
     ChapterⅥdiscussed the annular lens testing methods, including the resolving power and MTF tests. We tested the two types of lenses and compared the results, analyzed the effects of the auxiliary equipment, especially the CCD discrete sampling period. It shows that the built in LCS has no evident image quality degradation. Both testing results were fulfill our design aims.
     The last chapter summarized the full thesis and proposed the future plan.
引文
[1]王之江,伍树东.成像光学.科学出版社,北京,1991.
    [2]W.S.Cohen.Report of the Quadrennial Defense Review.Diane Publishing,Pennsylvania,USA,1997.
    [3]王永仲.鱼眼镜头光学.科学出版社,北京,2006.
    [4]H.H.Shelton.Joint vision 2020.US Government Printing Office,Washington DC.,2000.
    [5]J.M.Shalikashvili.Joint vision 2010.US Government Printing Office,Washington DC.,1997.
    [6]革军.从《2020年联合设想》看美军未来发展方向,2004.Cited on Jan.28,2008,Available from:http://www.defence.org.cn/article-13-28429.html.
    [7]P.Greguss.Panoramic security.In Proceedings of SPIE on Holographic Optical Security Systems,volume 1509,pages 55-66.SPIE,1991.
    [8]方有培,汪立萍,赵霜.反舰导弹突防技术研究.航天电子对统(6):40-AA,2004.
    [9]韩根甲.舰载红外搜索与跟踪系统的最新现状与发展趋势.现代防御技术,35(3):109-116,2007.
    [10]T.R.Halfhill.See you around.Byte Magazine,pages 85-90,1995.
    [11]李朝木.探测导弹羽烟紫外辐射的光电高速采集系统.现代防御技术,29(1):50-55,2001.
    [12]J.A.C.Nicol and H.Somiya.The eyes of fishes.Clarendon Press,Oxford,UK,1989.
    [13]G.Colicchia.Vision of fish in air.Physics Education,42(2):189-192,2007.
    [14]J.J.Kumler and M.L.Bauer.Fish-eye lens designs and their relative performance.In Proceedings of SPIE on Current Developments in Lens Design and Optical Systems Engineering,volume 4093,pages 360-369.SPIE,2000.
    [15]J.S.Chahl and M.V.Srinivasan.Reflective surfaces for panoramic imaging.Appl.Opt.,36(31):8275-8285,1997.
    [16]S.Baker and S.K.Nayar.A theory of single-viewpoint catadioptric image formation.Int.J.Comput.Vis.,35(2):175-196,1999.
    [17]S.K.Nayar.Catadioptric omnidirectional camera.In Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,pages 482-488.1EEE Computer Society,1997.
    [18]K.Yamazawa,Y.Yagi,and M.Yachida.Omnidirectional imaging with hyperboloidal projection.In Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems,volume 2,pages 1029-1034,1993.
    [19]R.A.Hicks and R.Bajcsy.Catadioptric sensors that approximate wide-angle perspective projections In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,volume 1,pages 545-551.IEEE Computer Society,2000.
    [20]R.A.Hicks and R.Bajcsy.Reflective surfaces as computational sensors.Image Vis.Comput.,19(11):773-777,2001.
    [21]T.L.Conroy and J.B.Moore.Resolution invariant surfaces for panoramic vision systems.In Proceedings of the Seventh IEEE International Conference on Computer Vision,volume 1,pages 392-397.IEEE Computer Society,1999.
    [22]G.I.Kweon,K.T.Kim,G.H.Kim,et al.Folded catadioptric panoramic lens with an equidistance projection scheme.Appl.Opt.,44(14):2759-2767,2005.
    [23]G.I.Kweon,H.B.Seung,G.H.Kim,et al.Wide-angle catadioptric lens with a rectilinear projection scheme.Appl.Opt.,45(34):8659-8673,2006.
    [24]J.Y.Zeng,X.Y.Su,and G.E Jin.Incorporating lens distortion into the design of undistorted catadioptric omnidirectional cameras.Appl.Opt.,45(30):7778-7784,2006.
    [25]曾吉勇,苏显渝.水平场景无畸变的折反射全景成像系统.光学学报,23(5):636-640,2003.
    [26]曾吉勇,苏显渝.柱面场景无畸变的折反射全景成像系统.光电工程,30(1):42-45,2003.
    [27]曾吉勇.折反射全景立体成像.Dissertation,四川大学,2003.
    [28]D.R.Buchele and W.M.Buchele.Unitary catadioptric objective lens system,1953.US Patent 2,638,033.
    [29]P.Greguss.Panoramic imaging block for three-dimensional space,January 28 1986.US Patent 4,566,763.
    [30]P.Greguss.The tube peeper:a new concept in endoscopy.Opt.Laser Technol.,17(1):41-45,1985.
    [31]P.Greguss.Panoramic holocamera for tube and borehole inspection.In Proceedings of SPIE on International Seminar on Laser and Opto-Electronic Technology in Industry:State-of-the-Art Review,volume 699,pages 127-132.SPIE,1986.
    [32]I.Powell.Panoramic lens.Appl.Opt.,33(31):7356,1994.
    [33]I.Powell.Panoramic lens,December 5 1995.US Patent 5,473,474.
    [34]I.Powell.Design study of an infrared panoramic optical system.Appl.Opt.,35(31):6190-6194,1996.
    [35]D.L.Lehner.Amplitude based radial metrology using panoramic annular lenses.Dissertation,The University of Alabama in Huntsville,1994.
    [36]S.B.Fair and J.A.Gilbert.Panoramic endoscopy.In Proceedings of SPIE on Optical Fibers in Medicine Ⅶ,volume 1649,pages 203-207.SPIE,1992.
    [37]D.R.Matthys,J.A.Gilbert,and P.Greguss.Endoscopic measurement using radial metrology with digital correlation.Opt.Eng.,30(10):1455-1460,1991.
    [38]J.A.Gilbert,D.R.Matthys,and C.M.Lindner.Endoscopic inspection and measurement.In Proceedings of SPIE on Applications of Digital Image Processing XV,volume 1771,pages 106-112.SPIE,1993.
    [39]J.A.Gilbert,R Greguss,and A.S.Kransteuber.Holo-interferometric patterns recorded through a panoramic annular lens.In Proceedings of SPIE on Three-Dimensional Holography:Science,Culture,Education,volume 1238,pages 412-420.SPIE,1991.
    [40]A.V.Kurtov and V.A.Solomatin.Panoramic mirror-lens objective,1999.Russian Patent 2,185,645.
    [41]V.A.Solomatin.A panoramic video camera.J.Opt.Technol.,74(12):815-817,2007.
    [42]姚炜勇,程惠全,朱方明,等.半球全景成象系统中的非线性映射研究.光电工程28(1),2001.
    [43]白剑,牛爽,杨国光,等.全景光学环带凝视成像技术.红外与激光工程35(3):331-335,2006.
    [44]肖潇,杨国光.全景成像技术的现状和进展.光学仪器,29(4):84-89,2007.
    [45]程惠全,姚炜勇,杨国光.基于二元光学色差校正的全景环形成象系统设计.光子学报,30(9):1111-1114,2001.
    [46]S.Niu,J.Bai,X.Y.Hou,et al.Design of a panoramic annular lens with a long focal length.Appl.Opt.,46(32):7850-7857,2007.
    [47]程惠全,姚炜勇,杨国光,等.全景环形成像的转像系统设计.光电工程29(2):16-19,2002.
    [48]朱方明,杨国光,姚炜勇,等.全景环形透镜环形象的线性化研究.光子学报,30(9):1111-1114,2001.
    [49]侯慧杰,白剑,杨国光.全景环形透镜三维空间成像展开算法的研究.光学仪器,27(6):43-47,2005.
    [50]侯慧杰,白剑,杨国光.全景环形透镜二维平面成像展开算法研究.光子学报,35(11):1686-1688,2006.
    [51]肖潇,杨国光,白剑.基于最优参数的全景图像三次样条插值复原.红外与激光工程,36(5):725-728,2007.
    [52]M.A.Stedham and P.P.Banerjee.Panoramic annular lens attitude determination system(palads).In Proceedings of SPIE on Space Guidance,Control,and Tracking II,volume 2466,pages 108-117.SPIE,1995.
    [53]王道义,黄大为,邬敏贤,等.全景环形透镜原理及特点剖析.光学技术,24(1):10-12,1998.
    [59]丁学专,刘银年,王欣,等.航天遥感反射式光学系统设计.红外技术,29(5):253-256,2007.
    [60]任智斌,王治乐,张伟.基于衍射光学的大视场卡塞格林光学系统设计.光电子·激光,18(9):1061-1064,2007.
    [54]H.Brachvogel.Panoramic view objective using an aspherical lens,January 5 1971.US Patent 3,552,820.
    [55]G.Rosendal and W.Dykes.Lens system for panoramic imagery,July 26 1983.US Patent 4,395,093.
    [56]A.Cox.Panoramic lens,November 27 1984.US Patent 4,484,801.
    [57]李晓彤.几何光学和光学设计.浙江大学出版社,杭州,1997.
    [58]L.E Zhao,H.J.Feng,J.Bai,et al.Panoramic optical annular staring inspection system for evaluating the inner surface of a pipe.In Proceedings of SPIE on Optoelectronic Devices and Integration Ⅱ,volume 6838,page 68381P.SPIE,2007.
    [61]郁道银,谈恒英.工程光学.机械工业出版社,北京,1999.
    [62]J.M.Geary.Introduction to lens design:With practical ZEMAX examples.Willmann-Bell,Richmond,Virginia,USA,2002.
    [63]M.Laikin.Lens design.Marcel Dekker Inc.,New York,USA,2001.
    [64]W.J.Smith.Modern lens design.McGraw-Hill,New York,USA,2005.
    [65]陈晃明,陈向颖.鱼眼镜头光学设计.北京理工大学学报,9(3):35-42,1989.
    [66]赵烈烽,冯华君,徐之海.用蒙特卡罗光子追迹方法分析闪光灯的结构设计.光学学报,27(2):335-339,2007.
    [67]M.Aggarwal,H.Hua,and N.Ahuja.On cosine-fourth and vignetting effects in real lenses.In Proceedings of the Eighth IEEE International Conference on Computer Vision,volume 1,pages 472-479.IEEE,2001.
    [68]D.L.Lehner,A.G.Richter,D.R.Matthys,et al.Characterization of the panoramic annular lens.Exp.Mech.,36(4):333-338,1996.
    [69]马颂德,张正友.计算机视觉.科学出版社,北京,1998.
    [70]苏显渝,李继陶.信息光学.科学出版社,北京,1999.
    [71]X.Y.Su,X.Cheng,and L.Guo.An automated reconstruction method for 360 degree shape of 3D objects.In Proceedings of SPIE on International Conference on Optoelectronic Science and Engineering'90,volume 1230,pages 783-784.SPIE,1990.
    [72]J.L.Li,X.Y.Su,and W.S.Zhou.3-D sensing using laser sheet projection:influence of speckle.Opt.Rev.,2(2):144-147,1995.
    [73]M.Takeda and K.Mutoh.Fourier transform profilometry for the automatic measurement of 3-D object shapes.Appl.Opt.,22(24):3977-3982,1983.
    [74]X.Y.Su and W.Chen.Fourier transform profilometry:a review.Opt.Laser Eng.,35(5):263-284,2001.
    [75]X.Y.Su,W.S.Zhou,G.von Bally,et al.Automated phase-measuring profilometry using defocused projection of a Ronchi grating.Opt.Commun.,94(6):561-573,1992.
    [76]田铁印.典型光学系统总体研究及结构分析.光学精密工程,2(4):15-19,1994.
    [77]苏兰海,郑辉,刘永超.彩色面阵CCD在物体表面温度检测中的研究.冶金设备,(2):4-7,2005.
    [78]王兆远.照相机.机械工业出版社,北京,1991.
    [79]DALSA FTF4052M datasheet 20061030.DALSA Corporation,Waterloo,Ontario,Canada,Oct.302006.
    [80]Iso 12232:Photography-electronic still-picture cameras-determination of iso speed.Technical report,International Organization for Standardization,1998.
    [81]R.Baer.ISO Speed.Technical report,Agilent Technologies,Feb.10 2005.
    [82]赵荣椿.数字图像处理导论.西北工业大学出版社,西安,1996.
    [83]刘金根,刘上乾.一种新的图象展开算法.光子学报,31(2):213-216,2002.
    [84]S.T.Kowel,D.S.Cleverly,and P.G.Kornreich.Focusing by electrical modulation of refraction in a liquid crystal cell.Appl.Opt.,23(2):278,1984.
    [85]T.Nose,S.Masuda,S.Sato,et al.Effects of low polymer content in a liquid-crystal microlens.Optics Lett.,22(6):351-353,1997.
    [86]M.Ye and S.Sato.Liquid crystal lens with focus movable along and off axis.Opt.Commun.,225(4-6):277-280,2003.
    [87]T.C.Kraan,T.V.Bommel,and R.A.M.Hikmet.Modeling liquid-crystal gradient-index lenses.J.Opt.Soc.Am.A,24(11):3467-3477,2007.
    [88]S.E.Broomfield,M.A.A.Neil,E.G.S.Paige,et al.Programmable binary phase-only optical device based onferroelectric liquid crystal SLM.Elect.Lett.,28(1):26-28,1992.
    [89]T.Sonehara.Photo-addressed liquid crystal SLM with twisted nematic ECB(TN-ECB)mode.Jpn.J.Appl.Phys.,29(7):L1231-L1234,1990.
    [90]张晓洁.基于LCD空间光调制器全息显示的若于问题研究.Dissertatioin,浙江大学,2007.
    [91]D.K.Yang,L.C.Chien,and J.W.Doane.Cholesteric liquid crystal/polymer dispersion for hazefree light shutters.Appl.Phys.Lett.,60(25):3102-3104,1992.
    [92]G.A.Lester,J.Watts,and D.Wilmington.Ferroelectric liquid crystal device for a single camerastereoscopic endoscope system.Elect.Lett.,33(10):857-858,1997.
    [93]黄子强.液晶显示原理.国防工业出版社,北京,2006.
    [94]H.Wohler.Numerical methods for parameter optimization of liquid crystal display.In Proceedings of the Society for Information Display International Symposium,pages 582-585.Society for Information Display,1991.
    [95]M.Schadt and W.Helfrich.Voltage-dependent optical activity of a twisted nematic liquid crystal.Appl.Phys.Lett.,18(4):127-128,1971.
    [96]T.J.Scheffer and J.Nehring.A new,highly multiplexable liquid crystal display.Appl.Phys.Lett.,45(10):1021-1023,1984.
    [97]D.W.Berreman.Optics in stratified and anisotropic media:4x4-matrix formulation.J.Opt.Soc.Am.,62(4):502-510,1972.
    [98]H.Wohler,G.Haas,M.Fritsch,et al.Faster 4×4 matrix method for uniaxial inhomogeneous media.J.Opt.Soc.Am.A,5(9):1554-1557,1988.
    [99]K.H.Yang.Elimination of the fabry-perot effect in the 4×4 matrix method for inhomogeneous uniaxial media.J.Appl.Phys.,68(4):1550-1554,1990.
    [100]P.Yeh.Extended Jones matrix method.J.Opt.Soc.Am,72(4):507-513,1982.
    [101]P.Yeh.Optical waves in layered media.Wiley,New York,USA,1988.
    [102]C.Gu and P.Yeh.Extended Jones matrix method.Ⅱ.J.Opt.Soc.Am.A,10(5):966-973,1993.
    [103]A.Lien.Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence.Appl.Phys.Lett.,57(26):2767-2769,1990.
    [104]A.Lien and C.J.Chen.A new 2×2 matrix representation for twisted nematic liquid crystal displays at oblique incidence.Jpn.J.Appl.Phys.,35(9B):L1200-L1203,1996.
    [105]K.Lu and B.E.A.Saleh.Reducing berreman's 4×4 formulation of liquid-crystal-display optics to 2×2 jones vector equations.Opt.Lett.,17(22):1557,1992.
    [106]王谦,余飞鸿.扭曲向列型LCD电光特性计算的理论研究.光子学报,29(004):330-338,2000.
    [107]E.Jakeman and E.P.Raynes.Electro-optic response times in liquid crystals.Phys.Lett.A,39(1):69-70,1972.
    [108]J.S.Gwag,S.H.Lee,K.Y.Han,et al.Novel cell gap measurement method for a liquid crystal cell.Jpn.J.Appl.Phys.,41(1AB):L79-L82,2002.
    [109]S.T.Wu and U.Efron.Optical properties of thin nematic liquid crystal cells.Appl.Phys.Lett.,48(10):624-626,1986.
    [110]C.H.Gooch and H.A.Tarry.The optical properties of twisted nematic liquid crystal structures with twist angles≤90.J.Phys.D,8(13):1575-1584,1975.
    [111]胡家升.光学工程导论.大连理工大学出版社,大连,2002.
    [112]马卫红.基于图像分析的光学传递函数测试技术研究.Dissertatioin,中科院西安光学精密机械研究所,2005.
    [113]H.Osterberg.Military standardization handbook,Optical design,chapter Resolving power test.Defense Supply Agency,Washington,D.C.,1962.
    [114]Night Vision and Electronic Sensor Directorate.FLIR92 Thermal imaging systems performance model analyst's reference guide.Fort Belvoir,Virginia,USA,1993.
    [115]章慧贤.光学传递函数的发展及其应用.光学仪器,18(4):28-31,1996.
    [116]麦伟麟.光学传递函数及其数理基础.国防工业出版社,北京,1979.
    [117]庄松林,钱振邦.光学传递函数.机械工业出版社,北京,1981.
    [118]P.Rossi,D.K.Brice,and B.L.Doyle.Spatial distribution measured by the modulation transfer function.Nucl.Instrum.Methods Phys.Res.,Sect.B,210:85-91,2003.
    [119]蒋筑英,李剑白,向才新,等.光学系统成像质量评价及检验文集.中国计量出版社,北京,1988.
    [120]G.D.Boreman and S.Yang.Modulation transfer filnction measurement using three-and four-bar targets.Appl.Opt.,34(34):8050-8052,1995.
    [121]J.W.Coltman.The specification of imaging properties by response to a sine wave input.J.Opt.Soc.Am,44(6):468-471,1954.
    [122]G.D.Boreman.Modulation transfer function in optical and electro-optical systems.SPIE PRESS,Bellingham,Washington,2001.
    [123]J.Feltz and M.Karim.Modulation transfer function of charge-coupled devices.Appl.Opt.,29(5):717-722,1990.
    [124]J.C.Feltz.Development of the modulation transfer function and contrast transfer function for discrete systems,particularly charge-coupled devices.Opt.Eng.,29(8):893-904,1990.
    [125]A.Friedenberg.Comment on the paper "Development of the modulation transfer function and contrast transfer function for discrete systems,particularly charge-coupled devices".Opt.Eng.,35(7):2105-2106,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700