车用散热器中纳米流体高温传热基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代发动机功率密度的不断提高,传统冷却液已经逐渐不能满足冷却系统高负荷的散热要求,有必要开发新型高效传热的冷却液。纳米流体技术的出现,为车辆冷却系统和车用散热器的发展提供了新的思路,为工程强化传热领域带来了新的研究方向。
     本文研制了300余种纳米流体的配方,对其悬浮稳定性、导热系数、比热容、粘度等重要特性参数分别做了较为详尽的试验研究,并分析推导了相应的预测模型。从众多配方中筛选了具有高沸点、高导热系数的有机型纳米流体,并与常规冷却液进行了基于车用散热器的高温小温差传热对比试验,验证了纳米流体在车用散热器中高温小温差传热的可行性和有效性。
     通过静置观察和TEM电镜观察研究了纳米流体的悬浮稳定性,试验表明,纳米粒子、基础液体、分散剂特性及超声振动等都关系着纳米流体的悬浮稳定性,普遍规律是粒子浓度低、粒径小、密度小、基础液体粘度大的纳米流体悬浮稳定性相对较好。采用自行设计的瞬态热线法装置测试了纳米流体的导热系数,结果显示纳米流体相对基础液体导热系数的增加率随着粒子体积份额的增加、粒径的减小和悬浮稳定性的优化而增加;分析了纳米流体导热增强机理,考虑了纳米粒子的小尺寸效应、纳米粒子的聚集、固液微界面和微对流,在H-C模型的基础上提出了低浓度纳米流体的导热系数修正预测模型。采用自行设计的比较量热法装置测试了纳米流体的比热容,结果显示纳米流体比热容比基础液体小,纳米粒子的体积份额越大则纳米流体比热容越小;分析了纳米流体比热容的增量来源于纳米粒子的小尺寸效应,推导了适合低浓度纳米流体比热容的预测模型。采用旋转粘度计测试了纳米流体的动力粘度,揭示了粘度与温度、粒子体积份额及悬浮稳定性之间的关系;在Einstein混合物粘度公式的基础上考虑了粒子聚集的影响,推导了低浓度纳米流体粘度预测公式。
     纳米流体的传热强化机制有静态机制和动态机制两个方面。静态机制来自于纳米流体导热性能的优化,动态机制来自于纳米流体系统中粒子的布朗运动引起的热扩散和碰撞作用,粒子之间、粒子与壁面之间在碰撞中产生能量损失,引起能量的迁移,是纳米流体传热能力增强的重要因素。将纳米流体应用到某型号的车用机油冷却器中,基于标准k-ε模型并采用以上理论分析,采用Fluent软件的数值模拟结果发现,在散热器传热中纳米流体较其基础液体换热量更大,内部湍动更强,温度分布更均匀。
     开发了具有高精度的纳米流体传热性能测试系统,以典型板翅式车用机油冷却器为传热对象,在水和防冻液在低温大温差(冷却液90℃,机油120℃)和Al_2O_3-PG90纳米流体及其基础液体在高温小温差(冷却液120℃、机油135℃)的工况下,测试了各种冷却液的传热性能及阻力性能。结果表明体积份额在5.0%以上的纳米流体能满足机油冷却器的传热需要,纳米流体具有比水、防冻液及基础液体更高的换热系数,且体积份额越大其传热系数增幅越大;并拥有比水和防冻液有更高的沸点温度和工作温度;纳米流体在散热器中的流动在Re<1000时就已经达到紊流状态,纳米流体具有基础液体显示出更强的传热性能。纳米流体的传热系数相对基液的增幅比导热系数相对基液的增幅大,说明关于纳米流体传热机制的分析是正确的。
     纳米流体的传热性能较常规冷却介质有大幅提高,本文所使用的高沸点、高导热系数的有机型纳米流体,在车辆冷却系统中能形成较大的冷热流体(冷流体为环境空气)温差,有利于提高整个冷却系统的散热效率;并且由于基础液体是有机型的,预计具有较好的防腐、防冻和环保的功能,对车辆冷却系统具有重要意义,有利于开发新型的车用冷却液产品。本文的研究工作对新型高紧凑、高效率的散热器及高效、高沸点冷却介质的设计有指导性的作用,可以预计纳米流体在工程传热领域将有广阔的应用前景。
Following the specific power's enhancement of modern engines, conventionalengine coolants gradually can not meet the high heat loads of vehicle cooling systems.The appearance of nanofluids offers a new available approach for cooling systems andheat exchangers, and is becoming a new direction for engineering heat transfer.
     In this paper, over 300 varieties of nanofluids formulation have developed, andtheir suspension stability, thermal conductivity (k), specific heat capacity (C),dynamic viscosity (η) are all experimentally and theoretically studied in detail.Models of the k, C andηare respectively developed based on the micro-mechanism.These models are significant for designing nanofluids for special intents. The highboiling point & high thermal conductivity nanofluids have been selected from theformulations. Applying these nanofluids, the high temperature-low temperaturedifference (HTLTD) heat transfer tests have been done on certain vehicle oil cooler toverify the feasibility and validity of the nanofluids compared with water andconventional coolant.
     The suspension stability tests are based on the still layered and TEM figure, and theresults show that the suspension stability of nanofluids are seriously related to theproperties of nanoparticle, basefluid, dispersant and supersonic vibration. The generallaw is that low particle concentration, little particle dimension, high basefluidviscosity help to suspension stability.
     The transient-hot-wire technique systems were carefully self-designed to measurethe thermal conductivity of nanofluids. The results show that the thermal conductivityof nanofluids increases with the particle volume fraction and suspension situation,while decreases with the particle dimension. Based four micro-mechanisms: themicro-dimension effect, congregating of particles, micro-interface of solid-liquid andmicro-convective in the mixture system, the thermal conductivity model wasdiscovered for the low concentration nanofluids.
     The specific heat capacity of nanofluids has been investigated applying thecomparative heat capacity systems self-designed. The results show that nanofluidsheat capacity is lower than that of basefluid, and decrease with the particle volumefraction; meanwhile, the source of the decrease is concluded to develop the specificheat model for low concentration nanofluids.
     Applying the rotary viscometer, the viscosity of nanofluids is tested. The resultsshow that the viscosity is affected by the temperature, particle volume fraction andsuspension stability. Based on the Einstein solid-liquid mixture's viscosity equation,the nanofluids viscosity model was deduced from the test values.
     The heat conduction enhancement can be owing to two factors: static and dynamicmechanisms. The static one is from the optimization of thermal conductivity and thedynamic one is from the thermal dispersion and particle collision because of theparticle's Brownian motion in the nanofluids system. The collision between theparticles and the particle and the wall will lead to energy loss and conversion, whichis a fundamental factor to improve the thermal performance of nanofluids. Apply theFLUENT software to numerically simulate a vehicle oil cooler and the results show that nanofluids have a bigger heat flow, higher heat transfer coefficient than theirbasefluids.
     The high temperature, low temperature difference, low fluid flow, high precisionthermal performance test rig for nanofluids as the coolant is developed. Based on atypical oil cooler, the heat transfer and pressure performances of the water andanti-freeze fluid at low T-big T difference (max. T of 90 degree for coolant, while max.T of 120 degree for oil) and nanofluids and their basefluid (max. T of 120 degree forcoolant, while max. T of 135 degree for oil) are tested respectively. The results showthat the nanofluids with above 5% volume fraction could meet the heat transfer needsof the heat exchanger; the nanofluids have higher heat transfer coefficient than water,anti-freeze fluid and basefluid; and the heat transfer efficient is improved with thevolume fraction of nanofluids; nanofluids have higher boiling point and worktemperature that water and coolant, which makes it can work at a relative lowerpressure or none pressure circumstance.
     Nanofluids have excellent thermal performance compared with the conventionalcoolants. The organic high boiling point-high thermal conductivity nanofluids in thisstudy will cause bigger temperature differences to the cool fluid in the radiator—thesurrounding air, which is profitable to the whole vehicular cooling system's efficiency.The basefluid which is organic is good to prevent corrosion and frost and protectenvironment. These properties are significant to vehicular cooling system. The studyin this paper could direct to design the high compact and efficient heat exchangers.The nanofluids could be envisioned to have a wide application in the engineering heattransfer field.
引文
[1] Feynman R P. There's plenty of room at the bottom: an invitation to enter a new field of physics[J]. Journal of Microelectromechanical Systems, 1992, 1 (5): 60-66
    [2] 周瑞发.纳米材料技术[M].北京:国防工业出版社,1994
    [3] 张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994
    [4] 刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002
    [5] Siegel R W, Roco M C. Nanostructure science and technology, a world wide study[C]. IWGN report. National Science and Technology Council, 1997
    [6] Geog D G, Chang L, Nam J M: Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease[J]. Proc Nat Acad Sci USA, 2005, 102(7): 2273-2276
    [7] Cai W P, Zhang L D. Characterization and the optical switching phenomenon of porous silica dispersed with silver nanoparticles within its pores[J]. Phy. Condens. Matter, 1996, (8): 591-596
    [8] Fenart L, Casanova A, Dehouck B, et al. Evaluation of effect of charge and liquid coating ability 60 nm nanoparticles to cross an invitro model of the blood brain barrier[J]. J. of Pharmacologic Exp. Ther. 1999, 291(3): 1017-1022
    [9] Annette K, Guo S, Li F, et al. Controllable self-assembly of nanoparticles for specific dlivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology[J]. Nano. Lett, 2005, 5(9): 1797-1808
    [10] 张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2001
    [11] 周雄,岳群.纳米技术在环保领域的应用与发展[J].上海化工,2005,30(12):5-7
    [12] 许海燕.纳米技术在医学领域的应用研究[J].中华医学杂志,2006,86(8):505-506
    [13] 刘小卓,杨洁.pRNA-纳米技术在分子基因治疗中的应用[J].世界临床药物,2006,27(3):182-187
    [14] 王静,卢卫红等.纳米技术在中药研究中的发展与应用[J].中医药信息,2006,23(3):3-5
    [15] 王汝兴,刘翠哲,刘喜纲.纳米技术及其在药学研究中的应用[J].承德医学院中药研究所,2005,22(3):248-249
    [16] 张勇.纳米技术在畜牧业中的应用[J].饲料世界,2006(4):11-12
    [17] 查龙应,许梓荣,王敏奇.纳米技术在饲料行业中应用的研究进展[J].饲料工业,2006,27(5):55-57
    [18] Choi U S. Enhancing thermal conductivity of fluids with nanoparticles[G]. In: ASME FED 231, 1995, 99-103
    [19] Lee S, Choi S U S. Application of Metallic Nanoparticles Suspensions in Advanced Cooling Systems[G]. In: ASME PVP-vol.342/MD-vol.72, Recent Advances in Solids/Structures and Application of Metallic Materials, 1996, 227-234
    [20] Choi S U S, Yu W, Hull J R, and et al. Nanofluids for vehicle thermal management[C]. Vehicle thermal management systems conference & exhibition, 2001
    [21] Keblinski P, Eastman J A, David G C. Nanofluids for thermal transport[J]. Review Feature, 2005(6): 36-44
    [22] Eastman J A, Choi U S, Li S, and et al. Nano-crystalline and Nano-composite Material Ⅱ[A]//Komarneni S, Parker J C, Wollenberger H J. Materials Research Society[C]. Pittsburgh, PA, 1997, 457: 3-11
    [23] William L H. Automotive cooling, exhaust, fuel and lubricating systems[M]. Reston Publishing Company Inc., Virginia, 1985
    [24] William H, Donald L. Automotive fuel, lubricating and cooling systems[M]. McGraw-Hill Book Company, New York, 1976
    [25] 林宗虎.强化传热及其工程应用[M].北京:机械工业出版社,1987
    [26] 钟理,谭盈科.国外强化传热技术的研究与进展[J].化工进展,1993,4:1-5
    [27] 钱颂文,朱冬生等.管式换热器强化传热技术[M].北京:化学工业出版社,2003
    [28] 彭玉辉,黄素逸,张洪伟.纳米技术在传热领域中的应用与展望[J].节能,2004,263(6):7-10
    [29] Eastman J A, Choi U S, Li S, Thompson L J, Lee S. Enhanced Thermal Conductivity Through the Development of Nanofluids[A]. In: Komarneni S, Parker J C, Wollenberger H J, eds., Proceeding of the Symposium on Nanophase and Nanocomposite Materials. Boston: Material Research Society, Pittsburgh, PA, 1997, 3-11
    [30] 林玉兰,张明德.高温冷却技术在内燃机车上的应用[J].内燃机车,1999,303(5):23-26
    [31] 谭秉仁,张金兴.汽油发动机的高温冷却[J].上海交通大学学报,1993,27(3):17-24
    [32] 谭秉仁,孙国强,陆海章.柴油机高温冷却试验研究[J].汽车拖拉机,1993(1):27-33
    [33] 蔡锐彬,卢振雄,罗晓波.小型柴油机高温冷却效果的研究[J].华南理工大学学报,1995,23(5):142-147
    [34] 俞水良,潘克煜,肖永宁.直喷式柴油机高温冷却模拟隔热的传热和性能研究[J].内燃机工程,1992,13(1):6-11
    [35] 尤彦彦.后置发动机大客车冷却不足的改进措施与试验研究[D].广西大学硕士学位论文,2003
    [36] Ahuja A S. Augmentation of heat transfer in laminar flow of polystyrene suspension[J]. Journal of Applied Physics, 1975, 46: 3408-3425
    [37] Sohn C W, Chen M M. Microconvective thermal conductivity in disperse two-phase mixture as observed in a low velocity coquette flow experiment[J]. Journal of Heat Transfer, 1981, 103: 47-51
    [38] Liu K V, Choi S U S, Kasza K E. Measurement of pressure drop and heat transfer in turbulent pipe flows of particulate slurries[J]. Argonne National Laboratory Report, ANL-88-15, 1988
    [39] Peter Vadasz. Heat conduction in nanofluid suspensions[J]. Journal of Heat Transfer, 2006, 128(5): 465-477
    [40] Hwang Y J, Ahn Y C, Shin H S, and et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids[J]. Current Applied Physics, 2006, 6: 1068-1071
    [41] Liu M S, Lin M C, Tsai C Y. Enhancement of thermal conductivity with CuO for nanofluids using chemical reduction method[J]. International Journal of Heat and Mass Transfer, 2006, 49: 3028-3033
    [42] Keblinski P, Eastman J A, Cahill D J. Nanofluids for thermal transport[J]. Materials Today, 2005, 6: 36-44
    [43] Hwang Y, Park H S, Lee J K. Thermal conductivity and lubrication characteristics of nanofluids[J]. Current Applied Physics, 2006, 6: 67-71
    [44] Trisaksria V, Wongwises S. Critical review of heat transfer characteristics of nanofluids[J]. Renewable and Sustainable Energy Reviews, 2006, 11: 512-523
    [45] Masuda H, Ebata A, Teramae K, and et al. Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al_2O_3, SiO_2 and TiO_2 ultra-fiine particles)[J]. Netsu Bussie (Japan), 1993, 4: 227-233
    [46] Eastman J A, Choi U S, Li S, and et al. Nanocrystalline and Nanocomposite Material Ⅱ [A] //Komameni S, Parker J C, Wollenberger H J. Materials Research Society[C]. Pittsburgh, PA, 1997, 457: 3-11
    [47] Lee S P, Choi U S, Li S, and et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. Transactions of the ASME, 1999, 121: 280-289
    [48] Lee S, Choi S U S, Li S, and et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. Journal of Heat Transfer, 1999, 121: 280-289
    [49] Eastman J A, Choi U S, Li S. Development of Energy-efficient Nanofluids for Heat Transfer Applications[C]. Report of Argonne National Laboratory, 2001.
    [50] Wang X W, Xu X F, Choi S U S. Thermal conductivity of nanoparticle-fluid mixture[J]. Journal of Thermophysics and Heat Transfer, 1999, 13: 474-480
    [51] Li Q, Xuan Y M. Experimental Investigation on Transport Properties of Nanofluids[C]. In: Proceeding of the 5th International Symposium on Heat Transfer. Beijing, 2000
    [52] Xuan Y, Li Q. Heat Transfer Enhancement of Nanofluids[J]. International Journal of Heat and Fluid Flow, 2000, 21: 58-64
    [53] Xuan Y, Roetzel W. Conception for Heat Transfer Correlation of Nanofluids[J]. International Journal of Heat Mass Transfer, 2000, 43: 3701-3707
    [54] 李强,宣益民.纳米流体热导率的测量[J].化工学报,2003,54(1):42-46
    [55] 李强,宣益民.航天用传热强化工质导热系数和粘度的实验研究[J].宇航学报,2002,23(6):73-76
    [56] 谢华清,吴清仁,王锦昌等.氧化铝纳米粉体悬浮液强化导热研究[J],硅酸盐学报,2002,30(3):272-276
    [57] 谢华清,王锦昌,奚同庚等.SiC纳米流体悬浮液导热系数研究[J],硅酸盐学报,2001,29:361-364
    [58] Xie H Q, Wang J C, Xi T G. Thermal conductivity enhancement of suspensions containing nanosized alumina particles[J]. Journal of Applied Physics, 2002, 91: 4568-4572
    [59] Xie H Q, Wang J C, Xi T G. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid[J]. Journal of Materials Science Letters, 2002, 21: 1469-1471
    [60] 王补宣,李春辉,彭晓峰.纳米颗粒悬浮液稳定性分析[J].应用基础与工程科学学报,2003,11:167-173
    [61] 王补宣,周乐平,彭晓峰.纳米颗粒悬浮液的粘度、热扩散系数与Pr数[J].自然科学进展,2004,14:799-803
    [62] Li Z L, Wang B X, Li J M. Experimental viscosity measurements for copper oxide nanoparticle suspensions[J]. Tsinghua Science And Technology, 2002, 7: 198-201
    [63] Daungthongsuk W, Wongwises S. A critical review of convective heat transfer of nanofluids[J]. Renewable and Sustainable Energy Reviews, 2007(In Press)
    [64] Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks[J]. International Journal of Heat and Mass Transfer, 2005, 48: 2652-2661
    [65] Ma H B, Wilson C, Borgmeyer B, and et al. Effect of nanofluid on the heat transport capability in an oscillating heat pipe[J]. Applied Physics Letters, 2008, 88: 1-3
    [66] Zhou D W. Heat transfer enhancement of copper nanofluid with acoustic cavitations[J]. International Journal of Heat and Mass Transfer, 2004, 47: 3109-3117
    [67] Heris S Z, Esfahany M N, Etemad S G. Experimental investigation of convective heat transfer of Al_2O_3/water nanofluid in circular tube[J]. International Journal of Heat and Fluid Flow, 2007(In Press)
    [68] Palm S J, Roy G, Nguyen C T. Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties[J]. Applied Thermal Engineering, 2006, 26: 2209-2218
    [69] Israeli T, Reddy T A, Cho Y I. Investigation on the use of nanofluids to enhance heat pipe performance[J]. Solar Engineering, 2005, 24: 357-365
    [70] Yang Y, Zhang Z G, Grulke E A. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow[J]. International Journal of Heat and Mass Transfer, 2005, 48: 1107 1116
    [71] Buongiorno J. Convective transport in nanofluids[J]. Transaction of the ASME, 2006, 128: 240-250
    [72] Maiga S B, Palm S J, Nguyen C T. Heat transfer enhancement by using nanofluids in forced convection flows[J]. International Journal of Heat and Fluid Flow, 2005, 26: 530 546
    [73] Pak B C, Cho Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental heat transfer, 1998, 11 (2): 151-170
    [74] Hu Z S, Dong J X. Study on antiwear and reducing friction additive of nanometer titanium oxide[J]. Wear, 1998, 216: 92-96
    [75] Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions[J]. International Journal of Heat Mass Transfer, 2004, 47: 5181-5188
    [76] Yang Y, Zhang Z G, Grulke E A, and et al. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow[J]. International Journal of Heat Mass Transfer, 2005, 48: 1107-1116
    [77] Chein R, Huang G M. Analysis of microchannel heat sink performance using nanofluids[J]. Applied Thermal Engineering, 2005, 25: 3104-3114
    [78] 李强,宣益民.纳米流体对流换热的实验研究[J].工程热物理学报,2002,23(6):721-723
    [79] 李强,宣益民.小通道扁管内纳米流体流动与传热特性[J].工程热物理学报,2004,25(2):305-307
    [80] 谢华清.纳米颗粒悬浮液热物理行为研究[D],中国科学院上海硅酸盐研究所,博士学位论文,2001
    [81] 戴闻亭,李俊明,陈骁,王补宣.细圆管内纳米悬浮液对流换热的试验研究[J].工程热物理学 报,2003,24(4):633-636
    [82] 任泽霈,蔡睿贤.热工手册[M].北京:机械工业出版社,2002
    [83] 虞莲莲.实用有色金属手册[M].北京:机械工业出版社,2002
    [84] 曾正明.实用机械工程材料手册[M].北京:机械工业出版社,2003
    [85] 赵国玺.表面活性剂物理化学(修订版)[M].北京:北京大学出版社,1991
    [86] 胡纪华,杨兆禧,郑忠.胶体与界面化学[M].广州:华南理工大学出版社,1996
    [87] 张济中,分形[M].北京:清华大学出版社,1995
    [88] Mohammed L H, Agustin E G, Estela B B. Concentration dependence of structural and dynamical quantities in colloidal aggregation: Computer simulations[J]. Physical Review E, 1996, 56(11), 5456-5462
    [89] Mohammed L H, Agustin E G, Estela B B. Structure function and fractal dimension of diffusion-limited colloidal aggregates[J]. Physical Review E, 1998, 57(4): 4520-4527
    [90] 胡卫峰.纳米流体结构与能量输运机理研究[D].南京理工大学硕士学位论文,2002.
    [91] 刘阳桥.氧化铝粉体的分散及其水悬浮液流变性研究[D].中国科学院上海硅酸盐研究所博士学位论文,2001
    [92] Warren L J. In principles of mineral flotation[M]. Eds. M. H. Jones, and J. T. Woodcock, Australian Institute of Mining and Metallurgy, 1984
    [93] Verwey E J W and Overbeek J T G, Theory of the Stability of Lyphobic Colloids[M]. Elsevier, Amsterdam, Holland, 1948
    [94] Israclachvili J N. Intermolecular and Surface Forces[M]. Academic Press, London, 1983
    [95] 王补宣,李春辉,彭晓峰.纳米颗粒悬浮稳定性分析[J].应用基础与工程材料学报,2003,11(2):168-173
    [96] Nagasaka Y, Nagashima A. Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot-wire method[J]. Review Science Instrument, 1981, 52(2): 229-232
    [97] Greger R, Ratth H J. Measurement of the thermal conductivity of fluids with low viscosity under reduced gravity conditions using the transient hot-wire technique[J]. International Journal of Heat Mass Transfer, 1995, 38(6): 1105-1110
    [98] Water N T, Harold W L, Lewis F and et al. Rapid measurement of liquid thermal conductivity by the transient hot-wire method[J]. Review Science Instrument, 1977, 48(1): 47-51
    [99] Fox J N, Gaggini N W, Wangsani R. Measurement of the thermal conductivity of liquids using a transient hot wire technique[J]. American Journal of Physics, 1987, 55(3): 272-274
    [100] Xuan Y M, Li Q. Heat transfer enhancement of nanofluids[J]. International Journal of Heat and Fluid Flow, 2000, 21: 58-64
    [101] Nakamura S, Hibiya T. Ceramic probe for measuring the thermal conductivity of an electrically conductive liquid by the transient hot wire method[J]. Review Science Instrument, 1988, 59(12): 2600-2603
    [102] Lee S, Choi S U S, Li S, and et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. Transaction of the ASME, 1999, 121(5): 280-289
    [103] 阎秋会,刘志刚等.瞬态热线法测量流体导热系数的实验研究[J].西安建筑科技大学学报,1997,29(3):322-325
    [104] 谢华清,王锦昌,程曙霞,刘岩.热针法测量材料导热系数的研究[J].应用科学学报,2002,20(1):7-9
    [105] 帅琪,高胜利,陈三平,刘明艳等.用微量热法测定稀土含硫有机配合物的比热容[J].化学学报,2005,63(21):1961-1966
    [106] 赵小明,陆世豪,顾兆林,刘志刚.准稳态理论测量融解热及比热容的实验研究[J],西安交通大学学报,2005,39(9):958-961
    [107] 陈东生,周嘉源,钱军,宦强.混合法测固体比热容仪器的研制[J].物理实验,2005,25(1):22-24
    [108] 李焱,贾代维,邓鹏波.用电热法测液体的比热容实验的数据处理[J].鞍山师范学院学报,2004,6(6):33-34
    [109] 喻凌,潘学军.液体比热容的测量[J].四川师范大学学报,2003,26(3):306-308
    [110] 汤大其.对电流量热器法测定液体比热实验的一种改进方法[J].安庆师范学院学报,2003,9(3):26-27
    [111] 刘传安,罗小凤.用恒流量热器测定水的比热容[J].大学物理,2006,25(4):39-44
    [112] 刘静.微米/纳米尺度传热学[M].北京:科学出版社,2001
    [113] 奚同庚等.无机材料热物性学[M].上海:上海科学技术出版社,1981
    [114] Brager A, Schuchowitsky A. The Superficial Density of the Energy of Natural Vibrations[J]. Journal of Chemical Physics, 1946, 14: 569-575
    [115] Montroll E W. Markoff Chains and Excluded Volume Effect in Polymer Chains[J]. Journal of Chemical Physical, 1950, 18: 183-191
    [116] Dugdale J S, Morrison J A, Patterson D. The Effect of Particle Size on the Heat Capacity of Titanium Dioxide[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1954, 224: 228-235
    [117] Rupp J, Birringer R. Enhanced specific-heat-capacity (cp) measurements (150 300 K) of nanometer-sized crystalline materials[J]. Physical Review B, 1987, 36: 7888-7890
    [118] Vergara O, Heitkamp D, Lohneysen H V. Specific heat of small vanadium particles in the normal and superconducting state[J]. Journal of Physical Chemical Solids, 1984, 45: 251-255
    [119] Revesz A, Lendvai J. Thermal properties of ball-milled nano-crystalline Fe, Co and Cr powders[J]. Nanostructured Materials, 1998, 10: 13-17
    [120] Hellstern E, Fecht H J, Fu Z, and et al. Nanocrystalline metals prepared by high-energy ball milling[J]. Journal of Applied Physics, 1989, 65: 305-309
    [121] Fecht H J. Synthesis and properties of nanocrystalline metals and alloys prepared by mechanical attrition[J]. Nanostructred Materials, 1992, 1: 125-130
    [122] Zhang H and Banfield J F. A model for exploring particle size and temperature dependence of excess heat capacities of nanocrystalline substances[J]. Nanostrctured Materials, 1998, 10: 185-194
    [123] Einstein A. Investigation on the theory of the Brownian movement[M]. Dover Publishing, New York, 1956
    [124] Batchelor G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles[J]. Journal of Fluid Mechanism, 1977, 83: 97-101
    [125] Zuzovsky M, Adler P M, Brenner H. Spatially periodic suspensions of convex particles in linear shear flows. Ⅲ. Dillute arrays of spheres suspended in Newtonian fluids[J]. Physical Fluids, 1983, 26: 1714-1717
    [126] Brinkman H C. The viscosity of concentrated suspensions and solutions[J]. Journal of Chemical Physics, 1952, 20: 571-576
    [127] Roscoe R. The viscosity of a concentrated suspension of spherical particles[J]. British Journal of Applied Physics, 1952, 3: 267-273
    [128] Mooney M. The viscosity of a concentrated suspension of spherical particles[J]. Journal of Colloid Science, 1951, 6: 162-168
    [129] Krieger I M, Dougherty T J. A mechanism for non-Newtonian flow in suspensions of rigid spheres[J]. Transaction of Rheology, 1959, 3: 137-144
    [130] De Kruif C G, van Iersel. Hard sphered colloidal dispersions: Viscosity as a function of shear rate and volume fraction[J]. Journal of Chemical Physics, 1985, 83: 4717-4722
    [131] Wood D M, et al. Effective medium theory of optical properties of small particle composites[J]. Philosophy. Magazine, 1977, 35(2): 269-271
    [132] Kays W M,London A L.宣益民等译.紧凑式热交换器[M].北京:科学出版社,1997
    [133] Maxwell J C. A dynamical theory of the electromagnetic field[J]. Proceedings of the Royal Society of London, 1873, 126: 476-485
    [134] Rayleigh L. On the question of the stability of the flow of fluids[J]. Phil. Mag., 1892, 34: 481-488
    [135] Jeffrey D J. Condition through a random suspension of spheres[J]. Proceedings of the Royal Society of London, Series A, 1973, 335: 355-367
    [136] Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems[J]. I & EC Fundamentals, 1962, 1(3): 182-191
    [137] Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model[J]. Journal of Nanoparticle Review, 2003, 5: 167-171
    [138] Keblinski P, Phillpot S R, Choi S U S, and et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. International Journal of Heat Mass Transfer, 2002, 45: 855-863
    [139] Wang B X, Zhou L P, Peng X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles[J]. International Journal of Heat Mass Transfer, 2003, 46: 2665-2672
    [140] Jang S P, Choi S U S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004, 84: 4316-4318
    [141] Chen G. Non-local and non-equilibrium heat conduction in the vicinity of nanoparticles[J]. Journal of Heat Transfer, 1996, 118(11): 539-545
    [142] Probstein R F. Physicochemical Hydrodynamics-An Introduction[M]. John Wiley & Sons, New York, 1994
    [143] 秦志英.陆启韶.基于恢复系数的碰撞过程模型分析[J].动力与控制学报,2006,4(4):294-298
    [144] Wang Z G, Jin Y F. Effective energy deposition and latent track formation of swift heavy ions in solids[J]. Nuclear Science and Techniques, 2005, 16(1): 12-16
    [145] Yao W L, Chen B, Liu C S. Energetic Coefficient of Restitution for a Planar Two-Body Oblique Collision with Friction[J]. Tsinghua Science and Technology, 2004, 9(6): 684-687
    [146] 刘连峰.颗粒聚合体碰撞破损的细观力学仿真研究[J].力学进展,2006,36(4):599-610
    [147] 孟宪强.物体的非完全弹性碰撞解析[J].邢台职业技术学院学报,2004,21(3):29-30
    [148] Kaviany M. Principles of Heat Transfer[M]. John Wiley & Sons Inc, New York, 2001
    [149] CATERPILLAR's data for liquids, 2004
    [150] 周雍鑫,周俊.国内外主要石油公司润滑油产品手册[M].北京:中国石化出版社,2000
    [151] 张里.国内外乙二醇型发动机冷却液标准的比较[J].石油商技,2006,24(5):56-59
    [152] 余春松,郑波.重负荷发动机冷却液的发展与现状[J].润滑与密封,2006(4):179-181
    [153] 李有东,黄西林冲外汽车冷却液规范的比较分析[J].交通标准化,2005(6):19-21
    [154] 张鹏辉,张启义.如何正确选用柴油机冷却液[J].汽车运用,2005(12):39-40
    [155] 张凯蛟.林菁等.丙二醇作发动机冷却液基液的探讨[J]_石油商技,2002,20(3):10-14
    [156] 林菁,张凯蛟等.全有机型发动机冷却液研制报告[J].润滑与密封,2002(4):67-70
    [157] 王玉端.水空中冷器性能评估方法的研究[D].浙江大学硕士学位论文,2004
    [158] 肖清华.板翅式机油散热器传热性能试验研究[D].浙江大学硕士学位论文,2002
    [159] 兰州石油机械研究所.换热器[M].北京:烃加工出版社,1988
    [160] 王迎新,武占华,李世奇,邢辉,段树林.板翅式机油冷却器传热性能和阻力特性的实验[J].大连海事大学学报(自然科学版),2006(2):25-28
    [161] 张战,魏琪,候海焱.错列翅片换热器表面换热及阻力特性数值研究[J].江苏大学学报(然科学版),2002(2):58-62
    [162] 中华人民共和国机械行业标准:内燃机板翅式机油冷却器技术条件[S].北京:机械工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700