液晶诱导取向调控聚合物/ZnO纳米晶杂化太阳能电池微观结构及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,新兴可替代太阳能光伏技术,例如染料敏化太阳能电池(DSSCs)和有机太阳能电池(OSCs),由于具有许多优良特性已经引起了全世界科学研究者极大的关注。有机太阳能电池当中的杂化本体异质结太阳能电池是由有机共轭聚合物和无机纳米晶材料混合构成电池的光活性层。有机无机杂化太阳能电池能够同时具有有机共轭聚合物可溶液加工性、高吸收效率和无机纳米晶的高迁移率、制备简单、化学稳定性好等优点。但是,到目前为止,杂化太阳能电池的光电转换效率要低于全有机型太阳能电池器件。在众多影响杂化太阳能电池效率的因素中,杂化太阳能电池活性层纳米级微观形貌是其中最为关键的因素。
     液晶性物质具有极强的自组装能力,在一定条件下能够形成有序的液晶相微观结构。利用液晶性材料优越的形貌控制能力调控有机无机杂化太阳能电池的异质结界面及微观结构,不仅可以实现D材料和A材料在纳米尺度上的相分离,而且还可以提高整个活性层纳米复合材料微观结构的有序性,从而利于激子分离、电荷转移以及输运,进而提高器件光电转换效率。
     本论文首先设计合成了一种新型的电子给体材料-侧链含有氰基联苯基团的聚噻吩poly[3-(6-(4-cynaobiphenyloxy)-hexyl) thiophene](P3HbpT),并用它作为聚合物/ZnO纳米粒子杂化太阳能电池的电子给体。氰基联苯自发组装性质能够赋予液晶聚合物P3HbpT良好的有序微观形貌,并且能促使ZnO纳米粒子在聚合物体系中均匀分散。实验结果表明,液晶态退火处理之后(175℃),液晶聚合物、P3HbpT/ZnO复合薄膜对太阳光吸收能力增强,聚合物分子链排列结构有序性提高。此外,液晶聚合物P3HbpT在液晶态温度热处理之后,由于液晶基元自发组装特性能够诱导ZnO纳米粒子形成具有高度有序的纳米聚集结构。同时,为了研究液晶聚合物P3HbpT诱导取向特性对聚合物/ZnO杂化太阳能电池器件性能影响,本文制备了以P3HbpT/ZnO为活性层的杂化太阳能电池,与无退火和低于液晶态温度(120℃)退火后的器件性能相比,液晶态温度热退火处理之后的器件性能达到最优,光电转换效率达到了0.61%,填充因子和短路电流也明显提高。实验表明,液晶态退火处理后的P3HbpT/ZnO杂化太阳能电池性能提高是因为液晶态温度下热退火能够形成微观形貌有序的活性层,从而有利于激子产生和分离,同时电荷传输效率也极大增强,最终导致太阳能器件性能提高。
     随后,为了拓宽活性层对太阳光的吸收范围,本文还设计合成了一种新型的窄带隙D-A型液晶共轭聚噻吩衍生物-poly[3-(6-(cyanobiphenyoxy)thiophene)-alt-4,7-(benzothiadiazole)](P3HbpT-BTD),对该聚合物在不同热处理条件下的纳米结构和光电性质进行了系统的研究。研究发现,在液晶态温度退火处理后,聚合物侧链上氰基联苯液晶基元能够诱导聚合物主链自组装成有序的层状纳米结构。同时,还研究了液晶聚合物P3HbpT-BTD/ZnO纳米复合薄膜在各种温度热处理后的微观形貌变化,并考察退火温度对活性层微观形貌的影响。研究发现,在高于或者低于液晶态温度区间退火处理后,复合薄膜中的聚合物链段有序性急剧降低,并引起ZnO纳米粒子较大面积的团聚。然而P3HbpT-BTD/ZnO复合薄膜经过液晶态温度(180℃)退火之后,ZnO纳米粒子能够形成良好分散和高度取向的纳米级自组装区域。研究表明,聚合物在液晶态下的自发组装取向能够诱导ZnO纳米粒子在一定范围内取向,并且能够增强ZnO纳米粒子的结晶性,从而极大的提高电子迁移能力。因此,P3HbpT-BTD/ZnO复合薄膜在液晶态温度热退火之后能够形成纳米级的相分离微观结构,从而能够形成非常有序的互穿网络结构。随后进一步研究了以P3HbpT-BTD/ZnO复合薄膜作为活性层的杂化太阳能电池器件性能与热处理条件的相互关系。经对比实验结果表明,在液晶态温度区间退火处理之后的器件性能达到最优,光电转换效率达到了1.98%。因此,利用液晶共轭聚合物液晶态下自发组装特性,能够有效控制电池活性层的微观形貌,并极大地提高器件性能。
     最后,为了有效控制有机无机杂化太阳能电池界面形貌和光活性层微观结构,本文设计合成了一种新型的小分子液晶半导体配体4-(5-(1,2-dithiolan-3-yl)pentanoate)-4'-(hexyloxy)-terpheny1(HTph-S),并用该液晶配体修饰ZnO纳米粒子表面,形成HTph-S@ZnO复合纳米粒子,再用该复合纳米粒子作为太阳能电池电子受体,P3HT作为电子给体制备杂化太阳能电池,考察液晶配体HTph-S对P3HT/ZnO杂化太阳能电池活性层界面修饰后对光活性层微观形貌、光学性质以及活性层中激子分离和电荷转移效率的影响。透射电子显微镜和光学性能研究表明,经过半导体液晶配体修饰之后,ZnO纳米粒子和聚合物相容性明显增强。ZnO/P3HT复合薄膜经液晶态温度条件退火处理之后,聚合物P3HT结晶性和有序性明显提高,同时液晶配体的诱导取向特性能够诱导ZnO纳米粒子趋于类一维有序排列结构,从而能够与聚合物一起形成良好的互穿网络微观结构,进而有利于电子和空穴传输,相应的杂化太阳能器件性能也明显增强。在配体液晶态温度(120℃)热退火之后,器件最优光电转换效率达到了1.23%。
Emerging alternative photovoltaic technologies such as dye sensitized solar cells (DSSCs) and organic solar cells (OSCs) have recently gained much attention as well as maturity and are on the step of being commercialized. To date, bulk heterojunction hybrid solar cells containing inorganic nanoparticles and semiconducting polymers are still lagging behind in respect of device performance although they can combine combining the advantages of both types of materials: solution processability and high absorption of semiconducting polymers, high electron mobility, and good chemical stability of inorganic semiconductor nanocrystals. Among the various factors impacting the photovoltaic performance of bulk heterojunction hybrid solar cells, the nanoscale morphology or microstructure of the active layer in hybrid solar cells is critical to ensure the high devices performance.
     Liquid crystalline materials with powerful self-assembly abilities can form ordering liquid crystalline microstructure under its LC state. Utilizing the LC materials' excellent orientation abilities to control the morphology and D-A interfaces of active layers of bulk-heterojunction hybrid solar cells not only achieve the nanoscale phase separation of D-type and A-type materials, but also improve the microstructure ordering of nanocomposites in active layers, which can effectively facilitate the exciton separation, charges transferring and transportation, improve the photovoltaic performances of hybrid solar cells.
     In this dissertation, firstly, a novel electron-donor material, liquid-crystalline polythiophene containing a cyano-biphenyl mesogenic pendant, poly[3-(6-(4-cynaobiphenyloxy)-hexyl)thiophene](P3HbpT), was rationally designed and synthesized. The spontaneous orientation of cyano-biphenyl mesogen endowed the P3HbpT with a well ordered morphology and facilitated the homogeneous dispersion of ZnO nanoparticles in the composites. The P3HbpT/ZnO composite films exhibited red-shift absorption (12nm), the lower LUMO and more ordered domains after undergoing annealing at liquid crystal (LC) states temperature (175℃), which indicated that the spontaneous assembly behavior of the liquid-crystalline polythiophene could induce the ZnO nanoparticles to form nano-dispersing structure with highly oriented channel layers upon heating at liquid crystalline states. Furthermore, the hybrid bulk-heterojunction devices based on P3HbpT/ZnO active layer have been constructed. Without extensive optimization, the devices undergoing annealing at LC state yielded a Voc of0.83V and power conversion efficiency (PCE) of0.61%, showing a significantly increased Jsc and FF with respect to the un-annealed counterpart.
     Secondly, A new donor-acceptor type liquid-crystalline copolymer, poly[3-(6-(cyanobiphenyoxy)thiophene)-alt-4,7-(benzothiadiazole)], P3HbpT-BTD, via copolymerization of liquid-crystalline electron-donating thiophene units and electron-accepting benzothiadiazole (BTD) units was designed and synthesized successfully. The nanostructure and photoelectric properties of the copolymer under different thermal treatment conditions were systematically investigated. Studies of the relationship between the annealing conditions and the nanostructures of the copolymer revealed that the cyano-biphenyl mesogenic units could induce the copolymer chains into a well ordered lamella structure upon annealing at liquid crystalline states temperature. When the hybrid films of P3HbpT-BTD/ZnO NPs were annealed at the temperature below or above the mesophase temperature region, less ordered copolymer chains brought an undeveloped interpenetrating network and caused the large aggregation of ZnO NPs. Most strikingly, the hybrid film annealed at liquid-crystalline state temperature (180℃) achieved the well-dispersed and high orientated nanoscale assembled nanoparticles regions. The spontaneous self-organization of P3HbpT-BTD enhanced the crystallinity and orientation of the ZnO NPs. Therefore, the resulting nanoscale phase separation of the hybrid films leaded to well-ordering percolated networks. Hybrid bulk heterojunction photovoltaic devices based on copolymer P3HbpT-BTD and ZnO NPs were fabricated under different annealing treatment. A best power conversion efficiency of1.98%was achieved upon annealing at mesophase temperature (180℃).
     Lastly, Liquid crystalline ligand,4-(5-(1,2-dithiolan-3-yl)pentanoate)-4'-(hexyloxy)-terphenyl (HTph-S), were employed as the semiconducting interface modification material for the fabrication of ZnO nanoparticles/P3HT hybrid solar cells. The HTph-S has a dithiolane ring which can attach to the surface of ZnO nanoparticles and the terphenyl aromatic group with hexyloxy end chain, which should make the ZnO nanoparticles miscible with conjugated polymers. A best power conversion efficiency of1.23%was achieved under an AM1.5G (100mW cm-2) condition after thermal treatment at LC state temperature (120℃). The enhanced performance of hybrid solar cells may mainly be accounted for the improved compatibility, enhanced charge separation and transfer efficiency and optimized micro-morphology of the ZnO/P3HT hybrid films induced by the self-organizing behavior of HTph-S ligands in its LC state.
引文
[1]Chapin D M, Fuller C S, Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power [J]. J. Appl. Phys.,1954,25(5):676-677.
    [2]Shockley W, Queisser H J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells [J]. J. Appl. Phys.,1961,32(3):510-519.
    [3]Zhao J H, Wang A H, Green M A, et al.19.8% Efficient "honeycomb" Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells [J]. Appl. Phys. Lett.,1998, 73(14):1991-1993.
    [4]Green M A, Emery K, King D L, et al. Shot Communication Solar Cell Efficiency tables (version 28) [J]. Prog. Photovoltaics:Res Appl,2006,14(5):455-461.
    [5]Goetzberger A, Hebling C, Schock H-W. Photovoltaic Materials, History, Status and Outlook [J]. Mat. Sci. Eng. R.,2003,40(1):1-46.
    [6]Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene, (CH), [J]. J Chem Soc, Chem Commun 1977,474(16):578-580.
    [7]Chiang C K, Fincher C R, Park Y W, et al. Electrical Conductivity in Doped Polyacetylene [J]. Phys. Rev. Lett.,1977,39(17):1098.
    [8]Bao Z N, Dodabalapur A, Lovinger A J. Soluble and Processable Regioregular Poly(3-hexylthiophene) for Thin film Field-effect Transistor Applications with High Mobility [J]. Appl. Phys. Lett.,1996,69(26):4108-4110.
    [9]Sirringhaus H, Brown P J, Friend R H, et al. Two-dimensional Charge Transport in Self-organized, High-mobility Conjugated Polymers [J]. Nature,1999,401(6754): 685-688.
    [10]Babel A, Jenekhe S A. High Electron Mobility in Ladder Polymer Field-Effect Transistors [J]. J. Am. Chem. Soc.,2003,125(45):13656-13657.
    [11]Schweitzer B, Bassler H. Excitons in Conjugated Polymers [J]. Synth. Met.,2000, 109(1-3):1-6.
    [12]Markov D E, Amsterdam E, Blom P W M, et al. Accurate Measurement of the Exciton Diffusion Length in a Conjugated Polymer Using a Heterostructure with a Side-Chain Cross-Linked Fullerene Layer [J]. J. Phys. Chem. A,2005,109(24):5266-5274.
    [13]Halls J J M, Pichler K, Friend R H, et al. Exciton Diffusion and Dissociation in a Poly(p-phenylenevinylene)/C60 Heterojunction Photovoltaic Cell [J]. Appl. Phys. Lett., 1996,68(22):3120-3122.
    [14]Savenije T J, Warman J M, Goossens A. Visible Light Sensitisation of Titanium Dioxide Using a Phenylene Vinylene Polymer [J]. Chem. Phys. Lett.,1998,287(1-2):148-153.
    [15]Kroeze J E, Savenije T J, Vermeulen M J W, et al. Contactless Determination of the Photoconductivity Action Spectrum, Exciton Diffusion Length, and Charge Separation Efficiency in Polythiophene-Sensitized TiO2 Bilayers [J]. J. Phys. Chem. B,2003,107(31): 7696-7705.
    [16]Halls J J M, Walsh C A, Greenham N C, et al. Efficient Photodiodes from Interpenetrating Polymer Networks [J]. Nature,1995,376(6540):498-500.
    [17]Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science,1995,270(5243): 1789-1791.
    [18]Veenstra S C, Verhees W J H, Kroon J M, et al. Photovoltaic Properties of a Conjugated Polymer Blend of MDMO-PPV and PCNEPV [J]. Chem. Mater.,2004,16(12): 2503-2508.
    [19]Koetse M M, Sweelssen J, Hoekerd K T, et al. Efficient Polymer:Polymer Bulk Heterojunction Solar cells [J]. Appl. Phys. Lett.,2006,88(8):083504-083503.
    [20]Shaheen S E, Brabec C J, Sariciftci N S, et al.2.5% Efficient Organic Plastic Solar Cells [J]. Appl. Phys. Lett.,2001,78(6):841.
    [21]Schilinsky P, Waldauf C, Brabec C J. Recombination and Loss Analysis in Polythiophene Based Bulk Heterojunction Photodetectors [J]. Appl. Phys. Lett.,2002,81(20):3885-3887.
    [22]Wienk M M, Kroon J M, Verhees W J H, et al. Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells [J]. Angew. Chem. Int. Edit.,2003,42(29):3371-3375.
    [23]Ma W, Yang C, Gong X, et al. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology [J]. Adv. Funct. Mater., 2005,15(10):1617-1622.
    [24]Brabec C J. Organic Photovoltaics:Technology and Market [J]. Sol. Energy Mater. Sol. Cells,2004,83(2-3):273-292.
    [25]Padinger F, Rittberger R S, Sariciftci N S. Effects of Postproduction Treatment on Plastic Solar Cells [J]. Adv. Funct. Mater.,2003,13(1):85-88.
    [26]Li G, Shrotriya V, Huang J, et al. High-efficiencySolution Processable Polymer Photovoltaic Cells by Self-organization of Polymer Blends [J]. Nat. Mater.,2005,4(11): 864-868.
    [27]Kim Y, Cook S, Tuladhar S M, et al. A Strong Regioregularity Effect in Self-organizing Conjugated Polymer Films and High-efficiency Polythiophene:Fullerene Solar Cells [J]. Nat. Mater.,2006,5(3):197-203.
    [28]Peet J, Kim J Y, Coates N E, et al. Efficiency Enhancement in Low-bandgap Polymer Solar Cells by Processing with Alkane Dithiols [J]. Nat. Mater.,2007,6(7):497-500.
    [29]Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J]. Nat Photon,2009,3(5):297-302.
    [30]Liang Y, Feng D, Wu Y, et al. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties [J]. J. Am. Chem. Soc.,2009,131(22): 7792-7799.
    [31]Liang Y, Xu Z, Xia J, et al. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Adv. Mater.,2010,22(20): E135-E138.
    [32]Chen H-Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nat Photon,2009,3(11):649-653.
    [33]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353(6346):737-740.
    [34]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2 bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(Ⅱ) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. J. Am. Chem. Soc., 1993,115(14):6382-6390.
    [35]Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photoch. Photobio. A,2004,164(1-3):3-14.
    [36]Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature,1998,395(6702): 583-585.
    [37]Li B, Wang L, Kang B, et al. Review of recent progress in solid-state dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells,2006,90(5):549-573.
    [38]Wang P, Zakeeruddin S M, Moser J E, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [J]. Nat. Mater., 2003,2(6):402-407.
    [39]Wang P, Zakeeruddin S M, Moser J-E, et al. A Solvent-Free, SeCN-(SeCN)3- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells [J]. J. Am. Chem. Soc.,2004,126(23):7164-7165.
    [40]Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011,334(6056): 629-634.
    [41]Zhou Y F, Eck M, Kriiger M. Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers [J]. Energy Environ. Sci.,2010,3(12):1851-1864.
    [42]Boucle J, Ravirajan P, Nelson J. Hybrid polymer-metal oxide thin films for photovoltaic applications [J]. J. Mater. Chem.,2007,17(30):3141-3153.
    [43]Beek W J E, Janssen R A J. Hybrid Polymer-Inorganic Photovoltaic Cells [M]. Hybrid Nanocomposites for Nanotechnology; Springer US.2009:1-65.
    [44]Gledhill S E, Scott B, Gregg B A. Focus Section/Reviews:Organic and nano-structured composite photovoltaics:An overview [J]. J. Mater. Res.,2005,20(12):3167-3179.
    [45]Han Z, Zhang J, Yang X, et al. Synthesis and application in solar cell of poly(3-octylthiophene)/titania nanotubes composite [J]. Org. Electron.,2010,11(8): 1449-1460.
    [46]Salafsky J S, Lubberhuizen W H, Schropp R E I. Photoinduced charge separation and recombination in a conjugated polymer-semiconductor nanocrystal composite [J]. Chem. Phys. Lett.,1998,290(4-6):297-303.
    [47]Zhang J, Wang B J, Ju X, et al. New observations on the optical properties of PPV/TiO2 nanocomposites [J]. Polymer,2001,42(8):3697-3702.
    [48]Carter S A, Scott J C, Brock P J. Enhanced luminance in polymer composite light emitting devices [J]. Appl. Phys. Lett.,1997,71(9):1145-1147.
    [49]Liu J, Kadnikova E N, Liu Y, et al. Polythiophene Containing Thermally Removable Solubilizing Groups Enhances the Interface and the Performance of Polymer-Titania Hybrid Solar Cells [J]. J. Am. Chem. Soc.,2004,126(31):9486-9487.
    [50]Wang M, Wang X. P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative [J]. Sol. Energy Mater. Sol. Cells,2007,91(19):1782-1787.
    [51]Goh C, Scully S R, McGehee M D. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells [J]. J. Appl. Phys.,2007,101(11):114503-114512.
    [52]Serap G, Marjanovic N, Nedeljkovic J M, et al. Photovoltaic characterization of hybrid solar cells using surface modified TiO2 nanoparticles and poly(3-hexyl)thiophene [J]. Nanotechnology,2008,19(42):424009.
    [53]Qiao Q, Xie Y, McLeskey J J T. Organic/Inorganic Polymer Solar Cells Using a Buffer Layer from All-Water-Solution Processing [J]. J. Phys. Chem. C,2008,112(26): 9912-9916.
    [54]Williams S S, Hampton M J, Gowrishankar V, et al. Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques [J]. Chem. Mater.,2008,20(16):5229-5234.
    [55]Boucle J, Chyla S, Shaffer M S P, et al. Hybrid Solar Cells from a Blend of Poly(3-hexylthiophene) and Ligand-Capped TiO2 Nanorods [J]. Adv. Funct. Mater.,2008, 18(4):622-633.
    [56]Lin Y Y, Chu T H, Li S S, et al. Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells [J]. J. Am. Chem. Soc.,2009, 131(10):3644-3649.
    [57]Mor G K, Kim S, Paulose M, et al. Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array-P3HT Based Heterojunction Solar Cells [J]. Nano Lett.,2009,9(12): 4250-4257.
    [58]Greenham N C, Peng X, Alivisatos A P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Phys. Rev. B,1996,54(24):17628.
    [59]Greenham N C, Peng X, Alivisatos A P. Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Synth. Met.,1997,84(1-3):545-546.
    [60]Ginger D S, Greenham N C. Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals [J]. Phys. Rev. B,1999,59(16):10622.
    [61]Pientka M, Dyakonov V, Meissner D, et al. Photoinduced charge transfer in composites of conjugated polymers and semiconductor nanocrystals [J]. Nanotechnology,2004,15(1): 163.
    [62]Huynh W U, Peng X, Alivisatos A P. CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices [J]. Adv. Mater.,1999,11(11):923-927.
    [63]Huynh W U, Dittmer J J, Alivisatos A P. Hybrid Nanorod-Polymer Solar Cells [J]. Science, 2002,295(5564):2425-2427.
    [64]Huynh W U, Dittmer J J, Libby W C, et al. Controlling the Morphology of Nanocrystal-Polymer Composites for Solar Cells [J]. Adv. Funct. Mater.,2003,13(1): 73-79.
    [65]Huynh W U, Dittmer J J, Teclemariam N, et al. Charge transport in hybrid nanorod-polymer composite photovoltaic cells [J]. Phys. Rev. B,2003,67(11):115326.
    [66]Milliron D J, Alivisatos A P, Pitois C, et al. Electroactive Surfactant Designed to Mediate Electron Transfer Between CdSe Nanocrystals and Organic Semiconductors [J]. Adv. Mater.,2003,15(1):58-61.
    [67]Liu J, Tanaka T, Sivula K, et al. Employing End-Functional Polythiophene To Control the Morphology of Nanocrystal-Polymer Composites in Hybrid Solar Cells [J]. J. Am. Chem. Soc,2004,126(21):6550-6551.
    [68]Palaniappan K, Murphy J W, Khanam N, et al. PoIy(3-hexylthiophene)-CdSe Quantum Dot Bulk Heterojunction Solar Cells:Influence of the Functional End-Group of the Polymer [J]. Macromolecules,2009,42(12):3845-3848.
    [69]Skaff H, Sill K, Emrick T. Quantum Dots Tailored with Poly(para-phenylene vinylene) [J]. J. Am. Chem. Soc,2004,126(36):11322-11325.
    [70]Sun B, Marx E, Greenham N C. Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers [J]. Nano Lett.,2003,3(7):961-963.
    [71]Gur I, Fromer N A, Chen C P, et al. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals [J]. Nano Lett.,2007, 7(2):409-414.
    [72]Wang P, Abrusci A, Wong H M P, et al. Photoinduced Charge Transfer and Efficient Solar Energy Conversion in a Blend of a Red Polyfluorene Copolymer with CdSe Nanoparticles [J]. Nano Lett.,2006,6(8):1789-1793.
    [73]Dayal S, Kopidakis N, Olson D C, et al. Direct Synthesis of CdSe Nanoparticles in Poly(3hexylthiophene) [J]. J. Am. Chem. Soc.,2009,131(49):17726-17727.
    [74]Dayal S, Reese M O, Ferguson A J, et al. The Effect of Nanoparticle Shape on the Photocarrier Dynamics and Photovoltaic Device Performance of Poly(3-hexylthiophene):CdSe Nanoparticle Bulk Heterojunction Solar Cells [J]. Adv. Funct. Mater.,2010,20(16):2629-2635.
    [75]Zotti G, Vercelli B, Berlin A, et al. Self-Assembled Structures of Semiconductor Nanocrystals and Polymers for Photovoltaics.1. CdSe Nanocrystal-Polymer Multilayers. Optical, Electrochemical, Photoelectrochemical and Photoconductive Properties [J]. Chem. Mater.,2009,21(11):2258-2271.
    [76]Goodman M D, Xu J, Wang J, et al. Semiconductor Conjugated Polymer-Quantum Dot Nanocomposites at the Air/Water Interface and Their Photovoltaic Performance [J]. Chem. Mater.,2009,21(5):934-938.
    [77]Dayal S, Kopidakis N, Olson D C, et al. Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency [J]. Nano Lett.,2010,10(1): 239-242.
    [78]Beek W J E, Wienk M M, Kemerink M, et al. Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells [J]. J. Phys. Chem. B,2005,109(19):9505-9516.
    [79]Beek W J E, Wienk M M, Janssen R A J. Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer [J]. Adv. Mater.,2004,16(12):1009-1013.
    [80]Beek W J E, Wienk M M, Janssen R A J. Hybrid polymer solar cells based on zinc oxide [J]. J. Mater. Chem.,2005,15(29):2985-2988.
    [81]Beek W J E, Slooff L H, Wienk M M, et al. Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer [J]. Adv. Funct. Mater.,2005,15(10):1703-1707.
    [82]Beek W J E, Wienk M M, Janssen R A J. Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles [J]. Adv. Funct. Mater.,2006,16(8):1112-1116.
    [83]Ravirajan P, Peiro A M, Nazeeruddin M K, et al. Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer [J]. J. Phys. Chem. B,2006,110(15):7635-7639.
    [84]Olson D C, Lee Y-J, White M S, et al. Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices [J]. J. Phys. Chem. C,2007, 111(44):16640-16645.
    [85]Olson D C, Lee Y-J, White M S, et al. Effect of ZnO Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells [J]. J. Phys. Chem. C,2008,112(26):9544-9547.
    [86]Monson T C, Lloyd M T, Olson D C, et al. Photocurrent Enhancement in Polythiophene-and Alkanethiol-Modified ZnO Solar Cells [J]. Adv. Mater.,2008,20(24):4755-4759.
    [87]T.Lloyd M, P.Prasankumar R, B.Sinclair M, et al. Impact of interfacial polymer morphology on photoexcitation dynamics and device performance in P3HT/ZnO heterojunctions [J]. J. Mater. Chem.,2009,19(29):4609-4614.
    [88]Shao S, Liu F, Xie Z, et al. High-Efficiency Hybrid Polymer Solar Cells with Inorganic P-and N-Type Semiconductor Nanocrystals to Collect Photogenerated Charges [J]. J. Phys. Chem. C,2010,114(19):9161-9166.
    [89]Oosterhout S D, Wienk M M, van Bavel S S, et al. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells [J]. Nat. Mater.,2009,8(10): 818-824.
    [90]Olson D C, Shaheen S E, White M S, et al. Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer-Oxide Hybrid Solar Cells [J]. Adv. Funct. Mater.,2007, 17(2):264-269.
    [91]Lloyd M T, Lee Y-J, Davis R J, et al. Improved Efficiency in Poly(3-hexylthiophene)/Zinc Oxide Solar Cells via Lithium Incorporation [J]. J. Phys. Chem. C,2009,113(41): 17608-17612.
    [92]Atienzar P, Ishwara T, Illy B N, et al. Control of Photocurrent Generation in Polymer/ZnO Nanorod Solar Cells by Using a Solution-Processed TiO2 Overlayer [J]. J. Phys. Chem. Lett.,2010,1(4):708-713.
    [93]Hao Y, Pei J, Wei Y, et al. Efficient Semiconductor-Sensitized Solar Cells Based on Poly(3-hexylthiophene)@CdSe@ZnO Core-Shell Nanorod Arrays [J]. J. Phys. Chem. C, 2010,114(18):8622-8625.
    [94]Bi D, Wu F, Yue W, et al. Device Performance Correlated with Structural Properties of Vertically Aligned Nanorod Arrays in Polymer/ZnO Solar Cells [J]. J. Phys. Chem. C, 2010,114(32):13846-13852.
    [95]Said A J, Poize G, Martini C, et al. Hybrid Bulk Heterojunction Solar Cells Based on P3HT and Porphyrin-Modified ZnO Nanorods [J]. J. Phys. Chem. C,2010,114(25): 11273-11278.
    [96]Wu S, Tai Q, Yan F. Hybrid Photovoltaic Devices Based on Poly (3-hexylthiophene) and Ordered Electrospun ZnO Nanofibers [J]. J. Phys. Chem. C,2010,114(13):6197-6200.
    [97]Xu J, Wang J, Mitchell M, et al. Organic-Inorganic Nanocomposites via Directly Grafting Conjugated Polymers onto Quantum Dots [J]. J. Am. Chem. Soc.,2007,129(42): 12828-12833.
    [98]Zhang Q, Russell T P, Emrick T. Synthesis and Characterization of CdSe Nanorods Functionalized with Regioregular Poly(3-hexylthiophene) [J]. Chem. Mater.,2007,19(15): 3712-3716.
    [99]Geng H, Guo Y, Peng R, et al. A facile route for preparation of conjugated polymer functionalized inorganic semiconductors and direct application in hybrid photovoltaic devices [J]. Sol. Energy Mater. Sol. Cells,2010,94(7):1293-1299.
    [100]Liu C-Y, Holman Z C, Kortshagen U R. Hybrid Solar Cells from P3HT and Silicon Nanocrystals [J]. Nano Lett.,2009,9(1):449-452.
    [101]Noone K M, Anderson N C, Horwitz N E, et al. Absence of Photoinduced Charge Transfer in Blends of PbSe Quantum Dots and Conjugated Polymers [J]. Acs Nano,2009,3(6): 1345-1352.
    [102]Stoferle T, Scherf U, Mahrt R F. Energy Transfer in Hybrid Organic/Inorganic Nanocomposites [J]. Nano Lett.,2009,9(1):453-456.
    [103]Chang J A, Rhee J H, Im S H, et al. High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells [J]. Nano Lett.,2010,10(7):2609-2612.
    [104]Jiang X, Chen F, Weiming Q, et al. Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells [J]. Sol. Energy Mater. Sol. Cells,2010, 94(12):2223-2229.
    [105]Leventis H C, King S P, Sudlow A, et al. Nanostructured Hybrid Polymer-Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks [J]. Nano Lett.,2010,10(4):1253-1258.
    [106]Liu C Y, Holman Z C, Kortshagen U R. Optimization of Si NC/P3HT Hybrid Solar Cells [J].Adv. Funct. Mater.,2010,20(13):2157-2164.
    [107]Noone K M, Strein E, Anderson N C, et al. Broadband Absorbing Bulk Heteroj unction Photovoltaics Using Low-Bandgap Solution-Processed Quantum Dots [J]. Nano Lett., 2010,10(7):2635-2639.
    [108]Ma W, Luther J M, Zheng H, et al. Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals [J]. Nano Lett.,2009,9(4):1699-1703.
    [109]Urayama K. Selected Issues in Liquid Crystal Elastomers and Gels [J]. Macromolecules, 2007,40(7):2277-2288.
    [110]Chen S H, Conger B M, Mastrangelo J C, et al. Synthesis and Optical Properties of Thermotropic Polythiophene and Poly(p-phenylene) Derivatives [J]. Macromolecules, 1998,31(23):8051-8057.
    [111]Kato T, Mizoshita N, Kishimoto K. Functional Liquid-Crystalline Assemblies: Self-Organized Soft Materials [J]. Angew. Chem. Int. Edit.,2006,45(1):38-68.
    [112]Schmidt-Mende L, Fechtenkotter A, Mullen K, et al. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics [J]. Science,2001,293(5532): 1119-1122.
    [113]Schmidt-Mende L, Fechtenkotter A, Mullen K, et al. Efficient organic photovoltaics from soluble discotic liquid crystalline materials [J]. Physica E:Low-dimensional Systems and Nanostructures,2002,14(1-2):263-267.
    [114]Sun Q, Dai L, Zhou X, et al. Bilayer- and bulk-heterojunction solar cells using liquid crystalline porphyrins as donors by solution processing [J]. Appl. Phys. Lett.,2007,91(25): 253505-253503.
    [115]O'Neill M, Kelly S M. Liquid Crystals for Charge Transport, Luminescence, and Photonics [J]. Adv. Mater.,2003,15(14):1135-1146.
    [116]McCulloch I, Heeney M, Bailey C, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility [J]. Nat. Mater.,2006,5(4):328-333.
    [117]Kim D H, Lee B-L, Moon H, et al. Liquid-Crystalline Semiconducting Copolymers with Intramolecular Donor-Acceptor Building Blocks for High-Stability Polymer Transistors [J]. J. Am. Chem. Soc.,2009,131(17):6124-6132.
    [118]Zorn M, Tahir M N, Bergmann B, et al. Orientation and Dynamics of ZnO Nanorod Liquid Crystals in Electric Fields [J]. Macromol. Rapid. Comm.,2010,31(12):1101-1107.
    [119]Sun Q, Park K, Dai L. Liquid Crystalline Polymers for Efficient Bilayer-Bulk-Heterojunction Solar Cells [J]. J. Phys. Chem. C,2009,113(18):7892-7897.
    [120]Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications [J]. Chem. Rev.,2009,109(11):5868-5923.
    [121]Xiao S, Stuart A C, Liu S, et al. Conjugated Polymer Based on Polycyclic Aromatics for Bulk Heterojunction Organic Solar Cells:A Case Study of Quadrathienonaphthalene Polymers with 2% Efficiency [J]. Adv. Funct. Mater.,2010,20(4):635-643.
    [122]Otsuka Y, Okamoto Y, Akiyama H Y, et al. Photoinduced Formation of Polythiophene/TiO2 Nanohybrid Heterojunction Films for Solar Cell Applications [J]. J. Phys. Chem. C,2008,112(12):4767-4775.
    [123]Geng H, Wang M, Han S, et al. Enhanced performance of hybrid photovoltaic devices via surface-modifying metal oxides with conjugated polymer [J]. Sol. Energy Mater. Sol. Cells, 2010,94(3):547-553.
    [124]Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene [J]. Science,1992,258(5087):1474-1476.
    [125]Brabec C J, Heeney M, McCulloch 1, et al. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance [J]. Chem. Soc. Rev.,2010,40(3): 1185-1199.
    [126]Reyes-Reyes M, Kim K, Dewald J, et al. Meso-Structure Formation for Enhanced Organic Photovoltaic Cells [J]. Org. Lett.,2005,7(26):5749-5752.
    [127]Zhou D, Chen Y, Chen L, et al. Synthesis and Properties of Poly acetylenes Containing Terphenyl Pendent Group with Different Spacers [J]. Macromolecules.,2009,42(5): 1454-1461.
    [128]Chen L, Chen Y, Yao K, et al. Synthesis and Helical Conformation of Novel Optically Active Liquid Crystalline Poly(p-phenylene)s Containing Cyanoterphenyl Mesogen as Pendant [J]. Macromolecules.,2009,42(14):5053-5061.
    [129]Yao K, Chen Y, Chen L, et al. Photoluminescent, liquid-crystalline, and electrochemical properties of para-phenylene-based alternating conjugated copolymers [J]. J. Polym. Sci. Pol. Chem.,2010,48(2):434-442.
    [130]Yao K, Chen Y, Chen L, et al. Orientation Behavior of Bulk Heterojunction Solar Cells Based on Liquid-Crystalline Polyf.ucrene and Fullerene [J]. J. Phys. Chem. C,2010, 114(41):18001-18011.
    [131]Zhai L, Pilston R L, Zaiger K L, et al. A Simple Method to Generate Side-Chain Derivatives of Regioregular Polythiophene via the GRIM Metathesis and Post-polymerization Functionalization [J]. Macromolecules,2003,36(1):61-64.
    [132]Goto H, Dai X, Narihiro H, et al. Synthesis of Polythiophene Derivatives Bearing Ferroelectric Liquid Crystalline Substituents [J]. Macromolecules,2004,37(7):2353-2362.
    [133]Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nat. Mater.,2005,4(11): 864-868.
    [134]Kokubo H, Sato T, Yamamoto T. Synthesis of New Thiophene-Based π-Conjugated Polymers for Investigation of Molecular Alignment on the Surface of Platinum Plate [J]. Macromolecules.,2006,39(11):3959-3963.
    [135]Ong B S, Wu Y, Liu P, et al. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors [J]. J. Am. Chem. Soc.,2004,126(11):3378-3379.
    [136]McCullough R D, Tristram-Nagle S, Williams S P, et al. Self-orienting head-to-tail poly(3-alkylthiophenes):new insights on structure-property relationships in conducting polymers [J]. J. Am. Chem. Soc.,1993,115(11):4910-4911.
    [137]Li Y F, Cao Y, Gao J, et al. Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells [J]. Synthetic. Met.,1999,99(3):243-248.
    [138]Bredas J L, Silbey R, Boudreaux D S, et al. Chain-length dependence of electronic and electrochemical properties of conjugated systems:polyacetylene, polyphenylene, polythiophene, and polypyrrole [J]. J. Am. Chem. Soc.,1983,105(22):6555-6559.
    [139]Pommerehne J, Vestweber H, Guss W, et al. Efficient two layer leds on a polymer blend basis [J]. Adv. Mater.,1995,7(6):551-554.
    [140]Tsai J-H, Lee W-Y, Chen W-C, et al. New Two-Dimensional Thiophene-Acceptor Conjugated Copolymers for Field Effect Transistor and Photovoltaic Cell Applications [J]. Chem. Mater.,2010,22(10):3290-3299.
    [141]Wen S, Pei J, Zhou Y, et al. Synthesis of 4,7-Diphenyl-2,1,3-Benzothiadiazole-Based Copolymers and Their Photovoltaic Applications [J]. Macromolecules.,2009,42(14): 4977-4984.
    [142]Muller C, Wang E, Andersson L M, et al. Influence of Molecular Weight on the Performance of Organic Solar Cells Based on a Fluorene Derivative [J]. Adv. Funct. Mater., 2010,20(13):2124-2131.
    [143]Bijleveld J C, Zoombelt A P, Mathijssen S G J, et al. Poly(diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics [J]. J. Am. Chem. Soc.,2009,131(46):16616-16617.
    [144]Kim J Y, Lee K, Coates N E, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing [J]. Science,2007,317(5835):222-225.
    [145]Huo L, Hou J, Zhang S, et al. A Polybenzo[1,2-b:4,5-b']dithiophene Derivative with Deep HOMO Level and Its Application in High-Performance Polymer Solar Cells [J]. Angew. Chem. Int. Edit.,2010,49(8):1500-1503.
    [146]Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells [J]. J. Am. Chem. Soc., 2011,133(12):4625-4631.
    [147]He Z, Zhong C, Huang X, et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells [J]. Adv. Mater.,2011, 23(40):4636-4643.
    [148]Arango A C, Johnson L R, Bliznyuk V N, et al. Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion [J]. Adv. Mater.,2000,12(22): 1689-1692.
    [149]Coakley K M, Liu Y, McGehee M D, et al. Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications [J]. Adv. Funct. Mater.,2003,13(4):301-306.
    [150]Neyshtadt S, Jahnke J P, Messinger R J, et al. Understanding and controlling organic-inorganic interfaces in mesostructured hybrid photovoltaic materials [J]. J. Am. Chem. Soc,2011,133(26):10119-10133.
    [151]Li S S, Chang C P, Lin C C, et al. Interplay of three-dimensional morphologies and photocarrier dynamics of polymer/TiO2 bulk heterojunction solar cells [J]. J. Am. Chem. Soc.,2011,133(30):11614-11620.
    [152]Huang J, Yin Z, Zheng Q. Applications of ZnO in organic and hybrid solar cells [J]. Energy Environ. Sci.,2011,4(10):3861.
    [153]Yuan K, Li F, Chen Y, et al. In situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics [J]. J. Mater. Chem.,2011,21(32):11886-11894.
    [154]Saba M I, Melis C, Colombo L, et al. Polymer Crystallinity and Transport Properties at the Poly(3-hexylthiophene)/Zinc Oxide Interface [J]. J. Phys. Chem. C,2011,115(19): 9651-9655.
    [155]Lee T H, Sue H J, Cheng X. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode [J]. Nanotechnology,2011,22(28):285401.
    [156]Nan Y-X, Chen F, Yang L-G, et al. Photoluminescence enhancement and atmosphere-dependent photovoltaic performance in CdS nanorod arrays/MEH-PPV hybrid [J]. Sol. Energy Mater. Sol. Cells,2011,95(12):3233-3240.
    [157]Noone K M, Strein E, Anderson N C, et al. Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots [J]. Nano Lett.,2010, 10(7):2635-2639.
    [158]Kuo C-Y, Su M-S, Chen G Y, et al. Annealing treatment improves the morphology and performance of photovoltaic devices prepared from thieno[3,4-c]pyrrole-4,6-dione-based donor/acceptor conjugated polymers and CdSe nanostructures [J]. Energy Environ. Sci., 2011,4(6):2316.
    [159]Seo J, Cho M J, Lee D, et al. Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer [J]. Adv. Mater., 2011,23(34):3984-3988.
    [160]Yu H, Kobayashi T, Yang H. Liquid-Crystalline Ordering Helps Block Copolymer Self-Assembly [J]. Adv. Mater.,2011,23(29):3337-3344.
    [161]Yasuda T, Ooi H, Morita J, et al.π-Conjugated Oligothiophene-Based Polycatenar Liquid Crystals:Self-Organization and Photoconductive, Luminescent, and Redox Properties [J]. Adv. Funct. Mater.,2009,19(3):411-419.
    [162]Diring S p, Camerel F, Donnio B, et al. Luminescent Ethynyl-Pyrene Liquid Crystals and Gels for Optoelectronic Devices [J]. J. Am. Chem. Soc.,2009,131(50):18177-18185.
    [163]McCulloch I, Bailey C, Giles M, et al. Influence of Molecular Design on the Field-Effect Transistor Characteristics of Terthiophene Polymers [J]. Chem. Mater.,2005,17(6): 1381-1385.
    [164]Heeney M, Bailey C, Genevicius K, et al. Stable Polythiophene Semiconductors Incorporating Thieno[2,3-b]thiophene [J]. J. Am. Chem. Soc.,2005,127(4):1078-1079.
    [165]Osaka I, Zhang R, Sauve G v, et al. High-Lamellar Ordering and Amorphous-Like π-Network in Short-Chain Thiazolothiazole-Thiophene Copolymers Lead to High Mobilities [J]. J. Am. Chem. Soc.,2009,131(7):2521-2529.
    [166]Tahar-Djebbar I, Nekelson F, Heinrich B, et al. Lamello-Columnar Mesophase Formation in a Side-Chain Liquid Crystal π-Conjugated Polymer Architecture [J]. Chem. Mater.,2011, 23(21):4653-4656.
    [167]Yao K, Chen Y, Chen L, et al. Mesogens Mediated Self-Assembly in Applications of Bulk Heterojunction Solar Cells Based on a Conjugated Polymer with Narrow Band Gap [J]. Macromolecules.,2011,44(8):2698-2706.
    [168]Chen W, Chen Y, Li F, et al. Ordered microstructure induced by orientation behavior of liquid-crystal polythiophene for performance improvement of hybrid solar cells [J]. Sol. Energy Mater. Sol. Cells,2012,96(1):266-275.
    [169]Zhang M, Tsao H N, Pisula W, et al. Field-Effect Transistors Based on a Benzothiadiazole-Cyclopentadithiophene Copolymer [J]. J. Am. Chem. Soc.,2007, 129(12):3472-3473.
    [170]Kawabata K, Goto H. Liquid Crystalline π-Conjugated Copolymers Bearing a Pyrimidine Type Mesogenic Group [J]. Materials,2009,2(1):22-37.
    [171]Yamamoto T, Kokubo H, Kobashi M, et al. Alignment and Field-Effect Transistor Behavior of an Alternative π-Conjugated Copolymer of Thiophene and 4-Alkylthiazole [J]. Chem. Mater.,2004,16(23):4616-4618.
    [172]Chen T-A, Wu X, Rieke R D. Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc:Their Characterization and Solid-State Properties [J]. J. Am. Chem. Soc.,1995,117(1):233-244.
    [173]Ichimura K. Photoalignment of Liquid-Crystal Systems [J]. Chem. Rev.,2000,100(5): 1847-1874.
    [174]Nishizawa T, Lim H K, Tajima K, et al. Highly Uniaxial Orientation in Oligo(p-phenylenevinylene) Films Induced During Wet-Coating Process [J]. J. Am. Chem. Soc.,2009,131(7):2464-2465.
    [175]Yang X, Loos J, Veenstra S C, et al. Nanoscale Morphology of High-Performance Polymer Solar Cells [J]. Nano Lett.,2005,5(4):579-583.
    [176]Qian L, Yang J, Zhou R, et al. Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime [J]. J. Mater. Chem.,2011,21(11):3814.
    [177]Chang J A, Rhee J H, Im S H, et al. High-performance nanostructured inorganic-organic heterojunction solar cells [J]. Nano Lett.,2010,10(7):2609-2612.
    [178]Roest A L, Kelly J J, Vanmaekelbergh D, et al. Staircase in the Electron Mobility of a ZnO Quantum Dot Assembly due to Shell Filling [J]. Phys. Rev. Lett.,2002,89(3):036801.
    [179]Borchert H. Elementary processes and limiting factors in hybrid polymer/nanoparticle solar cells [J]. Energy Environ. Sci.,2010,3(11):1682-1694.
    [180]Steim R, Kogler F R, Brabec C J. Interface materials for organic solar cells [J]. J. Mater. Chem.,2010,20(13):2499.
    [181]Lin Y-Y, Chu T-H, Li S-S, et al. Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells [J]. J. Am. Chem. Soc.,2009, 131(10):3644-3649.
    [182]Shao S, Liu F, Fang G, et al. Enhanced performances of hybrid polymer solar cells with p-methoxybenzoic acid modified zinc oxide nanoparticles as an electron acceptor [J]. Org Electron,2011,12(4):641-647.
    [183]Park I, Lim Y, Noh S, et al. Enhanced photovoltaic performance of ZnO nanoparticle/poly(phenylene vinylene) hybrid photovoltaic cells by semiconducting surfactant [J]. Org Electron,2011,12(3):424-428.
    [184]Lin Y Y, Lee Y Y, Chang L W, et al. The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells [J]. Appl. Phys. Lett.,2009,94(6):
    [185]Bi D, Wu F, Qu Q, et al. Device Performance Related to Amphiphilic Modification at Charge Separation Interface in Hybrid Solar Cells with Vertically Aligned ZnO Nanorod Arrays [J]. J. Phys. Chem. C,2011,115(9):3745-3752.
    [186]Draper M, Saez I M, Cowling S J, et al. Self-Assembly and Shape Morphology of Liquid Crystalline Gold Metamaterials [J]. Adv. Funct. Mater.,2011,21(7):1260-1278.
    [187]Coursault D, Grand J, Zappone B, et al. Linear self-assembly of nanoparticles within liquid crystal defect arrays[J].Adv.Matter.,2012,24(11):1461-1465.
    [188]Chen W, Li F, Chen Y, et al. Enhancement of the ultraviolet emission of ZnO nanorods by terphenyl liquid-crystalline ligands modification [J]. Appl. Surf. Sci.,2011,257(21): 8788-8793.
    [189]In I, Jun Y W, Kim Y J, et al. Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands [J]. Chem. Commun.,2005,41(6):800-801.
    [190]Chen L, Xu J, Holmes J D, et al. A Facile Route to ZnO Nanoparticle Superlattices: Synthesis, Functionalization, and Self-Assembly [J]. J. Phys. Chem. C,2010,114(5): 2003-2011.
    [191]Brown P J, Thomas D S, ouml, et al. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) [J]. Phys. Rev. B,2003,67(6):064203.
    [192]Chen W, Chen Y, Li F, et al. Ordered microstructure induced by orientation behavior of liquid-crystal polythiophene for performance improvement of hybrid solar cells [J]. Sol. Energy Mater. Sol. Cells,2012,96:266-275.
    [193]Li F, Chen W, Chen Y. Mesogen induced self-assembly for hybrid bulk heterojunction solar cells based on a liquid crystal D-A copolymer and ZnO nanocrystals [J]. J. Mater. Chem.,2012,22(13):6259-6266.
    [194]Chu T Y, Lu J P, Beaupre S, et al. Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2',3'-d]silole Copolymer with a Power Conversion Efficiency of 7.3%[J]. J. Am. Chem. Soc.,2011,133(12):4250-4253.
    [195]Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells [J]. J. Am. Chem. Soc., 2011,133(12):4625-4631.
    [196]Coakley K M, McGehee M D. Conjugated Polymer Photovoltaic Cells [J]. Chem. Mater., 2004,16(23):4533-4542.
    [197]Scharber M, Muhlbacher D, Koppe M, et al. Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency [J]. Adv. Mater.,2006,18(6):789-794.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700