环保型汽车防冻液的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车发动机防冻液是发动机冷却系统不可缺少的冷却散热介质。随着汽车发动机技术的发展及人们环保意识的提高,对环保型发动机防冻液的需求在逐年递增。目前我国汽车发动机防冻液产品仍以无机型为主,多数腐蚀抑制剂配方中含有诸如亚硝酸盐、胺盐、硼砂等国外淘汰或将要淘汰的无机盐缓蚀剂,这类缓蚀剂尽管价格便宜,但对环境及人体有害,对铝金属部件的防腐不利,不能满足现代汽车发展的需求。因此根据汽车发动机防冻液的发展方向和我国国情,研制一种性能优良、价格适中的环保型发动机防冻液具有良好的经济和社会效益。
     本文简要介绍了汽车发动机冷却系统材质及防冻液的基本功能,概述了国内外发动机防冻液的研究现状,论述了防冻液的研制工作。本次研制工作主要进行了以下几个方面:
     1、比较国内外发动机防冻液的指标要求,确定采用SH0521—1999《汽车及轻负荷发动机用乙二醇型防冻液》标准。
     2、建立起理化性能试验及筛选试验,同时根据实验室的条件,采用将“玻璃器皿腐蚀试验”法时间延长至1064h,确保台架试验的顺利通过。
     3、先利用正交试验进行初步筛选,然后将有机盐缓蚀剂与无机盐缓蚀剂进行优化复配,筛选出一个高性能的腐蚀抑制剂配方。
     4、进行储存稳定性考察,并对最终配方进行测试。
     研制结果表明,该产品储存稳定性好,对焊锡、铝、黄铜、紫铜、钢、铁都可以起到优异的腐蚀抑制作用,尤其对铝金属的保护作用较为突出,产品性能满足SH0521—1999标准要求。该产品是无胺、无磷、无硼、无亚硝酸盐、无氯离子的低毒环保型发动机防冻液。
     此外,本文还对汽车发动机防冻液的调合工艺进行了详细介绍,并对发动机防冻液的储存进行了简要说明。
Engine antifreeze fluid is indispensable coolant in engine cooling system. With the technical development of automobile engine and exaltation of the environmental protection consciousness, the requirement of environmental protection type antifreeze fluid is increasing progressively year by year. Antifreeze fluids still take inorganic salt inhibitor as the principal thing at present in our country. Most corrosion-inhibiting formulations contain cheap inorganic salt inhibitors, such as nitrite, amine, borate ect which are or will be eliminated at abroad. The cheap inhibitors are harmful to environment and human body or disadvantageous to the protection of aluminum. They can't meet the need of the modern automobile development. According to the development direction and Chinese basic condition of antifreeze fluid, the research on environmental protection type antifreeze fluid that possesses excellent property and reasonable price is of economic and social benefit.
    The development of engine's construction material, basic function of engine antifreeze fluid, the outline of development in Chinese and foreign engine antifreeze fluid, and its research are introduced. This research is conducted the following works:
    1、 Through comparing parameters of Chinese and foreign engine antifreeze fluids, SH0521-1999 specification is determined to adopt.
    2、 Physics and chemistry experiments and sieve tests are built up. At the same time, according to the condition of the laboratory, time of " the glass corrosion experiment" is prolonged to 1064h, which can insure that the engine antifreeze fluid pass the Bench Test.
    3、 At first the research takes orthogonal examination, and then organic salt inhibitor and inorganic salt inhibitor are formulated and optimized. A corrosion-inhibiting formulation possessing high performances is screened out.
    4、 Tests of storage stability are engaged, and the formulation is tested.
    Results show that the product possesses good stability of storage and excellent
    performance of corrosion-inhibiting to solder, aluminum, brass, copper, steel and cast iron. Especially, the protection to aluminum is excellent extraordinarily. It meets
引文
[1] 董芳.发动机防冻液及其标准的发展.石油商技.2004,(4):43~46
    [2] 徐建平.国外汽车防冻液的发展趋势.润滑油.1991,(4):10~14
    [3] SAE J 814 AUG96, Ethylene Coolants SAE Information Report.
    [4] Rowe L C. Automotive Engine Coolants: A Review of Their Requirements and Methods of Evaluation. ASTMSTP705. ASTM, 1980. 3
    [5] PN: JP 06116764-94
    [6] PN: US 5422026-95
    [7] PN: CN 1172144A-97
    [8] 李建华.国外汽车防冻液研究.石油商技.1992,(4):19~20
    [9] Weir T W, et al. Review of Organic Acids as Inhibitors in Engine Coolants. SAE SP1162. 960641
    [10] Beale E W, et al. Evaluation of a Novel Engine Coolant Based on Ethanediol Developed To Replace AL-3(NATO S735) as the Automotive Antifreeze Used by the British Army. ASTM STP705. ASTM, 1980. 295~309
    [11] Burns J M. Fleet Test Correlations of Original Equipment Coolant Pump Failures and Engine Coolant Formulations. ASTM STP 1192. Philadelphia: ASTM, 1993. 25~43
    [12] Turcotte D E, et al. Engine Coolant Technology, Performance, and Life for Light-Duty Applications. ASTM STP1335. STM, 1999. 52~76
    [13] 刘慧颖.乙二醇长效防冻液现状与发展.石油商技.1992,(3)15~18
    [14] 王玉祥.浅谈防冻液.内燃机.1995,(4):35~36
    [15] 于桂生.高效低毒新型防锈体系汽车防冻液的研制.天津化工.1994,(1):18~20
    [16] 熊炯辉等.防冻液中多金属缓蚀剂的研究.化学清洗.1994,(3):29~32
    [17] 张新昌等.轿车和轻型卡车乙二醇型发动机防冻液的研制.石油商技.1997,(6):16~19
    [18] 赵国梁.汽车发动机长效防冻液的研究.石油商技.1999,(2):13~19
    [19] 张凯蛟等.高性能的汽车防冻液腐蚀抑制剂的优化研究.润滑与密封.2002,(3):24~27
    [20] 林菁等.全有机型发动机防冻液研制报告.润滑与密封.2002,(4):67~70
    [21] 李殿斌.乙二醇型防冻液的性能要求及使用.石油商技.1988,(6):10~13
    [22] 美国材料与试验协会标准ASTM D3306-2000
    [23] 美国汽车工程协会SAE J1034-1996
    [24] 美国汽车工程协会SAE J2306-1996
    [25] 日本工业标准JIS K2234-1994
    [26] 英国标准规范BS6580:1992
    [27] Liebold G A, Starke K W. Europe Test Methods for Automoive Coolants: Experience Gained in Recent Cavitation and Corrosion Tests. ASTM STP887. Philadelphia: ASTM, 1986. 176~188
    [28] 中国石油化工股份有限公司科技开发部.石油产品行业标准汇编.北京:中国石化出版社,2003.
    [29] 程能林.溶剂手册.第二版.北京:化学工业出版社,1994.
    [30] 欧风.石油产品应用技术.北京:石油工业出版社,1984
    [31] 化学工业部化工机械研究院.腐蚀与防护手册—耐蚀金属材料及防蚀技术.北京:化学工业出版社,1990.
    [32] Mercer A D. Experience of the British Standards Institution in the Field of Engine Coolants. ASTM STP705. ASTM, 1980. 24~41
    [33] PN: US 4455248-84
    [34] 金中令.防冻液发展动态概述.石油商技.1995,(5):52~59
    [35] Beard L K, et al. A Demonstration of Aluminum Transport Deposition. ASTM STP 887. Philadelphia: ASTM, 1986. 44~60
    [36] Weir T W. Testing of Organic Acids in Engine Coolants. ASTM STP 1335. ASTM, 1999. 7~22
    [37] Aramaki K., 5th European Symposium on Corrosion Inhibitors Proceedings, Ferraraa, 1980.
    [38] PN:US 4466896-84
    [39] PN:US 4772408-88
    [40] Bregman J I. Corrosion inhibitors. New York: The Macmillan Company, 1963. 117
    [41] PN:US 4149985-80
    [42] PN:US 4487712-84
    [43] PN:US 4707286-88
    [44] 周建军等.我国发动机冷却液的现状与发展趋势.石油商技.2001,(1):1~3
    [45] 田玉竹等.汽车防冻液中的缓蚀剂与稳定剂.精细石油化工.1994,(5):86~90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700