高温碳质化合物聚合物膜燃料电池及电场辅助制备膜电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜电极组件(MEA)是聚合物膜燃料电池(PEMFC)的核心部件,对聚合物膜燃料电池的性能起到关键作用。在目前PEMFC电极技术中,催化层中的催化剂、电解质和孔隙均是无序分布的,而结构无序的催化层既导致了催化剂利用率低,又造成了反应物、电子和质子传递路径长、阻力大等弊端。因此改善电极结构,开发高性能的膜电极是PEMFC研究的重要课题。本文提出通过施加电场的方式辅助制备有取向结构的PEMFC电极,从而提高垂直方向的电子和质子通道的连通性,并提高催化剂利用率。
     采用由微米级全极化颗粒、电解质聚合物和溶剂组成的催化剂浆料模拟体系,用高倍光学显微镜直观观察全极化颗粒在电场下的运动和取向行为。从全极化颗粒取向行为的变化,外推真实催化层中取向的形成过程。
     在电极催化层的制备过程中施加电场,利用电场作用制备具有取向结构的电极催化层。考察电场和催化层主要参数对电极结构取向的影响。表征催化层结构,测量其电化学性能,并且进行进一步的燃料电池实验。结果表明,电场辅助制备的电极具有较小的欧姆电阻和反应电阻,更大的电极活性面积,以及更佳的电池放电性能。
     近年来,人们开始积极开发以小分子碳质化合物为燃料的聚合物膜燃料电池。但不同研究者采用的实验条件不一致,使结果的可比性差,同时也缺乏高温碳质化合物燃料电池性能方面的相关研究。
     在本研究中,我们以Nafion?115膜作为电解质膜制备膜电极,在较高的阳极燃料和阴极氧气进料压力下,分别考察了以乙醇、甲酸、二甲醚和乙二醇为燃料的燃料电池在高温条件下(100~160℃)的放电性能,并与直接甲醇燃料电池(DMFC)进行了比较。实验表明,相比于其余四种燃料,直接甲醇燃料电池的功率密度在所考察的温度下均最大,而直接二甲醚燃料电池的开路电压则最高。
     使用本课题组研发的改性磺化聚芳醚酮膜作为电解质膜制备膜电极,考察了甲醇低温液态进料和高温气态进料两种情况下的燃料电池性能,并测试了以甲酸、乙二醇、异丙醇和二甲醚为燃料时的相关电池性能。实验表明,30PES/SPEEK共混膜在DMFC及直接甲酸、乙二醇、异丙醇及二甲醚燃料电池中的性能与Nafion?115膜相当,甚至更好。
Membrane electrode assembly (MEA) is one of the key components of a PEMFC. The catalyst layer of the MEA is generally composed of three phases, namely a catalyst electronic conductive phase, a polyelectrolyte ionic conductive phase, and a void pores phase. These three phases are usually distributed randomly. The disordered microstructure of the catalyst layer results in the lower utilization of catalyst and the higher charge- and mass-transfer resistance. Therefore, improving the performance of PEM fuel cells by optimizing the microstructure of the MEA has been very important. In this study, electric field assisted fabrication of membrane electrode assemblies (MEAs) for fuel cells is proposed, with the aim of improving the electronic and ionic connections in the catalyst layers and increasing the efficiency of catalyst utilization.
     We studied the effect of an electric field on the orientation of the polarizable particles dispersed in the simulated system of the catalyst ink.
     Anodic and cathodic electrodes have been prepared by the perpendicular application of an electric field to the catalyst ink spread on the surface of a gas diffusion layer (GDL) while the ink is drying. The thus prepared electrodes were hot-pressed onto a Nafion membrane to form the MEAs. The performance of the electric field-treated MEAs (E-MEA) thus prepared was compared with that of common MEAs (C-MEA) without electric field treatment in a single-cell DMFC. The E-MEAs, as well as single electrodes, were also characterized by EIS, CV, and SEM methods in order to determine the changes in the E-MEAs resulting from electric field treatment. Direct methanol fuel cells (DMFCs) with the E-MEAs showed a substantial improvement in performance as compared with C-MEAs. Under the same operating conditions, the maximum power density of a DMFC was increased from 42.3 to 60.0 mW·cm~(-2) when a C-MEA was replaced by an E-MEA treated with a 5000 V·cm~(-1) and 0.1 Hz ac electric field. Based on cyclic voltammetry (CV) data, it has been shown that Pt utilization in the cathode reaches a maximum of 62% for the E-MEA, as opposed to 37% for the C-MEA.
     In recent years, direct carbonaceous compound polymer electrolyte membrane fuel cells have been developed rapidly. However, the comparability of the research results of different researchers is poor because of the different experimental conditions, and the research of the performance of the high-temperture carbonaceous compound polymer electrolyte membrane fuel cells is lacking.
     In this paper, we investigated the performance of the high-temperture polymer electrolyte membrane fuel cells with the MEAs prepared by Nafion?115 membrane, using ethanol, formic acid, dimethy and ethylene glycol as fuels under the higher operating pressures of the anode and the cathode, and compared with the performance of the direct methanol fuel cell operating under the same conditions. The experimental results showed that the direct methanol fuel cell presented a higher peak power density, whereas the direct dimethy fuel cell showed a higher open-circuit voltage.
     In addition, we prepared the MEAs with the modified sulfonated poly (aryl ether ketone) proton exchange membranes fabricated by us, and investigated the performance of the liquid-feed and vapor-feed direct methanol fuel cells and the carbonaceous compound polymer electrolyte membrane fuel cells using formic acid, ethylene glycol, isopropanol and dimethy as fuels. Single cell performance experiment indicated that the 30wt% PES/SPEEK (DS=68.3%) membrane is a competitive substitute as a proton exchange membrane for the direct carbonaceous compound polymer electrolyte membrane fuel cells.
引文
[1] Appleby A J, Foulkes F R, Fuel cell handbook, Van Nostrand Reinhold, New York, 1989
    [2]衣宝廉,燃料电池现状和未来,电源技术:1998,22(5):216-221
    [3]江船,燃料电池,北京:国防工业出版社,1983
    [4]查全性,燃料电池技术的发展和我国应有的对策,应用化学,1993,10(10):38-42
    [5]周运鸿,燃料电池,电源技术,1996,20(4):161-164
    [6]黄倬,屠海令,张冀强等,质子交换膜燃料电池的研究开发和应用,北京:冶金工业出版社,2000
    [7]衣宝廉,燃料电池-高效环境友好的发点方式,北京:化学工业出版社,2000
    [8]顾登平,董茹亭,化学电源,北京:高等教育出版社,1993
    [9] Prater K B, Solid polymer fuel cell developments at Ballard, J. Power Sources, 1992, 37: 181-188
    [10]侯明,吴金锋,衣宝廉等, PEM燃料电池流场板,电源技术, 2001, 25(4): 294-298
    [11] Besmann T M, Klett J W, Henry J J, et al, Carbon/carbon composite bipolar plate for proton exchange membrane fuel cells, J. Electrochem. Soc, 2000, 147: 4083-4086
    [12]衣宝廉,燃料电池-原理、技术、应用,北京,化学工业出版社, 2003, 6-7
    [13]陈延禧,聚合物电解质燃料电池的研究进展,电源技术, 1996, 20(1): 21
    [14]蔡年生,质子交换膜在燃料电池中的应用,膜科学与技术,1996, 16(4): 1-6
    [15] EG&G Technical Services, Inc, Fuel cell handbook (7th edition), Morgantown, West Virginia, 2004
    [16] Williams K R, Pearson J W, Gressler W J, Batteries 2. Reserarch and development in Non-Mechanical electrical power sources, Pergamon, Oxford, 1965, 337
    [17] Breiter M W, A study of intermediates adsorbed on platiniaed-platimum suring the steady-state oxidation of methanol, Formic acid and Formal dehyde, J. Electroanal. Chem., 1967, 14: 407-413
    [18] Breiter M W, Comparative oxidation of chemisorbed carbon monoxide, reduced carbon dioxide and species formed during the methanol oxidation, J. Electroanal. Chem., 1968, 19: 131-136
    [19] Bagotzsky V S, Vassiliev Y B, Absorption of organic substances on platinum electrodes, Electrochim. Acta, 1966, 11: 1439-1460
    [20] Bagotzsky V S, Vassiliev Y B, Mechanism of electro-oxidation of methanol on the platinum electrode, Electrochim. Acta, 1967, 12: 1323-1343
    [21] Surampudi S, Narayanan S R, Vamos E, Advances in direct oxidation methanol fuel cells, J. Power Sources, 1994, 47: 377-385
    [22] Schmidt K M, Brocherhoff P, Hohlein B, Utilization of methanol for polymer electrolyte fuel cells in mobile systems, J. Power Soureces, 1994, 49: 299-313
    [23] Cleghorn S J C, Ren X, Springer T E, PEM fuel cell for transportation and staionary power generation applications, Int. J. Hydrogen Energy, 1997, 22(12): 1137-1144
    [24] Shukla A K, Christensen P A, Hamnett A, A vapour-feed direct-methanol fuel cell with proton-exchange membrane electrolyte, J.Power Sources, 1995, 55: 87-91
    [25] Heinzel A, Barragán V M, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, J. Power Sources, 1999, 84: 70-74
    [26] Hogarth M P, Hards G A, Direct methanol fuel cells: Technological advances and further requirements, Platinum Metals Rev, 1996, 40: 150-159
    [27] Zhu Yimin, Ha Su Y, Richard I M, High power density direct formic acid fuel cells, Journal of Power Sources, 2004, 130: 8-14
    [28]袁青云,唐亚文,陆天虹等,甲酸作直接甲醇燃料电池替代燃料,应用化学, 2005, 22(9): 929-932
    [29]易清风,甲酸在钛基纳米多孔网状铂电极上的电化学氧化,化工学报, 2007, 58(2): 446-451
    [30]宋树芹,陈利康,辛勤等,直接乙醇燃料电池初探,电化学, 2002, 8(1):105-110
    [31]赵新生,姜鲁华,孙公权等,新型Pt-Sn/C阳极催化剂对乙醇的电催化氧化性能,催化学报, 2004, 25(12): 983-988
    [32]赵新生,孙公权,姜鲁华等,碳纳米管担载PtSn阳极催化剂对乙醇的电催化氧化性能研究,高等学校化学学报, 2005, 26(7): 1304-1308
    [33]姜鲁华,周振华,辛勤等,直接乙醇燃料电池PtSn/C电催化剂的合成表征和性能,高等学校化学学报, 2004, 25(8): 1511-1516
    [34] Song S Q, Zhou W J, Tsiakaras P, et al, Direct ethanol PEM fuel cells: The case of platinum based anodes, International Journal of Hydrogen Energy, 2005, 30: 995- 1001
    [35]曲微丽,邬冰,高颖等, Pt-WO3/C电极表面活化对乙二醇和CO氧化的作用,化学学报, 2005, 63(17): 1565-1569
    [36]邵玉艳,尹鸽平,高云智,二甲醚在铂电极上的电氧化和吸附行为,武汉大学学报(理学版), 2004, 50(4): 436-440
    [37] Satoru Ueda, Mika Eguchi, Katsuhiro Uno, et al, Electrochemical characteristics of direct dimethyl ether fuel cells, Solid State Ionics, 2006, 177: 2175–2178
    [38] Jung Han Yoo , Hoo Gon Choi, Sung Min Cho, et al, Fuel cells using dimethyl ether, Journal of Power Sources , 2006,163:103–106
    [39] Mizutani I, Liu Y, Nobuyuki Kamiya, et al, Anode reaction mechanism and crossover in direct dimethyl ether fuel cell, Journal of Power Sources, 2006,156: 183–189
    [40] Ticianelli E A, Berry J G, Srinivasav S, Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphological characteristics of the electrodes, J. Appl. Electrochem., 1991, 21: 597-598
    [41] Vielstich W, fuel cells, John Wiley&Son Ltd., 1970:91-93
    [42] Watanabe M, Motoo S, Electrocatalysis by ad-atoms. PartⅢEnhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms, J. Electroanal.Chem., 1975, 60:275-285
    [43] Chu D, Gilman S, Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures, J. Electrochem. Soc., 1996, 143(5), 1685-1690
    [44] Dinh H N, Ren X, Garzon F H, et al, Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces, J. Electroanalytical Chem., 2000,491: 222-233
    [45] Morimoto Y, Yeager E B, Comparison of methanol oxidations on Pt, Pt/Ru and Pt/Sn electrodes, J. Electroanal. Chem., 1998, 444: 95-100
    [46] Arico A S, Antonucci V, Giordano N, et al, Methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric-acid, J. Power Sources, 1994, 50: 295-309
    [47] Chen K Y, Tseung A C C, Effect of Nafion dispersion on the stability of Pt/WO3 electrodes, J. Electrochem. Soc., 1996, 143: 2703-2707
    [48] Vielstich W, fuel cells, John Wiley&Son Ltd., 1970:119-124
    [49] Chu D, Jiang R, Novel electro catalysts for direct methanol fuel cells, Solid state ionics, 2002, 148: 591-599
    [50] The DOE advanced fuel cell working group, Assessment of research needs for advanced fuel cell: Solid polymer electrolyte fuel cells (SPEFCs), Energy, 1986, 11: 137-152
    [51]李国欣,新型化学电源导论,上海:复旦大学出版社, 1992
    [52] Strasser K, Mobile fuel cell development at Siemens, J. Power Sources, 1992, 37: 209-219
    [53] Murphy O J, Hitchens G D, Manko D J, High power density proton-exchangemembrane fuel cells, J. Power Sources, 1994, 47: 353-368
    [54] Eisman G A, The application of DOW Chemical’s perfluorinated membranes in proton-exchange membrane fuel cells, J. Power Sources, 1990, 29: 389-398
    [55] Wakizoe M, Velev O A, Srinivasan S, Analysis of proton exchange membrane fuel cell performance with alternate membranes, Electrochimica Acta, 1995, 43(3): 335-344
    [56] Carla H W, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, J. Membr. Sci., 1996, 120: 1-33
    [57] Gierke T D, Munn G E, Wilson F C, et al, The morphlolgy in Nafion perfluorinated membrane products, as determined by wide-and small-angle X-ray studies, J. Polym. Sci.: Polymer Physics Edition, 1981, 19: 1687-1704
    [58] Ze’ev P, John R F, Max H, Electron microscopy investigation of the microstructure of Nafion films, J. Phys. Chem., 1995, 99: 4667-4671
    [59] Halim J, Buchi F N, Haas O, Characterization of perfluorosulfonic acic membranes by conductivity measurements and small-angle X-ray scattering, Electrochimica Acta, 1994, 39: 1303-1307
    [60] Fontanella J J, Wintersgill M C, Chen R S, Charge transport and water molecular motion in variable molecular weight Nafion membranes: high pressure electrical conductivity and NMR, Electrochimica Acta, 1995, 40(13&14): 2321-2326
    [61] Yeager H L, Steck A, Cation and water diffusion in Nafion ion exchange membranes: influence of polymer structure, J. Electrochem. Soc, 1981, 128(9): 1880-1884
    [62] Arico A S, Baglio V, Blasi D, Antonucci V, FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes, Electrochemistry communications, 2003, 5:862-866
    [63] Sang H K, Yang T H, Kim C S, et al, Polymer composite membrane incorporated with a hygroscopic material for high temperature PEMFC, Electrochemical Acta, 2004,50:653-657
    [64] Doyle M, Choi S K, Proulx G, High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites, J. Electrochem. Soc, 2000, 147(1): 34-37
    [65] Savadogo O, Emerging membranes for electrochemical systems (1) Solid polymer electrolyte membranes for fuel cell systems, J. New Mat. Electrochem. Systems, 1998, 1: 47-65
    [66] Yoshitsugu S, Per E, Daniel S, Proton conductivity of Nafion117 as measured by a four-electrode AC impedance method, J. Electrochem. Soc, 1996, 143(4): 1254-1259
    [67] Cappadonia M, Erning J W, Niaki S M S, et al, Conductance of Nafion 117 membranes as a function of temperature and water content, Solid State Ionics, 1995, 77: 65-69
    [68] Cappadonia M, Erning J W, Stimming U, Proton conduction of Nafion117 membrane between 140K and room temperature, J. Electroanal. Chem, 1994, 376: 189-195
    [69] Zawodzinski T A, Derouin Jr C, Radzinski S, et al, Water uptake by and transport through Nafion117 membranes, J. Electrochem. Soc, 1993, 140(4): 1041-1047
    [70] Yoshitsugu S, Per E, Daniel S, Proton conductivity of Nafion117 as measured by a four-electrode AC impedance method, J. Electrochem. Soc, 1996, 143(4): 1254-1259
    [71] Samms S R, Wasmus S, Savinell R F, Thermal stability of Nafion in simulated fuel cell environments, J. Electrochem. Soc, 1996, 143(5): 1498-1504
    [72] Scott K, Taama W M, Argyropoulos P, Material aspects of the liquid feed direct methanol fuel cell, J. Appl. Electrochem., 1998, 28: 1389-1397
    [73] Wilson M S, Gottesfeld S, Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, J. Appl. Electrochem., 1992, 22: 1-7
    [74] Wilson M S, Gottesfeld S, High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells, J. Electrochem. Soc., 1992, 139: L28-L30
    [75] Chun Y G, Kim C S, Peck D H, Shin D R, Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. J. Power Sources, 1998, 71(1-2):174-178
    [76] Witham C K, Chun W, Ruiz R, et al, Thin film catalyst layers for direct methanol fuel cells, Electrochemical and Solid-State Letters, 2000, 3: 497-500
    [77] Hogarth M, Christensen P, Hamnett A, et al, The design and construction of high-performance direct methanol fuel cells, J. Power Sources, 1997, 69: 113-124
    [78] Liu L, Pu C, Viswanathan R, Carbon supported and unsupported Pt–Ru anodes for liquid feed direct methanol fuel cells, Electrochimica Acta, 1998, 43(24): 3657-3663
    [79] Zhibin He, Jinhua Chen, Dengyou Liu, Deposition and electrocatalytic properties of platinum nanoparticles on carbon nanotubes for methanol electrooxidation, Materials Chemistry and Physics, 2004, 85(2-3):396-401
    [80] Taylor E J, Anderson E B, Preparation of high-platinum-utilization gas diffusion electrodes for proton exchange membrane fuel cells, J. Electrochem Soc, 1992, 139(1):145-146
    [81] Song J M, Cha S Y, Lee W M, Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method, J. Power Sources, 2001, 94(1):78-84
    [82] Passalacqua E, Lufrano F, Squadrito G, et al, Influence of the structure in low-Pt loading electrodes for polymer electrolyte fuel cells,Electrochinmica Acta, 1998, 43(24):3665-3673
    [83] Prasamma M, Ha H Y, Cho E A, et al, Investigation of oxygen gain in polymer electrolyte Membrane Fuel Cells, J.Power Sources, 2004,137(1):1-8
    [84] Zhiqiang Xu, Zhiqiang Qi, Arthur Kaufman, Modification and improvement of proton-Exchange Membrane Fuel Cells via treatment using peracetic acid, J.Power Sources, 2003,115(1):49-53
    [85] Kundu S, Fowler M W, Simon L C, Morphological features(defects) in Fuel Cell Membrane electrode assemblies, J. Power Sources,2006,157(2):650-656
    [86] Hogarth M, Christensen P, Hamnett A, et al, The design and construction of high-performance direct methanol fuel cells, J. Power Sources, 1997, 69: 113-124
    [87] Argyropoulos P, Scott K, Taama W M, Gas evolution and power performance in direct methanol fuel cells, J. Appl. Electrochem., 1999, 29: 661-669
    [88] Argyropoulos P, Scott K, Taama W M, Carbon dioxide evolution patterns in direct methanol fuel cells, Electrochim. Acta, 1999, 44: 3575-3584
    [89] Zhang X, Shi P, Dual-bonded catalyst layer structure cathode for PEMFC, Electrochemistry Communications, 2006, 8: 1229–1234
    [90]汪国雄,孙公权,王素力等,直接甲醇燃料电池双催化层阴极结构和性能,电源技术,2006,30:876-879
    [91]陈胜洲,林维明,董新法,直接甲醇燃料电池性能研究,电源技术, 2006, 30(1): 44-47
    [92] Liu F, Lu G, Wang C, Low Crossover of Methanol and Water Through Thin Membranes in Direct Methanol Fuel Cells, Journal of The Electrochemical Society, 2006, 153(3): A543-A553
    [93] Middelman E, Improved PEM fuel cell electrodes by controlled self-assembly, Fuel Cells Bull 2002 (2002) 9
    [94] Adler P M, Interaction of unequal spheres, J. Colloid and Interface Sci., 1981(84), 489-496
    [95] Benguigui L, Lin I J, Phenomenological aspect of particle trapping by dielectophoresis, J. Appl. Phys., 1984(56), 3294-3297
    [96] Jones T B, Electromechanics of particles, Cambridge University Press,1995
    [97] Johnson T W, Melcher J R, Electromechanics of electrofuidized beds, Ind. Eng. Chem. Fundam., 1975(14),146-153
    [98] Wen W J, Huang X X, Yang S H, Lu K Q, Shen P, The giant electrorheological effect in suspensions of nanoparticles, Nature Materials, 2003(2), 727-730
    [99] Oddy M H, Santiago J C, A method for determining electrophoretic and electroosmotic mobilities using AC and DC electric field particle displacements, J. Colloid and Interface Sci., 2004(269), 192-204
    [100] Talbert C M, Jones T B, Dietz P W, The electro-spouted bed, IEEE Trans. Ind. Applic., 1984(IA-20), 1220-1223
    [101] Stangroom J E, Electrorheological fluids, Phys. Technol., 1983(14), 290-296
    [102] Gast A P and Zukoski C F, Electrorheological fluids as scolloidal suspensions, Adv. Coll. Int. Sci., 1989(67), 163-202
    [103] Zhang Y H, Wang X M, Studies of granular moving-bed filter for dust removal, Eng. Chem. Metall., 1992(13), 151-158
    [104] Muth E,über die Erscheinung der perlschnurkettenbildung von emulsionspartikelchen unter einwirkung eines wechselffelds, Kolloid-Z, 1927(XII ), 97-102
    [105] Krasny-Ergen W, Nicht-thermische wirkungen elektrischer schwingungen auf kolloide, Hochfrequenztech. und Elektroakustik, 1936(48),126-133
    [106] Liebesny P, Athermic short wave therapy, Arch. Phys. Ther.,1939(19): 736-740
    [107] Winslow W M, Induced fibration of suspensions, J Appl. Phys., 1949(20), 1137-1140
    [108] Coulson C A, Electricity, (Wiley-Interscience, New York, 1961), P42
    [109] Klingenberg D J, Frank van Swol, Zukoski C F, The small shear rate response of electrorheological suspensions. I. Simulation in the point-dipole limit, J. Chem. Phy., 1991(94): 6160-6169
    [110] Davis L C, Finite-element analysis of particle-particle forces in electrorheological fluids, Appl. Phys. Lett., 1992(60), 319-321
    [111] Davis L C, Polarization forces and conductivity effects in electrorheological fluids, J. Appl. Phys., 1992(72): 1334-1340
    [112] Josip Slisko, Raul A. Brito-Orta, On approximate formulas for the electrostatic force between two conducting spheres, Am. J. Phys., 1998(66): 352-355
    [113] Jiang Z H, Electrostatic interaction of two unequal conducting spheres in uniform electric field, J. Electrostat., 2003(58): 247-264
    [114] Gao L, Wan T K, Yu K W, Li Z Y, Force between two spherical inclusions in a nonlinear host medium, Phys. Rev. E, 2000(61): 6011-6014
    [115] Bosch H F M, Ptasinski K J, Kerkhof P J A M, Two conducting spheres in a parallel electric field, J. Appl. Phys., 1995(78): 6345-6352
    [116] Chen Y, Sprecher A F, Conrad H, Electrostatic particle-particle interactions inelectrorheological fluids, J. Appl. Phys., 1991(70): 6796-6803
    [117] Clercx H J H, Bossis G, Electrostatic interactions in slabs of polarizable particles, J. Chem. Phys., 1993(98): 8284-8293
    [118] Clercx H J H, Bossis G, Many-body electrostatic interactions in electrorheological fluids, Phys. Rev. E , 1993(48): 2721-2738
    [119] Stoy R D, Induced multipole strengths for two dielectric spheres in an external electric field, J. Appl. Phys., 1991(69): 2800-2804
    [120] Clercx H J H, Bossis G, Static yield stresses and shear moduli in electrorheological fluids, J. Chem. Phys., 1995(103): 9426-9437
    [121] Klingenberg D J, Frank van Swol, Zukoski C F, The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit, J. Chem. Phy., 1991(94): 6170-61783
    [122] Jeffrey D J, Conduction through a random suspension of spheres, Proceedings of the Royal Society of London, 1973, Series A (Mathematical and Physical Sciences): 355-367
    [123] Conrad H, Chen Y, Sprecher A F, The strength of electrorheological(ER) fluids, Int. J. Mod. Phys. B, 1992(6): 2575-2594
    [124] Tao R, Jiang Q, Sim H K, Finite-element analysis of electrostatic interactions in electrorheological fiuids, Phys. Rev. E, 1995(52), 2727-2735
    [125] Lin H L, Yu T L, Han F H, A method for improving ionic conductivity of nafion membranes and its application to PEMFC, J. Polymer Research, 2006,13(5), 379-385
    [126] Gasa J V, Weiss R A, Shaw M T, Electric-field-structured proton exchange membranes, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2004, 49(2), 592-593
    [127] Umeda M, Uchida I, Electric-field oriented polymer blend film for proton conduction, Langmuir, 2006, 22, 4476-4479
    [128] Adachi K, Tanaka M, Shikata T, Kotaka T, Deformation of viscoelastic droplet in an electric field. 1. Aqueous cetyltrimethylammonium bromide-sodium salicylate solution in poly(dimethylsiloxane), Langmuir, 1991, 7: 1281-1286
    [129] Adachi K, Tanaka M, Kotaka T, Deformation of viscoelastic droplet in an electric field. 2. Aqueous poly(acrylamide) solution in poly(dimethylsiloxane), Langmuir, 1991,7: 1287-1292
    [130] Nishiwaki T, Adachi K, Kotaka T, Deformation of viscous droplets in an electric field: poly(propylene oxide)/poly(dimethylsiloxane) systems, Langmuir, 1988, 4: 170-175
    [131] Moriya S, Adachi K, Kotaka T, Effect of electric field on the morphology of a poly (ethylene oxide)-polystyrene blend, Polymer Communications, 1985, 26,235-237
    [132] Amundson K, et al, Macromolecules, Effect of an electric field on block copolymer microstructure, 1991, 24, 6546-6548
    [133] Oren Y, Freger V, Linder C, Highly conductive ordered heterogeneous ion-exchange membranes, J.Membr.Sci., 2004, 239, 17-26
    [134] Karthikeyan C S et al, Aligned nafion nanocomposites: preparation and morphological characterization, Macromol. Mater. Eng., 2003, 288, 175-180
    [135] Ryan K M, et al, Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices, Nano Letters, 2006, 6(7), 1479-1482
    [136] Du C Y, Yang T, Shi P F, et al, Performance analysis of the ordered and the conventional catalyst layers in proton exchange membrane fuel cells, Electrochim. Acta, 2006, 51: 4934-4941
    [137] Lambros J, Santare M H, Li H, Sapna G H, A novel technique for the fabrication of laboratory scale model functionally graded materials, Exp. Mech., 1999, 39: 184
    [138] Lee N J, Jang J, Park M, Choe C R, Characterization of functionally gradient epoxy/carbon fiber composite prepared under centrifugal force, J. Mater. Sci., 1997, 32: 2013
    [139] Krumova M, Klingshirn C, Haupert F, Friedrich K, Microhardness studies on functionally graded polymer composites, Comp. Sci. Technol., 2001, 61: 557
    [140] Kim G H, Thermo-physical responses of polymeric composites tailored by electric field, Composites Science and Technology, 2005, 65: 1728-1735
    [141] Schwarz M-K, Bauhofer W, Schulte K, Alternating electric field induced agglomeration of carbon black filled resins, Polymer, 2002, 43: 3079-3082
    [142] Wang H, Zhang H, Zhao W, Zhang W, Chen G, Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement, Composites Science and Technology, 2008, 68: 238-243
    [143]王常珍,固体电解质和化学传感器,北京:冶金工业出版社,2000
    [144]史美伦,固体电解质,重庆:科学技术文献出版社重庆分社,1982
    [145]曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社,2002
    [146] Davis L C, Finite-element analysis of particle-particle forces in electrorheological fluids, J. Appl. Phys., 1992, 60(3): 319-321
    [147] Klingenberg, D J, Particle polarization and nonlinear effects in electrorheological suspensions, MRS Bull, 1998, 23: 30-34
    [148] Conrad H, Chen Y, Progress in electrorheology, Plenum Press, New York, 1995
    [149]门守强,电流变液中颗粒间相互作用的理论研究,中国科学院物理研究所博士论文,1998,56~64
    [150] R .科埃略,电介质物理学,科学出版社,1984
    [151] Wen W J, Lu K Q, Experimental investigation of dipole-dipole interaction in a water-free glass particle/oil electrorheological fluid, Appl. Phys. Lett., 1996, 68: 3659-3661
    [152] Hao T, Xu Y, Microstructure-confined mechanical and electric properties of the electrorheological fluids under the oscillatory mechanical field, Journal of Colloid and Interface Science, 1997, 185: 324-331
    [153] Chen T Y, Luckham P F, Effect of frequency on a water-activated electrorheological fluid in an ac electric-field, Colloid and Surfaces A: Physicochemical and Engineering Aspects, 1993, 78: 167-175
    [154] Larminie J, Dicks A, Fuel Cell Systems Explained, Wiley, 2003, 72
    [155] Uchida M, Aoyama Y, Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells, J. Electrochem. Soc., 1995,142 (2): 4143-4149
    [156] Saab A P, Garzon F H, Zawodzinski T A, Determination of ionic and electronic resistivities in carbon/polyelectrolyte fuel-cell composite electrodes, J. Electrochem. Soc., 2002, 149: A1541-A1546
    [157] Li H , Schlick S, Effect of solvents on phase separation in perfluorinated ionomers, from electron spin resonance of VO2+ in swollen membranes and solutions, Polymer, 1995, 36(6): 1141-1146
    [158] Jeon M K, Won J Y, Oh K S, Lee K R, Woo S I, Performance degradation study of a direct methanol fuel cell by electrochemical impedance spectroscopy, Electrochim. Acta, 2007, 53: 447-452
    [159] Müller J T, Urban P M, H?lderich W F, Impedance studies on direct methanol fuel cell anodes, J. Power Sources, 1999, 84: 157-160
    [160] Frenot A, Chronakis I S, Polymer nanofibers assembled by electrospinning, Curr. Opin. Colloid Interface Sci., 2003, 8(1): 64-75
    [161] Tamixhmani G, Dodelet J P, Guay D, Crystallite size effects of carbon-supported platinum on oxygen reduction in liquid acids, J. Electrochem. Soc., 1996, 143(1): 18-23
    [162] Stonehart P, Development of alloy electrocatalysts for phosphoric acid fuel cells (PAFC), J. Appl. Electrochem., 1992, 22: 995-1001
    [163] Urban P M, Funke A, Müller J T, Catalytic processes in solid polymer electrolyte fuel cell systems, Applied catalysis A: General, 2001, 221: 459-470
    [164] Landau L D, Lifshitz E M, Electrodynamics of continuous media. New York: Pergamon, 1984
    [165]张军,液体进料直接甲醇燃料电池膜电极的研究:[博士学位论文],天津:天津大学,2002
    [166] McNicol B D, Electrocatalytic problems associated with the development of direct methanol-air fuel cell, J. Electroanal. Chem., 1981, 118: 71-87
    [167] Baxter S F, Battaglia V S, White R E, Methanol fuel cell model: anode, J. Electrochem. Soc., 1999, 146(2): 437-447
    [168] Wasmus S, Kuver A, Methanol oxidation and direct methanol fuel cells: a selective review, J. Electroanal. Chem., 1999, 461: 14-31
    [169] Waidhas M, Drenckhahn W, Preidel W, et al, Direct-fuelled fuel cells, J. Power Sources, 1996, 61: 91-97
    [170] Lee S J, Mukerjee S, Trcianelli E A, et al, Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells, Electrochimica Acta, 1999, 44: 3283-3293
    [171]黄镇江,刘风君,燃料电池及其运用,北京:电子工业出版社,2005
    [172] Wasmus S, Wang J-T, Savinell R F, Real-time mass spectrometric investigation of the methanol oxidation in a direct methanol fuel cell, J. Electrochem. Soc., 1995, 142: 3825-3833
    [173] Macia M D, Herrero E, Feliu J M, Formic acid oxidation on Bi---Pt(1 1 1) electrode in perchloric acid media. A kinetic study, J. Electroanal chem., 2003, 554-555: 25-34
    [174]黄绵延,DMFC用改性磺化聚芳醚酮质子交换膜的研究:[博士学位论文],天津:天津大学,2007
    [175] Rice C, Ha S, Mase R I, Wieckowski A, Catalysts for direct formic acid fuel cells, Journal of Power Sources, 2003, 115: 229–235
    [176] Zhang L, Tang Y, Bao J, Tianhong Lu, Li C. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell, Journal of Power Sources, 2006, 62: 177–179
    [177] Livshits V, Peled E, Progress in the development of a high-power, direct ethylene glycol fuel cell (DEGFC), Journal of Power Sources, 2006, 161: 1187-1191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700