氟两相体系中的有机合成反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究了全氟萘烷/甲苯(C_(10)F_(18)/CH_3C_6H_5),全氟萘烷/氟苯(C_(10)F_(18)/C_6H_5F),全氟萘烷/苯甲醚(C_(10)F_(18)/C_6H_5OCH_3),全氟甲基环己烷/甲苯(CF_3C_6F_(11)/CH_3C_6H_5),全氟甲基环己烷/苯(CF_3C_6F_(11)/C_6H_6),全氟甲基环己烷/正己烷(CF_3C_6F_(11)/C_6H_(14)),1-溴代全氟辛烷/甲苯(C_8F_(17)Br/CH_3C_6H_5)氟两相体系(FBS)的相行为。
     用相应的稀土氯化物或氧化物和全氟辛基磺酸反应来制备RE(OPf)_3(RE=Sc,Y,La~Lu)。并以DSC、ICP、IR和元素分析等手段对其进行了表征。
     以RE(OPf)_3为催化剂,并选取全氟己烷(C_6F_(14))、全氟甲苯(C_7F_8)、全氟甲基环己烷(C_7F_(14))、全氟辛烷(C_8F_(18))、1-溴代全氟辛烷(C_8F_(17)Br)和全氟萘烷(C_(10)F_(18))为全氟溶剂,对硝化反应、酯化反应、Friedel-Crafts酰化反应、Friedel-Crafts烷基化反应、缩醛合成反应、Aldol缩合(醛和酮)反应、醇胺缩合反应、Mannich反应、氧化反应等有机反应进行了研究。考察了温度、时间、催化剂种类和用量、氟溶剂的种类和氟相与有机相相比等工艺条件对上述反应的影响。研究表明Yb(OPf)_3和全氟萘烷(C_(10)F_(18))分别是最好的催化剂和全氟溶剂。含有催化剂的氟相通过简单的相分离,就可回收利用,氟相重复使用5次,其催化活性无明显降低。合成了部分过渡金属相应的全氟辛基磺酸盐(M(OPf)_x,M=Ti~Zn,x=2,3,4,5),并将它们用于催化烷基化、缩合和氧化反应,结果表明Co(OPf)_2是其中最有效的催化剂。
     发现了一种新的催化体系:稀土盐-全氟磺酸-氟溶剂(RE(OPf)_3-PfOH-PFC),在该体系中能有效进行Friedel-Crafts酰化反应、Friedel-Crafts烷基化反应和二硝化反应。
The behavior of fluorous biphasic systems (FBS) as followed were studied: perfluorodecalin/toluene (C_(10)F_(18)/CH_3C_6H_5), perfluorodecalin/fluorobenzene (C_(10)F_(18)/ C_6H_5F), perfluorodecalin/anisole (C_(10)F_(18)/C_6H_5OCH_3), perfluoromethylcyclohexane /toluene (CF_3C_6F_(11)/CH_3C_6H_5), perfluoromethylcyclohexane/benzene (CF_3C_6F_(11)/C_6H_6), perfluoromethylcyclohexane/hexane (CF_3C_6F_(11)/C_6H_(14)), perfluorooctyl bromide/toluene (C_8F_(17)Br/CH_3C_6H5).
    The catalyst of rare earth(III) perfluorooctanesulfonates (RE(OPf)_3, RE=Sc,Y, La~ Lu) were prepared from either rare earth chlorides(III) or oxides and perfluorooctane-sulfonic acid. The perflates obtained were characterized by DSC, ICP, IR, and Elemental Analysis. The perflates thus acted as novel catalysts for nitration, esterification, Friedel-Crafts acylation and alkylation, synthesis of acetal, aldol-condensation, condensation of alcohol with amine, Mannich reaction, and oxidation in fluorous biphasic system. Perfluorohexane (C_6F_(14)), perfluoromethylcyclohexane (C7F14), perfluorotoluene (C_7F_8), perfluorooctane (C_8F_(18)), perfluorooctyl bromide (C_8F_(17)Br) and perfluorodecalin (C_(10)F_(18) , cis and /ram-mixture) can be used as fluorous solvents for these reactions. Effects of reaction temperature, reaction time, amount and species of catalyst, species of fluorous solvent, and the ratio of fluorous phase/organic phase on these reactions were investigated. Yb(OPf)_3 and C_(10)F_(18) were the best catalyst and fluorous solvent respectively. By simple phase separation the fluorous phase containing catalyst could be re-utilized up to five times only with a little decrease in activity.
    The perfluorinated metal catalysts (M(OPf)_x, M = Ti~Zn, x = 2,3,4,5) were also prepared for Friedel-Crafts alkylation, aldol-condensation, and oxidation. It was found that Co(OPf)_2 was the most active catalyst.
    A novel catalytic system named 'RE(OPf)_3-PfOH-PFC' has been found highly effective for Friedel-Crafts reaction and dinitration.
引文
[1] Moulijin J A, Leeuwen P W N M, Santen A R. Catalysis. 1st, Amsterdam: Elsevier press, 1993
    [2] Horvath T H, Rabai J. Facile catalyst separation without water: Fluorous biphase hydyoformylation of olefins[J]. Science. 1994, 266(7): 72-73
    [3] Herrera V, Rege P J F, Horvath I T, Husebo T, Hughes R P. luorous phase separation techniques in catalysis[J]. Inorg. Chem Commun. 1998, (1): 197-198
    [4] Horvath I T, Kiss G, Cook R A, Bond J E, Stevens P A, Rabai J, Mozeleski E J. Molecular engineering in homogeneous catalys is: one-phase catalysis coupled with biphase catalyst separation.the fluorous-soluble HRh(CO)|P[(CH_2)_7CH_3]|_3 hydroformy- lation system[J]. J Am Chem Soc. 1998, 120(8): 3133-3143
    [5] Shi M, Cui S C. Friedel-Crafts reaction catalyzed by perfluorinated rare earth metals[J]. J Fluorine Chem. 2002, 116(1): 143-147.
    [6] Shi M, Cui S C. Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase[J]. Chem Commun. 2002, (9): 994-995
    [7] Zhu D W. A novel reaction medium: perfluorocarbon fluids[J]. Synthesis. 1993, 953-954;
    [8] Wolf E D, Koten G V, Deelman B J. Fluorous phase separation techniques in catalysis[J]. Chem Soc Rev. 1999, 28: 37-41
    
    [9] Huhges R P, Trujillo H A. Selective solubility of organometallic complexes in saturated fluorocarbons: Synthesis of cyclopentadienyl ligands with fluorinated ponytails[J]. Organometllics. 1996,15(1):286-294
    
    [10] Klement I, Lutjens H, Knochel P. Transition metal catalyzed oxidations in perfluorinated solvents[J]. Angew Chem Int Ed. Engl.1997, 36(13-14): 1454-1456
    [11] Bergreiler D E, Franchina J C. A soluble fluorous phase polymer support [J]. Chem Commun, 1997, (16): 1531-1532
    
    [12] Horvath I T. Fluorous biphase chemistry [J]. Acc Chem Res.1998, 31(10):641-650
    [13] Vogt M. Ph. D. Theis, Rheinisch-Westfalischen technischen hochschule, Aachen, 1991 (Germany)
    [14] Horvath I T, Rabai J. Facile catalyst separarion without water:fluorous biphase hydyoformylation of Olefins[J]. Angew Chem Int Ed Engl. 1994,266(7): 72-75.
    [15] Mathivet T, Monflier E, Castanet Y, Mortreux A, Couturier J L. .Perfluorooctyl substitute dtriphenylphos-phites as ligands for hydroformylation of higher olefins in fluorocarbon/hydrocarbon biphasic medium[J]. Comptes Rendus Chimie. 2002, 5(5): 417-424.
    [16] Chen W P, Xu L J, Xiao J L. Fluorous soluble polymer catalysts for the fluorous biphase hydroformylation of olefins[J]. Chem Commun. 2000, (10): 839-840.
    [17] Hu Y L, Chen W P, Banet A M, Xiao J L. Fast and unprecedented chemoselective hydroformylation of acrylates with a fluoropolymer ligand in supercritical CO_2[J]. Chem Commun. 2002, (7): 788-789.
    [18] Pozzi G, Montanari F, Quici, S. Tetraarylporphyrin-catalysed epoxidation of alkens by dioxygen and 2-methylpropanal under fluorous biphasic conditions[J]. Chem Commun. 1997, (1): 69-70
    [19] Pozzi G, Cinato F, Montanari F, Quici S. Efficient aerobic epoxidation of alkenes in perfluorinated solvents catalysed by chiral (salen) Mn complexes[J]. Chem Commun. 1998, (8):877-878
    [20] Pozzi G, Cavazzini M, Cinato, F, Montanari F, Quici S. Enantioselective Catalysis in Fluorinated Media—Synthesis and Properties of Chiral Perfluoroalkylated (Salen) manganese Complexes [J]. Eur J Org Chem. 1999, (8): 1447-1456
    [21] Iwahama T, Sakaguchi S, Ishii, Y. Epoxidation of alkenes using dioxygen in the presence of an alcohol catalyzed by N-hydroxyphthalimide and hexafluoroacetone without any metal catalyst [J]. Chem Commun. 1999, (8):727-728
    [22] Marson C M, Melling R C. The first enantioselective syntheses of vicinal difluoropyrrolidines and the first catalytic asymmetric synthesis mediated by the C_2 symmetry of a CHFCHF unit[J]. Chem Commun. 1998, (11): 1223-1224
    [23] Betzemeier B, Lhermitte F, Knochel P. Waker oxidation of alkenes using a fluorous biphasic system: A mild preparation of polyfunctional ketones[J]. Tetrahedron Lett. 1998, 39(37):6667-6670
    [24] Montanari G, Pozzi G, Quici S. Fluorous Biphasic Catalytic Oxidation of Sulfides by Molecular Oxygen/2,2-Dimethylpropanal[J]. Eur J Org Chem. 2001, (1): 181-186
    [25] Rutherford D, Juliette J J J, Rocaboy C, Horvath I T. Gladysz J A. Hydrogenation in fluorous media[J]. Catalysis Today. 1998,42(4): 381-388
    
    [26] Fish R H. Fluorous biphase catalysis:a new paradigm for separation of homogeneous catalysis from their reaction substrates and products[J]. Chem Eur J. 1999,5(6): 1677-1680
    [27] Wang Y L, Wu X W, Cheng F, Jin Z L. Thermoregulated phase-separable phosphine ruthenium complex for hydrogenation catalysis[J]. J Mole Catal. 2003, 195(1-2): 133-137
    [28] Juliet J J J, Rutherford D, Horvoth 1 T, Gladysz J A. Hydroboration in fluorous media [J]. J Am Chem Soc. 1999, 121(12): 2696-2704
    
    [29] Vinson S, Gagne M. Can a fluorous biphase solvent system improve a polymer immobilized heterogeneous hydrogenation catalyst?[J]. Chem Commun. 2001, (12): 1130-1132
    [30] Bergbreiter D E, Franchina J G, Case B L. Fluoroacrylate-Bound Fluorous-Phase Soluble Hydrogenation Catalysts[J]. Org Lett. 2000, 2(3): 393-395
    [31] Chechik V, Crooks R M. Dendrimer-Encapsulated Pd Nanoparticles as Fluorous Phase-Soluble Catalysts[J]. J Am Chem Soc. 2000, 122(23): 1234-1241
    [32] Horvath I T, Rabai J. Facile catalyst separation without water:fluorous biphase hydyoformylation of Olefms[J]. Angew Chem Int Ed Engl.1994, 266(7): 73-74
    [33] Juliette J J J, Horvath I T, Gladysz J A. Transition metal catalysis in fluorous media:practical application of a new immobilization principle to rhodium-catalyzed hydroboration[J]. Angew Chem Int Ed Engl. 1997, 36(15): 1610-1612.
    [34] Juliette J J J, Rutherford D, Horvath I T, Gladysz J A. Transition Metal Catalysis in Fluorous Media: Practical Application of a New Immobilization Principle to Rhodium-Catalyzed Hydroborations of Alkenes and Alkynes[J]. J Am Chem Soc. 1999, 121(24): 2969-2774
    [35] Shi M, Cui S C. Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase[J].Chem. Commun. 2002, (9): 994-995
    [36] Xiang J, Orita A, Otera J. Fluorous biphasic esterification gives high reaction efficiency[J]. Angew Chem Int Ed. 2002,41(21): 4117-4119
    [37] Beier P, O' Hagan D. Enantiomeric partitioning using fluorous biphase methodology for lipase-mediated (trans)esterifications[J]. Chem Commun. 2002,(16): 1680-1681
    [38] Otera,J.;Orita,A..A Practical and Green Chemical Process: Fluoroalkyl- distannoxane-Catalyzed Biphasic Transesterification [J]. Angew Chem Int Ed. 2001,40(19): 3670-3674
    [39] Nakamura Y, Takeuchi S, Okumura K, Yoshiaki O, Dennis P C. Recyclable fluorous chiral ligands and catalysts: asymmetric addition of diethylzinc to aromatic aldehydes catalyzed by fluorous BINOL-Ti complexes[J]. Tetrahedron, 2002, 58(20) :3963-3969
    [40] Gladysz J A, Wende M, Meier R. Fluorous Catalysis without Fluorous Solvents: A friendlier catalyst recovery/recycling protocol based upon thermomorphic properties and liquid/solid phase separation[J]. J Am Chem Soc. 2001, 123(46): 11490-11491
    
    [41] Kleijin H, Jastrzebski J T B H, Gossage R A. Ortho-bis(amino)arylnickel( II) halide complexes containing perfluoroalkyl chains as model catalyst precursors for use in fluorous biphase systems[J]. Tetrahedron. 1998, 54(7): 1145-1152
    [42] Yamamoto H, Kondo S, Kazuaki I. Hisashi: 3,5-bis(perfluorodecyl)phenylboronic acid as aneasily recyclable direct amide condensation catalyst[J]. Synlett. 2001, (9):1371-1372
    [43] Nakano H, Kitazume T. Friedel-Crafts reaction in fluorous fluids [J]. Green chemistry. 1999,(1): 179-181
    [44] Moineau J, Pozzi G, Quici, S, Sinou D. Palladium-catalyzed Heck reaction in perfluorinatedsolvents[J]. Tetrahedron Lett. 1999, 40(43): 7683-7686
    [45] Endres A, Mass G A fluorous phase approach to rhodium-catalyzed carbenoid reactions with diazoacetates[J]. Tetrahedron Lett. 1999,40(35): 6365-6368
    [46] Cavazzini M, Quici S, Pozzi G Hydrolytic kinetic resolution of terminal epoxides catalyzed by fluorous chiral Co(salen) complexes[J]. Tetrahedron. 2002, 58(20): 3943-3949
    
    [47] Cavazzini M, Pozzi G, Quici S, David, M, Sinou D. Palladium-catalysed asymmetric allylic alkylation in the presence of a chiral 'light fluorous1 phosphine ligand[J]. Chem Commun. 2001, (13): 1220-1221
    
    [48] Kling R, Sinou, D, Pozzi G, Choplin A, Quignard F, Busch S, Kainz S, Koch D, Leitner W. Palladium(0)-catalyzed substitution of allylic substrates in perfluorinated solvents[J]. Tetrahedron Lett. 1998, 39(51): 9439-9442
    [49] Meseguer M, Moreno-Manas M, Vallribera A. Conjugate addition to diethyl azodicarboxylate under organic-perfluorinated biphasic homogeneous catalysis by nickel( II) species[J]. Tetrahedron Lett. 2000,41(21): 4093-4095
    [50] Hananmoto T, Sugimoto Y, Yong Z J, Inanaga J. Scandium(III) perfluorooctanesulfonate[Sc(OPf)_3]: A novel catalyst for the hetero Diels-Alder reaction of aldehydes with non-activated dienes[J]. Bull Chem Soc Jpn. 1997, 70(8): 1421-1426
    
    [51] Rocaboy C, Gladysz J A. Syntheses, oxidations, and palladium complexes of fluorous dialkyl sulfides: New precursors to highly active catalysts for the Suzuki coupling[J]. Tetrahedron, 2002, 58(20): 4007-4014
    
    [52] Yin Y Y, Zhao G Qian Z S, Yin W X. 6,6'-Bisperfluoroalkylated BINOLs promoted asymmetric allylation of aldehydes [J]. J Fluorine Chem. 2003, 120(2):117-120
    [53] Takeuchi S, Nakanmura Y, Ohgo Y, Curran D P. Catalytic enantioselective protonation of asamarium etiolate with fluorous chiral and achiral proton sources in fluorous biphasic systems[J]. Tetrahedron Lett. 1998, 39(47): 8691-8694
    [54] Nakanmura Y, Takeuchi S, Ohgo Y, Curran D P. Preparation of a fluorous chiral BINOL derivative and application to an asymmetric protonation reaction[J]. Tetrahedron. 2000, 56(3): 351-356
    [55] Betzemeier B, Knochel P. Palladium-Catalyzed Cross-Coupling of Organozinc Bromides with Aryl Iodides in Perfluorinated Solvents[J]. Angew Chem Int Ed. Engl. 1997,36(23):2623-2624
    [56] Haddleton D M, Jackson S G, Bon S A F. Copper(I)-Mediated Living Radical Polymerization under Fluorous Biphasic Conditions [J]. J Am Chem Soc. 2000, 122(7): 1542-1543
    [57] Mikami K, Niikami Y, Matsuzawa H, Matsumoto Y, Nishikido J, Yamamoto F, Nakajima H. Lanthanide catalysts with tris(perfluoroctanesulfonyl)methide and bis(perfluooctanesulfonyl) amide ponytails: recyclable Lewis acid catalysts in fluorous phases in fluorous phases or as solids. Tetrahedron. 2002, 58(20): 4015-4021
    
    [58] Mikami K, Niikami Y, Matsumoto Y, Nishikido J, Yamamoto F, Nakajima H. Lewis acid catalysis by lanthanide complexes with tris(perfluoroctanesulfonyl) methide ponytails in fluorous recyclable phase. Tetrahedron Lett. 2001, 42(2): 289-292
    
    [59] Curran D P, Hadida S. Tris(2-(perfluorohexyl)ethyl)tin hydride: a new fluorous reagentfor use in traditional organic synthesis and liquid phase combinatorial synthesis [J]. J Am Chem Soc. 1996, 118(10): 2531-2532
    [60] Curran D P, Hadida S, Kim S Y, Lou Z Y. Fluorous Tin Hydrides: A New Family of Reagents for Use and Reuse in Radical Reactions[J]. J Am Chem Soc. 1999, 121(28):6607-6615
    [61] Ryu I, Niguma T, Minakata S, Komatsu M, Hadida S, Curran D P. Hydroxymethylation oforganic halides: Evaluation of a catalytic system involving a fluorous tin hydride reagent for radical carbonylation[J]. Tetrahedron Lett. 1997,38:7883-7886
    [62] Studer A, Hadida S, Ferritto R. Fluorous synthesis: a fluorous phase strategy for improving separation efficiency in organic synthesis[J]. Science, 1997, 275(6): 823-826
    [63] Dimagno S G, Dussault P H, Schultz J A. Fluorous biphasic singlet oxygenation with a perfluoroalkylated photosensitizer[J]. J Am Chem Soc. 1996, 118(22): 5312-5313
    [1] Scott R L. The Anomalous behavior of fluorocarbon solutions[J]. J Phys Chem. 1958, 62(2): 136-145
    [2] Lo Nostro P. Phase separation properties of fluorocarbons, hydrocarbons and their copolymers[J]. Adv Colloid Interface Sci. 1995, 56(1): 245-287
    [1] 钱长涛,杜灿屏.稀土金属有机化学.第一版.北京:化学工业出版社,2004
    [2] Wilkinson G, Birmingham J M. Cyclopentadienyl compounds of Sc, Y, La, Ce and some lanthanide elements[J]. J Am Chem Soc. 1954, 76(23): 6210-6218
    [3] Kagan H B. Frontiers in Lanthanide Chemistry. Chem Rev. 2002, 102(6): 1805-2476
    [4] Lappert M F, Wvans W J, Mingos D M P. Advanced in the Organometallics Chemistry of the Group 3 and Lanthanoid Elements[J]. J Organometallic Chem. 2002: 647
    [5] Imamoto T. Lantnanides in Organic Synthesis. 1st, London: Academic Press, 1994
    [6] Kobayashi S. Lanthanides: Chemistry and Use in Organic Synthesis. 1st, Berlin: Springer, 1999
    [8] Li C J, Chan T H. Organic Reactions in Aqueous Media. 1st, New York: John Wiley & Sons, 1997
    [9] Kobayashi S, Sugiura M, Kitagawa H, William W L L. Rare-earth metal triflates in organic synthesis[J]. Chem Rev. 2002, 102 (6): 2227-2302
    [10] Hananmoto T, Sugimoto Y, Yong Z J, Inanaga J. Scandium(Ⅲ) perfluoro-octanesulfonate [Sc(OPf)_3]: A novel catalyst for the hetero Diels-Alder reaction of aldehydes with non-activated dienes[J]. Bull Chem Soc Jpn. 1997, 70(8): 1421-1426
    [11] Mikami K, Niikami Y, Matsuzawa H, Matsumoto Y, Nishikido J, Yamamoto F, Nakajima H. Lanthanide catalysts with tris(perfluoroctanesulfonyl)methide and bis(perfluooctanesulfonyl) amide ponytails: recyclable Lewis acid catalysts in fluorous phases in fluorous phases or as solids[J]. Tetrahedron. 2002, 58(20): 4015-4021
    [12] Mikami K, Niikami Y, Matsumoto Y, Nishikido J, Yamamoto F, Nakajima H. Lewis acid catalysis by lanthanide complexes with tris(perfluoroctanesulfonyl)methide ponytails in fluorous recyclable phase[J]. Tetrahedron Lett. 2001, 42(2): 289-292.
    [13] Kobayashi S, Hachiya I, Takahori T, Araki M, Ishitani M. Lanthanide trifluoromethanesulfo-nates as reusable catalysts: Michael and Diels-Alder reactions[J]. Tetrahedron Lett. 1992, 33(36): 6815-6818
    [14] Kobayashi S, Ishitani H, Hachiya I, Araki M. Asymmetric Diels-Alder reactions catalyzed by chiral lanthanide (III) trifluoromethanesulfonates unique structure of the triflate and steroselective synthesis of both enantiomers using a single chiral source and a choice of achiral ligands[J]. Tetrahedron. 1994, 35(50): 11623-11636
    
    [15] Manabe K, Oyamada H, Sugita K, Kobayashi S. Use of acylhydrazones as stable surrogates of unstable imines in allylation, Mannich-type and cyanide addition reactions[J]. J Org Chem. 1999, 64(21): 8054-805
    [16] Nakano H, Kitazume T. Friedel-Crafts reaction fluorous fluids[J]. Green Chem. 1999,(4): 179-181
    [17] Kobayashi S, Kawada A, Mitamura S, Matsuo J, Suchiya T. Friedel-Crafts reactions catalyzed by rare earth metal trifluoromethanesulfonates[J]. Bull Chem Soc Jpn. 2000, 73(10): 2325-2333
    
    [19] Matsuo J, Tsuchiya T, Odashima K, Kobayashi S. Lewis acid catalysis in super critical carbon dioxide. Use of Scandium tris(heptadecafluoroctanesulfonate) as a Lewis acid catalyst in Diels-Alder and Aza Diels-Alder reactions[J]. Chem Lett. 2000,(1): 178-179.
    [20] Kobayashi S, Wakabayashi S, Nagayama H, Oyamada H. Lewis acid catalysis in micellar systems. Sc(OTf)_3-catalyzed aqueous aldol reactions of silyl enol ethers with aldehydes in the presence of a surfactant[J]. Tetrahedron Lett. 1997, 38(26): 4559-4562
    [21] Shi M, Cui S C. Friedel-Crafts reaction catalyzed by perfluorinated rare earth metals[J]. J Fluorine Chem. 2002,116(1): 143-147.
    [22] Shi M, Cui S C. Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase[J]. Chem Commun. 2002, (9): 994-995
    [23] Shi M, Cui S C. Perfluorinated rare earth metals catalyzed nitration of aromatic compounds[J]. J Fluorine Chem. 2002,113(2): 207-209.
    [1] Ingold C K. Structure and Mechanism in Organic Chemistry[M]. 2nd ed., New York: Cornell University Press. 1969
    [2] Olah G A, Kuhn S J. in Friedel-Crafts and Related Reactions, Ed. Olah G A, New York: Wiley-Interscience, 1964
    [3] Olah G A, Malhotra R, Narang S C. Nitration: Methods and Mechanism. Ed. Feuer H, New York: VCH Pubishers, 1989
    [4] Hoggett J G, Moodie R B, Penton J R, Schofield K. Nitration and Aromatic Reactivity. 1st Ed. London: Cambridge University Press, 1971
    [5] Schofield K. Aromatic Nitration. London: Cambridge University Press, 1980
    [6] Malysheva L V, Paukshtis E A, lone K G. Nitration of aromatics by nitrogen oxides on zeolite catalysts: comparison of reaction in the gas phase and solutions[J]. Catal Rev-Sci Eng. 1995, 37(2): 179-226
    [7] Waller F J, Barrett A G M, Braddock D C, Ramprased D. Lanthanide(Ⅲ) triflates as recyclable catalysts for atom economic aromatic nitration[J]. Chem Commun. 1997, (6): 613-614
    [8] Barrett A G M, Braddock D C, Ducray R, McKinnell R M, Waller F J. Lanthanide triflate and triflide catalyzed atom economic nitration offfluoroarenes[J]. Synlett. 2000, (1): 57-58
    [9] Waller F J, Barrett A G M, Braddock D C, McKinnell R M, Ramprasad D. Lanthanide(Ⅲ) and group Ⅳ metal triflate catalysed electrophilicnitration: 'nitrate capture' and the role of the metal centre[J]. J Chem Soc, Perkin Trans. Ⅰ, 1999, 121(8): 867-871
    [10] Waller F J, Barrett A G M, Braddock D C, McKinnell R M, White A J P, Williams D J, Ducray R. Tris(trifluoromethanesulfonyl)methide ("triflide") anion: convenient preparation, X-ray crystal structures, and exceptional catalytic activity as a counterion with Ytterbium(Ⅲ) and Scandium(Ⅲ)[J]. J Org Chem. 1999, 64(8): 2910-2913
    [11] 吕春绪.硝化理论.1st,南京:江苏科学技术出版社,1993
    [12] Smythe G A, Matanovic G, Yi D H, Duncan M W. Trifluoroacetic anhydride-catalyzed nitration of toluene as an approach to the specific analysis of nitrate by gas chromatography-mass spectrometry[J]. Nitric Oxide. 1999, 3(1): 67-74
    [13] Botvat A, Mothe A, Poppl L. Nitration of polyethersulfone by ammonium nitrate and trifluoroacetic anhydride[J]. Polymer. 1999, 40(17): 4965-4970
    [14] Wang H M, Hasegawa K, Kagaya S. The nitration of pyrene adsorbed on silica particles by nitrogen dioxide[J]. Chemosphere. 2000, 41(9): 1479-1484
    [15] Mellor J M, Mittoo S, Parkes R, Millar R W. Improved Nitrations Using Metal Nitrate-Sulfuric Acid Systems[J]. Tetrahedron. 2000, 56(40): 8019-8024
    [16] Campos P J, Garcia B, Rodriguez M A. One-pot selective synthesis of β-nitro-styrenes from styrenes, promoted by Cu(Ⅱ)[J]. Tetrahedron Lett. 2000, 41(6): 979-982
    [17] Nonoyama N, Iwaya M, Suzuki H. Mechanistic duality of the side-chain substitution in electrophilic aromatic nitration. Unexpected large difference in deuterium isotope effect k_H/k_D between the side-chain nitration and nitrooxylation of deuterated p-xylenes[J]. Tetrahedron Lett. 2000, 41(2): 229-233
    [18] Pankaratov A N. Electrophilic aromatic substitution regioselectivity for benzene derivatives in terms of cationic localization energies from semiempirical quantum chemical computations[J]. J Mole Structure: THEOCHEM. 2000, 507(1-3): 239-244
    [19] Lin J K, Kang J H, Liu G Y, Chu Y R, Lin-Shiau S. Nitration and hydoxylation of aromatic amino acid and guanine by the air pollutant peroxyacetyl nitrate[J]. Chemico-Biological Interactions. 2000, 127(3): 219-236
    [20] Samajdar S, Becker F F, Banik B K. Surface-mediated highly efficient regioselective nitration of aromatic compounds by bismuth nitrate[J]. Tetrahedron Lett.. 2000, 41(42): 8017-8020
    [21] Bak R R, Smallridge A J. A fast and mild method for the nitration of aromatic rings[J]. Tetrahedron Lett. 2001, 42(38): 6767-6769
    [22] Budde C L, Beyer A, Munir T Z, Dordick J S, Khmelnitsky Y L. Enzymatic nitration of phenols[J]. J Mole Catal. B: Enzymatic. 2001, 15(1-3): 55-64
    [23] Laali K K, Gettwert V J. Electrophilic nitration of aromatics in ionid liquid solvents[J]. J Org Chem. 2001, 66(1): 35-40
    [24] Currie F, Holmberg K, Westman G. Regioselective nitration of phenols and anisols in microemulsion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001, 182(1-3): 321-327
    [25] Shi M, Cui S C. Perfluorinated rare earth metals catalyzed nitration of aromatic compounds[J]. 2002, 113(2): 207-209
    [26] Asghedom H, Lalonde R T, Ramdayal F. Structural requirements for ipso-nitration with cerium(Ⅳ) ammonium nitrate (CAN)[J]. Tetrahedron Lett. 2002, 43(22): 3989-3991
    [27] Escolano C, Vallverdu L, Jones K. Reaction of indolin-2-ones with cerium(Ⅳ) ammonium nitrate[J]. Tetrahedron. 2002, 58(47): 9541-9545
    [28] Nishiwaki Y, Sakaguchi S, Ishii Y. An efficient nitration of light alkanes and the alkyl side-chain of aromatic compounds with nitrogen dioxide and nitric acid catalyzed by N-hydroxyphthalimide[J]. J Org Chem. 2002, 67(16): 5663-5668
    [29] D'Angelo F A, Brunet L, Cognet P, Cabassud M. Modelling and constraint optimisation of an aromatic nitration in liquid-liquid medium[J]. Chem Eng J. 2003, 91(1): 75-84
    [30] Esteves P M, de M-Carneiro J W, Cardoso S P, Barbosa A G H, Laali K K, Rasul G. Prakash G K S, Olah G A. Unified mechanistic concept of electrophilic aromatic nitration: Convergence of computational results and experimental data[J]. J Am Chem Soc. 2003, 125(16): 4836-4849
    [31] Gwaltnev S R, Rosokha S V, Head-Gordon M, Kochi J K. Charge-transfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab initio) molecular-orbital and Marcus-Hush theories with experiments[J]. J Am Chem Soc. 2003, 125(11): 3273-3283
    [32] Shackelford S A, Anderson M B, Christie L C, Goetzeo T, Guzman M C, Hananel M A, Kornreich W D, Li H, Pathak V P, Rabinovich A K, Rajapakse, R J, Truesdale L K, Tsank S M, Vazir H N. Electrophilic Tetraalkylammonium Nitrate Nitration. Ⅱ. Improved anhydrous aromatic and heteroaromatic mononitration with tetramethylammonium nitrate and triflic anhydride, including selected microwave examples. [J] J Org Chem. 2003, 68(2): 267-275
    [33] Parac-Vogt T N, Deleersnyder K, Binnemans K. Lanthanide(Ⅲ) complexes of aromatic sulfonic acids as catalysts for the nitration of toluene[J]. J Alloys and Compounds. 2004, 374(1-2): 46-49
    [34] Ramana M M V, Malik S S, Parihar J A. Guanidinium nitrate: a novel reagent for aryl nitrations[J]. Tetrahedron Lett.. 2004, 45(47): 8681-8683
    [35] Parac-Vogt T N, Binnemans K. Lanthanide(Ⅲ) nosylates as new nitration catalysts[J]. Tetrahedron Lett.. 2004, 45(15): 3137-3139
    [36] Vione D, Maurino V, Minero C, Pelizzetti E. Phenol nitration upon oxidation of nitrite by Mn(Ⅲ, Ⅳ) (hydr)oxides[J]. Chemosphere. 2004, 55(7): 941-949
    [37] Kamal A, Kumar B A, Arifuddin M, Patrick M. An efficient and facile nitration of phenols with nitric acid/zinc chloride under ultrasonic conditions[J]. Ultrasonics Sonochemistry. 2004, 11(6): 455-457
    [38] Vione D, Maurino V, Minero C, Lucchiari M, Pelizzetti E. Nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution[J]. Chemosphere. 2004, 56(11): 1049-1059
    [39] Olmos A, Maaaaez S, Giner R M, Recio M C, Raaos J. Isoprenylhydroquinone glucoside: a new non-antioxidant inhibitor of peroxynitrite-mediated tyrosine nitration[J]. Nitric Oxide. 2005, 12(1): 54-60
    [40] Kantam M L, Choudary B M, Kumar N S, Ramprasad K V. Beta zeolite: an efficient and eoo-friendly catalyst for the nitration of o-xylene with high regio-selectivity in liquid phase[J]. J Mole Catal. A: Chemical. 2005, 229(1-2): 67-70
    [41] Zaraisky A P, Kachurin O I, Velichko L I, m Tikhonova I A, Furin G G, Shur V B. Cyclic trimeric perfluoro-o-phenylenemercury: a highly efficient phase transfer catalyst for nitration of aromatic substrates with dilute nitric acid[J]. J Mole Catal. A: Chemical. 2005, 231(1-2): 103-111
    [42] Bruckdorfer R. The basics about nitric oxide[J]. Mole. Aspects of Medicine. 2005, 26(1-2): 3-31
    [43] Schofield K. Aromatic nitration[M]. Cambridge: CambridgeUniversity Press, 1980
    [44] 彭新华,吕春绪.酸性皂土催化剂作用下硝酸硝化卤苯的区域选择性[J].火炸药学报,2002,25(3):33-34
    [45] Malysheva L V, Paukshtis E A, lone K G. Nitration of aromatics by nitrogen oxides on zeolite catalysts: comparison of reaction in the gas phase and solutions[J]. Catal. Rev. Sci. Eng. 1995, 37(2): 179-226
    [46] Marziano N C, Ronchin L, Ronchin S, Ferrari M. Raman and kinetic evidence of NO_2~+ ion in solid acid catalysts[J]. Catal Commun. 2000, 1 (1-4): 25-31
    [47] 袁余斌,聂进,王烁今,张正波.全氟烷基磺酰亚胺盐催化芳香化合物硝化反应研究[J].有机化学.2005,25(4):394-398
    [48] Gigante B, Prazeres A O, Marcelo-Curto M J, Cornelis A, Laszlo P. Mild and selective nitration by claycop[J]. J Org Chem. 1995, 60(11): 3445-3447
    [49] Firouzabadi H, Iranpoor N, Zolfigol M A. Dinitrogen tetroxide complexes of iron and copper nitrates as new reagents for selective mono-and dinitration of phenolic compounds[J]. Synth Commun. 1997, 27(19): 3301-3311
    [50] Lancaster N L, Moodie R B, Sandall J P B. The efficacy of Claycop in the dinitration of toluene[J]. J Chem Soc., Perkin Trans. Ⅱ, 1997, (5): 847-848.
    [51] Villanti A, Ravetta G. A continuous process and catalysts for the dinitration of aromatic substrates[P]. CA Patent 2, 221, 811, 1998.
    [52] Villanti A, Ravetta G. Continuous process and catalysts for the dinitration of alkyl-substituted anilines and phenols[P]. EP Patent 847, 984, 1998.
    [53] Iranpoor N, Firouzabadi H, Zolfigol M. A. Efficient and selective mono and dinitration of phenols with Cr(NO_3)_3. 2N_2O_4 as a new nitrating agent[J]. Synth Commun. 1998, 28(15): 2773-2781
    [54] Dwyer C L, Holzapfel C W. The nitration of electron-rich aromatics[J]. Tetrahedron. 1998, 54(43): 7843-7848
    [55] Waller F J, Barrett A G M, Braddock D C, Ramprasad D. Hafnium(Ⅳ) and Zirconium(Ⅳ) triflates as superior recyclable catalysts for the atom economic nitration of o-nitrotoluene[J]. Tetrahedron Lett. 1998, 39(12) 1641-1642
    [56] Salzbrunn S, Simon J, Prakash G K S, Petasis N A, Olah G A. Regioselective nitration of arylboronic acids[J]. Synlett. 2000, (10): 1485-1487
    [57] Zolfigol M A, Ghaemi E, Madrakian E. A convenient method for selective mono or dinitration of phenol under mild conditions[J]. Synth Commun. 2000, 30(10): 1689-1694
    [58] Peng X H, Suzuki H. Regioselective double Kyodai nitration of toluene and chlorobenzene over zeolites. High preference for the 2, 4-dinitro isomer at the second nitration stage[J]. Org Lett. 2001, 3(22): 3431-3434
    [59] Claridge R P, Lancaster N L, Millar R W, Moodie R B, Sandall J P B. Faujasite catalysis of aromatic nitrations with dinitrogen pentoxide. The effect of aluminium content on catalytic activity and regioselectivity. The nitration of pyrazole[J]. J Chem Sot., Perkin Trans. Ⅱ, 2001, (1): 197-200
    [60] Veretennikov E A, Lebedev B A, Tselinskii I V. Kinetics and mechanism of p-nitrochlorobenzene nitration with nitric acid[J]. Russ J Org Chem. 2001, 37(10): 1451-1454
    [61] Zolfigol M A, Madrakian E, Ghaemi E. Trichloroisocyanuric acid/NaNO_2/wet SiO_2 as an efficient system for the selective dinitration of phenols under solvent-free conditions[J]. Synlett. 2003, (14):2222-2224
    
    [62] Iranpoor N, Firouzabadi H, Heydari R, Shiri M. Nitration of aromatic compounds by Zn(NO_3)_2.2N_2O_4 and its charcoal-supported system[J]. Synth Commun. 2005, 35(2):263-270
    [63] Crampton M R; Cropper, E. L.; Gibbons, L. M.; Millar, R. W. The nitration of arenes in perfluorocarbon solvents[J]. Green Chem. 2002, (4): 275-278
    [64] Shi M, Cui S C. Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase. Chem Commun. 2002, (9):994-995
    [65] Horvath I T, Rabai J. Facile catalyst separation without water:Fluorous biphase hydyoformylation of olefins[J]. Science. 1994,266(1):72-75
    [66] Pozzi G, Montanari F, Quici S. Tetraarylporphyrin-catalysed epoxidation of alkens by dioxygen and2-methylpropanal under fluorous biphasic conditions[J]. Chem. Commun. 1997,(1):69-70
    [67] Otera J, Orita A. A Practical and Green Chemical Process: Fluoroalkyl distannoxane-Catalyzed Biphasic Transesterification [J]. Angew Chem Int Ed. 2001, 40(19): 3670-3674
    [68] Coon C L, Blucher W G, Hill M E. Aromatic nitration with nitric acid and trifluoromethanesulfonic acid[J]. J Org Chem. 1973, 38(25):4243-4248
    [1] Beaz G. Esterification in Comprehensive Organic Synthesis. Eds.: Trost B M, Flemig, I. Oxford: Pergamon, 1991
    
    [2] Larock R C. Comprehensive Organic Transformations. New York: VCH, 1989
    
    [3] Sharma A, Chattopadhyay S. Enantio-reversal in Candida rugosa lipase-catalyzed esterification of 3-hydroxybutyric acid[J]. J Mole Catal B: Enzymatic. 2000, 10(5): 531-534
    [4] Pipus G, Plazl I, Koloini T. Esterification of benzoic acid in microwave tubular flow reactor[J]. Chem Engineering J. 2000, 76(3): 239-245
    [5] Choudhary V R, Mantri K, Jana S K. Selective esterification of tert-butanol by acetic acid anhydride over clay supported InCl_3, GaCl_3, FeCl_3 and InCl_2 catalysts[J]. Catal Commun. 2001, 2(2): 57-61
    [6] Ramalinga K, Vijayalakshmi P, Kaimal T N B. A mild and efficient method for esterification and transesterification catalyzed by iodine[J]. Tetrahedron Lett. 2002, 43(5): 879-882
    [7] Liu Q L, Chen H F. Modeling of esterification of acetic acid with n-butanol in the presence of Zr(SO_4)_2·4H_2O coupled pervaporation[J]. J Membrane Sci. 2002, 196(2): 171-178
    [8] Orliac O, Silvestre F. Microwave esterification of sunflower proteins in solvent-free conditions[J]. Bioresource Technology. 2003,87(1): 63-68
    [9] Kirumakki S R, Nagaraju N, Chary K V R, Narayanan S. Kinetics of esterification of aromatic carboxylic acids over zeolites Hβ and HZSM5 using dimethyl carbonate[J]. Appl Catal. A: General. 2003, 248(1-2): 161-167
    
    [10] Gacem B, Jenner G. Esterification of sterically hindered acids and alcohols in fluorous media[J]. Tetrahedron Lett. 2003,44(7): 1391-1393
    
    [11] Ramu S, Lingaiah N, Prabhavathi D B L A, Prasad R B N, Suryanarayana I. Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: effect of method of preparation of the catalyst on its structural stability and reactivity[J]. Appl Catal. A: General. 2004, 276(1-2): 163-168
    
    [12] Park D W, Haam S, Ahn I S, Lee T G, Kim H S, Kim W S. Enzymatic esterification of β-methylglucoside with acrylic/methacrylic acid in organic solvents[J]. J Biotech. 2004,107(2): 151-160
    [13] Kirumakki S R, Nagaraju N, Narayanan S. A comparative esterification of benzyl alcohol with acetic acid over zeolites Hβ, HY and HZSM5[J]. J Mole Catal. A: Chemical. 2004, 273(1-2): 1-9
    [14] Yadav G D, Devi K M. Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling[J]. Chem Eng Sci.. 2004, 59(2): 373-383
    [15] Gui J Z, Cong X H, Liu D. Zhang X T, Hu Z D, Sun Z L. Novel Br(?)nsted acidic ionic liquid as efficient and reusable catalyst system for esterification[J]. Catal Commun. 2004, 5(9): 473-477
    [16] Kuttan A, Nowshudin S, Rao M N A. Ceric ammonium nitrate (CAN) mediated esterification of N-Boc amino acids allows either retention or removal of the N-Boc group[J]. Tetrahedron Lett.. 2004, 45(12): 2663-2665
    [17] Forbes D C, Weaver K J. Br(?)nsted acidic ionic liquids: the dependence on water of the Fischer esterification of acetic acid and ethanol[J]. J Mole Catal. A: Chemical. 2004,214(1): 129-132
    [18] Han Y, Chu Y. The catalytic properties and mechanism of cyclohexane /DBSA/ water microemulsion system for esterification[J]. J Mole Catal. A: Chemical. 2005, 237(1-2): 232-237
    
    [19] Sejidov F T, Mansoori Y, Goodarazi N. Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition[J]. J Mole Catal. A: Chemical. 2005,223(1-2): 186-190
    [20] Kiyooka S, Ueno M, Ishii E. Indium-catalyzed oxidative esterification reaction of aliphatic aldehydes and olefinic alcohols with precoordination of the double bond of alcohols to iridium[J]. Tetrahedron Lett. 2005, 46(27): 4639-4642
    [21] Sepaalveda J H, Yori J C, Vera C R. Repeated use of supported H_3PW_(12)O_(40) catalysts in the liquid phase esterification of acetic acid with butanol[J]. J Mole Catal. A: General. 2005, 288(1-2): 18-24
    [22] Huang W, Xia Y M, Gao H, Fang Y J, Wang Y, Fang Y. Enzymatic esterification between n-alcohol homologs and n-caprylic acid in non-aqueous medium under microwave irradiation[J]. J. Mole. Catal. b: Enzymatic. 2005, 35(4-6): 113-116
    [23] Torregiani E, Seu G, Minassi A, Appendino G. Cerium(III) chloride-promoted chemoselective esterification of phenolic alcohols[J]. Tetrahedron Lett. 2005, 46(13): 2193-2196
    [24] Palani A, Pandurangan A. Esterification of acetic acid over mesoporous Al-MCM-41 molecular sieves[J]. J Mole Catal. A: Chemical. 2005, 226(1): 129-134
    [25] Toukoniitty B, Mikkola J P, Eraanen K, Salmi T, Murzin D Y. Esteritication of propionic acid under microwave irradiation over an ion-exchange resin[J]. Catal. Today. 2005, 100(3-4): 431-435
    [26] Kobayashi S. Rear rare earth metal trifluoromethylsulfonates as water-tolerant Lewis acid catalysts in organic synthesis[J]. Synlett. 1994, 9: 689-690
    [27] Jin N, Kobayashi H, Sonoda T. Metal trifluoromethylsulfonates as water-tolerant Lewis acid catalyst in organic synthesis[J]. Chem Lett. 1995, (2): 307-308
    [28] Zhao H, Pendri A, Greennwald R B. General procedure for acylation of 3~0 alcohols: Scandium triflate/DMAP reagent[J]. J Org Chem. 1998, 63(21): 7559-7562
    [29] Greennwald R B, Pendri A, Zhao H. Stereoselective acylation of 20-(S)-campto-thecin with amino acid derivatives using Scandium trifalte/DMAP[J]. Tetrahedron: Asymmetry. 1998, 9(6): 915-918
    [30] Yadav G D, Mehta P H. Heterogenous catalysts in esterification reactions: Preparation of phenethyl acetate and cyclohexyl acetate by using a variety of solid acid catalysts[J]. Ind Eng Chem Res. 1994, 33(19): 2198-2208
    [31] Mark A H, William E F, Sun Q. High surface area Nation resin/silica nano composites: A new calss of solid acid catalyst[J]. J Am Chem Soc, 1996, 118(33): 7708--7715
    [32] Beers A E W, Spruijt R A, Nijhuis T A, Fkapteijn, Moulin J A. Esterification in a structured catalytic reactor with counter-water removal[J]. Catalysis today, 2001, 66(2-4): 175-181
    [33] Okuyama K, Chen X, Takata K, Odawara D, Suzuki T, Nakata S I, Okuhara T. Aciplex water-tolerant catalysis of a silica composite of a sulfonic acid resin[J]. Apllied Catalysts A: General, 2000, 190(1-2): 253-260
    [34] Hao X H, Yoshida A, Nishikido J. Recyclable and selective Lewis acid catalysts for transesterification and direct esterification in a fluorous biphase system: Tin(Ⅳ) and Hafnium(Ⅳ) bis(perfluorooctanesulfonyl)amide complexes[J]. Tetrahedron Lett. 2004, 45(4): 781-785
    [35] 贺明谦,傅相锴.超酸POSA催化酯化反应动力学及线性自由能关系[J].物理化学学报.1990,6(1):739-743
    [36] 李桂龙,赵刚.3-氧杂多氟戊磺酸催化羧酸的酯化反应及其铜(Ⅱ)盐催化芳烃的 Friedel-Crafts酰基化反应[J],有机化学.2003,23(4):375-379
    [1] Olah G A. Friedel-Crafts Chemistry. 1st, New York: Wiley-Interscience, 1973
    [2] Heaney H. Comprehensive Organic Synthesis. Trost Ed, Oxford: B. M. Pergamon Press, 1991
    [3] Olah G A, Krishnamurti R, Prakash G K S. Comprehensive Organic Synthesis. Trost Ed, Oxford: B. M. Pergamon Press, 1991
    [4] 武锐,林强,丁贻祥.负载FeCl3的皂土催化合成二芳基酮[J].有机化学,2000,20(5):802-804
    [5] Matsuo J, Tsuchiya T, Odashima K Kobayashi S. Lewis acid catalysis in supercritical carbon dioxide. Use of Scandium tris(heptadecafluorooctanesulfonate) as a Lewis acid catalyst in Diels-Alder and Aza Diels-Alder reactions[J]. Chem Lett. 2000, (2): 178-179
    [6] Singh R P, Kamble R M, Chandra K L, Saravanan P, Singh V K. An effcient method for Aromatic Friedel-Crafts alkylation, acylation, benzoylation, and sulfonylation reactions[J]. Tetrahedron. 2001, 57(1): 241-247
    [7] Kaur J, Grifin K, Harrison B, Kozhevnikov I V. Friedel-Crafts acylation catalysed by heteropoly acids[J]. J Catal. 2002, 208(2): 448-455
    [8] Firouzabadi H, Iranpoor N, Nowrouzi F. Solvent-free Friedel-Crafts acylation of aromatic compounds with carboxylic acids in the presence of trifluoroacetic anhydride and aluminum dodecatungstophosphate[J]. Tetrahedron Lett. 2003, 44(28): 5343-5345
    [9] Anderson K W, Tepe J J. Trifluoromethanesulfonic acid catalyzed Friedel-Crafts acylation of aromatics with b-lactams[J]. Tetrahedron Lett. 2003, 44(46): 8475-8481
    [10] Bernardo P H, Chai C L L. Friedel-Crafts Acylation and Metalation Strategies in the Synthesis of Calothrixins A and B[J]. J Org Chem. 2003, 68(23): 8906-8909
    [11] 李桂龙,赵刚.3-氧杂多氟戊磺酸催化羧酸的酯化反应及其铜(Ⅱ)盐催化芳烃的Friedel-Crafts酰基化反应[J].有机化学,2003,23(4):375-379
    [12] Gmouh S, Yang H, Vaultier M. Activation of Bismuth(Ⅲ) derivatives in ionic liquids: Novel and recyclable catalytic systems for Friedel-Crafts acylation of aromatic compounds[J]. Org Lett. 2003, 5(13): 2219-2222
    [13] Fillion E, Fishlock D. Convenient access to polysubstituted 1-Indanones by Sc(OTf)_3-catalyzed intramolecular Friedel-Crafts acylation of benzyl Meldrum's acid derivatives[J]. Org Lett. 2003, 5(24): 4653-4656
    [14] Re'pichet S, Roux C L, Roques N, Dubac J. BiCl_3-catalyzed Friedel-Crafts acylation reactions: bismuth(Ⅲ) oxychloride as a water insensitive and recyclable procatalyst[J]. Tetrahedron Lett. 2003, 44(10): 2037-2040
    [15] Matsushita Y, Sugdmoto K, Matsui T. The Friedel-Crafts acylation of aromatic compounds with carboxylic acids by the combined use of perfluoroalkanoic anhydride and bismuth or scandium triflate[J]. Tetrahedron Lett. 2004, 45(24): 4723-4727
    [16] Firouzabadi H, Iranpoor N, Nowrouzi F. Aluminum dodecatungstophosphate (AlPW_(12)O_(40)) as a non-hygroscopic Lewis acid catalyst for the efficient Friedel-Crafts acylation of aromatic compounds under solvent-less conditions[J]. Tetrahedron. 2004, 60(48): 10843-10850
    [17] Sarvari M H, Sharghi H. Reactions on a Solid Surface. A simple, economical and efficient Friedel-Crafts acylation reaction over Zinc oxide (ZnO) as a new catalyst[J]. J Org Chem. 2004, 69(9): 6953-6956
    [18] Fillion E, Fishlock D, Wilsily A, Goll J M. Meldrum's acids as acylating agents in the catalytic intramolecular Friedel-Crafts reaction[J]. J Org Chem. 2005, 70(4): 1316-1327
    [19] Kantam M L, Ranganath K V S, Sateesh M, Kumar K B S, Choudary B M. Friedel-Crafts acylation of aromatics and heteroaromatics by beta zeolite[J]. J Mol Catal. A: Chemical. 2005, 225(1): 15-20
    [20] Kawada A, Mitamura S, Kobayashi S. Lanthanide trifluoromethane-sulfonates as reusable catalyst for Friedel-Crafts acylation[J]. J Chem Soc, Chem Commun. 1993, (14): 1157-1158
    [21] Kawada A, Mitamura S, Kobayashi S. Scandium Trifluoromethanesulfonate: a novel catalyst for Friedel-Crafts acylation[J]. Synlett.1994, (7): 545-547
    [22] Mikami K, Kotera O, Motoyama Y. Metal bis(trifluoromethylsulfonyl)amides as highly efficient Lewis acid catalysts for acylation reactions[J]. Synlett. 1996, (2): 171-173
    [23] Hachiya I, Moriwaki M, Kobayashi S. Catalytic Friedel-Crafts acylation reactions using Hafnium triflate as a catalyst in Lithium perchlorate-nitromethane[J]. Tetrahedron Lett. 1995, 36(3): 409-412
    
    [24] Kawada A, Mitamura S, Kobayashi S. Ln(OTf)_3-LiClO_4 as reusable catalyst system for Friedel-Crafts acylation[J]. J Chem Soc., Chem Commun. 1996, (1): 183-185
    [25] Izumi J, Mukaiyama T. The catalytic Friedel-Crafts acylation reaction of aromatic compound with casboxylic anhydrides using combined catalyst system of Titanium(IV) Chloride tris(trifluoromethanesulfonate) and trifluoromethanesulfonic acid[J]. Chem Lett. 1996, (9): 739-740
    [26] Desmurs J R, Labrouiilere M, Le Rous C. Surprising catalytic activity of bismuth( II) triflate in the Friedel-Crafts acylation reaction[J]. Tetrahedron Lett. 1997, 38(51): 8871-8874
    [27] Kobayashi S, Iwamoto S. Catalytic Friedel-Crafts acylation of benzene, chlorobenzene, and fluobenzene using a novel catalyst system, Hafnium Triflate and Trifluoromethanesulfonic acid[J]. Tetrahedron Lett. 1998, 39(27): 4697-4700
    [28] Shi M, Cui S C. Friedel-Crafts reaction catalyzed by perfluorinated rare earth metals[J]. J Fluorine Chem. 2002, 116(1): 143-147
    [29] Mikami K, Niikami Y, Matsuzawa H, Matsumoto Y, Nishikido J, Yamamoto F, Nakajima H. Lanthanide catalysts with tris(perfluoroctanesulfonyl)methide and bis(perfluooctanesulfonyl) amide ponytails: recyclable Lewis acid catalysts in fluorous phases in fluorous phases or as solids[J]. Tetrahedron. 2002, 58(20): 4015-4021
    [30] Mikami K, Niikami Y, Matsumoto Y, Nishikido J, Yamamoto F, Nakajima H. Lewis acid catalysis by lanthanide complexes with tris(perfluoroctanesulfonyl)methide ponytails in fluorous recyclable phase[J]. Tetrahedron Lett. 2001, 42(2): 289-292
    [31] March J. Advanced Organic Chemistry, 4~(th) ed. New York: Wiley, 1992
    [32] Olah G A. Friedel-Crafts and Related Reaction, Vol. III, New York: Interscience, 1964
    [1] Olah G A. Friedel-Crafts and Related Reaction, Vol. Ⅲ, New York: Interscience, 1964
    [2] Roberts R M, Khalaf A A. Friedel-Crafts Alkylation Chemistry. A Century of Discovery, New York: Dekker, 1984
    [3] Olah G A, Krishnamurti R, Prakash G K S. In Friedel-Crafts Alkylation in Comprehensive Organic Synthesis. Eds.: Trost B M, Oxford: Pergamon Press, 1991
    [4] March J. Advance Organic Chemistry, 4th ed., New York: Wiley-Interscience, 1992
    [5] Hsing J L, Duong D P T. Intramolecular Friedel-Crafts alkylation promoted by the cross conjugated β-keto ester system. An efficient approach tohighly functionalized hydrophenanthrenes and hydrochrysenes[J]. Tetrahedron Lett. 1999, 40(20): 3827-3830
    [6] Miller J M, Goodchild M, Lakshmi L J, Wails D, Hartman J S. Friedel-Crafts catalysis using supported reagents. Synthesis, characterization, and catalytic application of ZnCl_2 supported on sol-gel-derived alumina[J]. Materials Lett. 2000, 44(3-4): 164-169
    [7] Sebti S, Tahir R, Nazih R, Boulaajaj S. Comparison of different Lewis acid supported on hydroxyapatite as new catalysts of Friedel-Crafts alkylation[J]. Appl Catal A: General. 2001, 218(1-2): 25-30
    [8] Singh R P, Kamble R M, Chandra K L, Saravanan P, Singh V K. An effcient method for Aromatic Friedel-Crafts alkylation, acylation, benzoylation, and sulfonylation reactions[J] Tetrahedron. 2001, 57(1): 241-247
    [9] Shorthill B J. Glass T E. Naphthalene-based calixarenes: unusual regiochemistry of a Friedel-Crafts alkylation[J]. Org Lett. 2001, 3(4): 577-579
    [10] Paras N A, Macmillan D W C. New strategies in organic catalysis: The First enantioselective organocatalytic Friedel-Crafts alkylation[J]. J Am Chem Soc. 2001, 123(18): 4370-4371
    [11] Okumura K, Nishigaki K, Niwa M. Prominent catalytic activity of Ga-containing MCM-41 in the Friedel-Crafts alkylation[J]. Microporous and Mesoporous Materials. 2001, 44-45(3): 509-516
    [12] Yaday G D, Sengupta S. Friedel-Crafts alkylation of diphenyl oxide with benzyl chloride over sulphated zirconia[J]. Org Process Res Dev. 2002, 6(3): 256-262
    [13] Han J S, Lim W C, Yoo B R, Jin J I, Jung I N. Friedel-Crafts alkylation of polychlorobenzenes with (l,2-dichloroethyl)trichlorosilane[J]. Organometallics. 2002,21(18): 3803-3809
    [14] Choudary B M, Rao B P C, Chowdari N S, Kantam M L. Fe~(3+)-montmorillonite: A bifunctional catalyst for one pot Friedel-Crafts alkylation of arenes with alcohols[J]. Catal Commun. 2002, 3(8): 363-367
    [15] Yadav G D, Mujeebur R M S M. Efficacy of solid acids in the synthesis of butylated hydroxy anisoles by alkylation of 4-methoxyphenol with MTBE[J]. Appl Catal A: General. 2003, 253(1): 113-123
    [16] Pereira C C M, Lachter E R. Alkylation of toluene and anisole with 1-octen-3-ol over Niobium catalysts[J]. Appl Catal A: General. 2004, 266(1): 67-72
    [17] Bachari K, Millet J M M, Benzichouba B, Cherifi O, Figueras F. Benzylation of benzene by benzyl chloride over iron mesoporous molecular sieves materials[J]. J Catal. 2004, 221(1): 55-61
    [18] Uraguchi D, Sorimachi K, Terada M. Organocatalytic asymmetric aza-Friedel-Crafts alkylation of furan[J]. J Am Chem Soc. 2004,125(38): 11804-11805
    [19] Zhou C, Li X, Ge Z, Li Q, Tong D. Synthesis and acid catalysis of nanoporous silica/alumina-clay composites[J]. Catalysis today. 2004, 93-95: 607-613
    [20] Vogels R J M J, Kloprogge J T, Geus J W. Catalytic activity of synthetic saponite clays: effects of tetrahedral and octahedral composition[J]. J Catal. 2005, 231(2): 443-452
    [21] Roc B, Mulas G, Csongrudi A, Loki Katalin. SiO_2-supported dodecatungsto- phosphoric acid and Nafion-H prepared by ball-milling for catalytic application[J]. Appl Catal A: General. 2005, 282(1-2): 255-265
    [22] Palomo C, Oiarbide M, Kardak B G, Garcia J M, Lindern A. Highly enantioselective Friedel-Crafts alkylations of pyrroles and indoles with α'-hydroxy enones under Cu(II)-simple bis(oxazoline) catalysis[J]. J Am Chem Soc. 2005, 127(12): 4154-4155
    [23] Choudhury J, Podder S, Roy S. Cooperative Friedel-Crafts catalysis in hetero- bimetallic regime: alkylation of aromatics by π-activated alcohols[J]. J Am Chem Soc. 2005, 127(17): 6162-6163
    [24] Lyle M P A, Draper N D, Wilson P D. Enantioselective Friedel-Crafts alkylation reactions catalyzed by a chiral nonracemic C_2-symmetric 2,2'-bipyridyl Copper(II) complex[J]. Org Lett. 2005, 7(5): 901-904
    [25] Amandi R, Licence P, Ross S K, Aaltonen O, Poliakoff M. Friedel-Crafts alkylation of anisole in supercriticalcarbon dioxide: A comparative study of catalysts[J]. Org Process Res Dev. 2005, 9(4): 451-456
    [26] Shiina I, Suzuki M. The catalytic Friedel-Crafts alkylation reaction of aromatic compounds with benzyl or allyl silyl ethers using Cl_2Si(OTf)_2 or Hf(OTf)_4[J]. Tetrahedron Lett. 2002, 43(36): 6391-6394
    [27] Evans D A, Scheidt K A, Fandrick K R, Lam H W, Wu J. Enantioselective indole Friedel-Crafts alkylations catalyzed by bis(oxazolinyl)pyridine-Scandium(Ⅲ) triflate Complexes[J]. J Am Chem Soc. 2003, 125(36): 10780-10781
    [28] Evans D A, Fandrick K R, Song H J. Enantioselective Friedel-Crafts alkylations of α, β-unsaturated 2-acyl imidazoles catalyzed by bis(oxazolinyl)pyridine-Scandium(Ⅲ) triflate Complexes[J]. J Am Chem Soc. 2005, 127(25): 8942-8943
    [1] Alexakis A., Mangeney P. Chiral acetal0 in asymmetric synthesis[J]. Tetrahedron Asymmetry[J], 1990, 1 (8): 477-511
    [2] Sato S, Sagara K, Furuta H, Nozaki F. Kinetic studies of liquid-phase acetal formation catalyzed by Keggin-type heteropolyacids[J]. J Mole Catal. A: Chemical. 1996, 114(1-3): 209-216
    [3] Otten P A. Oskam N, van der Gen A. A Horner-Wittig Approach to S, N-Ketene Acetals: Acid-catalyzed hydrolysis of S, N-ketene acetals to (S)-thioesters[J]. Tetrahedron. 1996, 52(33): 11095-11104
    [4] Thery N, Szymoniak J, Moise C. Lewis Acid Promoted Reaction of Acetals with η~3-Crotyltitanium Reagents [J]. Tetrahedron Lett. 1999, 40(16): 3155-3158
    [5] Dussault P H, Trullinger K T, Cho-Shultz S. Chiral Silyl Ketene Acetals from Thioesters: Reaction with Acetals and Peroxyacetals to form 3-Alkoxy-and 3-Peroxyalkanoates[J]. Tetrahedron. 2000, 56(47): 9213-9220
    [6] Uchiyarna M, Satoh S, Ohta A. Asymmetric methoxyselenenylation of alkyl vinyl ethers: a new route to chiral acetals[J]. Tetrahedron Lett. 2001, 42(8): 1559-1562
    [7] Roush W R, Bennett C E, Roberts S E. Studies on the synthesis of landomycin a: Synthesis and glycosidation reactions of L-Rhodinosyl acetate derivatives[J]. J Org Chem. 2001, 66(19): 6389-6393
    [8] Leonard N M, Oswald M C, Freiberg D A, Nattier B A, Smith R C, Mohan R S. A simple and versatile method for the synthesis of acetals from aldehydes and ketones using bismuth triflate[J]. J Org Chem. 2002, 67(15): 5202-5207
    [9] Kadota I, Takamura H, Sato K, Yamamoto Y. Concise Synthesis of Cyclic Ethers via the Palladium-Catalyzed Coupling of Ketene Acetal Triflates and Organozinc Reagents. Application to the Iterative Synthesis of Polycyclic Ethers[J]. J Org Chem. 2002, 67(10): 3494-3498
    [10] Ravikumar K S, Farquhar D. Facile selective cleavage of a myo-inositol trans-isopropylidene acetal in the presence of a cis-isopropylidene acetal[J]. Tetrahedron Lett. 2002, 43(18): 1367-1368
    [11] Ellervik U. 9-Anthraldehyde acetals as protecting groups[J]. Tetrahedron Lett. 2003, 44(11): 2279-2281
    [12] Climent M J, Corma A, Velty A. Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts[J]. Appl Catal. A: General. 2004, 263(2), 155-161
    [13] Chen M S, White M Co A sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation[J]. J Am Chem Soc. 2004, 126(5): 1346-1347
    [14] Isobe H, Sato S, Tanaka T, Tokuyama H, Nakamura E. Thermal and Palladium-Catalyzed [3 + 2] Synthesis of Cyclopentadienone Acetals from Cyclopropenone Acetals and Acetylenes[J]. Org Lett. 2004, 6(20): 3569-3571
    [15] Madhusudan S K, Misra A K. Facile exchange of glycosyl S, S-acetals to their O, O-acetals and preparation of glycofuranosides from acyclic glycosyl S, S-acetals under metal-free reaction conditions in the presence of 1, 3-dibromo-5, 5-dimethylhydantoin[J]. Carbohydrate Res. 2005, 340(3): 497-502
    [16] Wiler C, Watts P, Haswell S J. Acid-catalysed synthesis and deprotection of dimethyl acetals in a miniaturised electroosmotic flow reactor[J]. Tetrahedron. 2005, 61(22): 5209-5217
    [17] Nakamra I, Mizushima Y, Yamamoto Y. Synthesis of 2, 3-Disubstituted Benzofurans by Platinum-Olefin-Catalyzed Carboalkoxylation of o-Alkynylphenyl Acetals[J]. J Am Chem Soc. 2005, 127(43): 15022-15023
    [18] Dittrich C R, Vadali R V, Bennett G N, San K Y. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate[J]. Biotechnol Prog. 2005, 21(2): 627-631
    [19] Dittrich C R, Vadali R V, Bennett G N, San K Y. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate[J]. Biotechnol Prog. 2005, 21(2): 627-631
    [16] Choi B S, Chang J H, Choi H W, Kim Y K, Lee K K, Lee K W, Lee J H, Heo T, Nam D H, Shin H. Efficient and scalable synthesis of ethyl 2, 6-Dichloro-5-fluoronicotinoyl acetate using the blaise reaction as a key step[J]. Org Process Res Dev. 2005, 9(3): 311-313
    [18] Goto Y, Masui Y, Kitaura Y, Kobayshi T, Takahashi H, Okuyama A. Practical synthesis of triethylammonium (Z)-2-[2-(Boc-amino)thiazol-4-yl]-2-(trityloxyimino) acetate, the side chain of cefmatilen[J]. Org Process Res Dev. 2005, 9(1): 57-61
    [21] Anzalone P W, Baru A R, Danielson E M, Hayes P D, Nguyen M P, Panico A F, Smith R C, Mohan R S. Bismuth compounds in organic synthesis. A one-pot synthesis of homoallyl ethers and homoallyl acetates from aldehydes catalyzed by bismuth triflate[J]. J Org Chem. 2005, 70(6): 2091-2096
    [19] Synoradzki L, Janczewski D, Wlostowski M. Optimisation of ethyl(2-phthalimi-doethoxy) acetate synthesis with the aid of DOE[J]. Org Process Res Dev. 2005, 9(1): 18-22
    [20] Fukuzawa S, Tsuchimoto T, Hotaka T, Hiyama T. Direct synthesis of chiral acetals from carbonyl compounds and chiral diols: Sequentia one-pot asymmetric silylcyanation reaction catalyzed by Scandium(Ⅲ) triflate[J]. Synlett. 1995, (10): 1077-1078.
    [21] Fuson R C, San T, Diekmann J. Condensation of benzlacetophenone with phenyl-magnesium bromide 2-benzhydryl-2-hydroxy-3, 3-diphenylpropionic acid[J]. J Org Chem. 1962, 27(4): 1221-1223
    [22] Deli J, Lorand T, Szabo D, Foldesi A. Potenially bioactive pyrimidine derivatives. 1, 2-Amino-4-aryl-8-arylidene-3, 4, 5, 6, 7, 8-hexahydroquinazoline[J]. Pharmazie. 1984, 39(8): 539-540
    [23] Mazza L, Guarna A. An improved synthesis of 1, 3-diphenyl-2-buten-1-ones (β-methylchalcones) [J]. Synthesis. 1980, (1): 41-43
    [24] Yoshida Y, Hayashi R, Sumihara H, Tanabe Y. TiCl_4/Bu_3N/(catalytic TMSOTf): efficient agent for direct aldol addition and claisen condensation[J]. Tetrahedron Lett. 1997, 38(50): 8727-8730.
    [25] Zheng M, Wang L, Shao J, Zhong Q. A facile synthesis of α, α'-bis(substituted-benzylidene) cycloalkanones catalyzed by bis(p-ethoxyphenyl)telluroxide(BMPTO) under microwave irradiation[J]. Synth Commun. 1997, 27(2): 351-354
    [26] Iranpoor N, Kazemi F. RuCl_3 catalyses Aldol condensations of aldehydes and ketones[J]. Tetrahedron. 1998, 54: 9475-9480
    [27] Zheng Y, Ng F T T, Rempel G L. Catalytic Distillation: A three-phase nonequili-brium model for the simulation of the Aldol condensation of acetone[J]. Ind Eng Chem Res. 2001, 40(23): 5342-5349
    [28] Uma R, Davies M, Crevisy C, Gree R. A tandem allylic alcohol isomerization-aldol condensation catalyzed by Rh and Ru complexes[J]. Tetrahedron Lett. 2001, 42(17): 3069-3072
    [29] Reardon D, Guan J, Gambarotta S, Yap G P A, Wilson D R. Vanadium-Promoted Aldol Condensation and Pinacolic Coupling of Acetylpyrrole: Formation of Two New Potent Dinuclear Catalysts for Olefin Copolymerization[J]. Organometallics. 2002, 21(21): 4390-4397
    [30] Sasidharan M, Kumar R. Titanium silicates for carbon-carbon bond formation reactions[J]. J Catal. 2003, 220(2): 326-332
    [31] Yanagisawa A, Sekiguchi T. Dibutyltin dimethoxide-catalyzed aldol reaction of enol trichloroacetates[J]. Tetrahedron Lett. 2003, 44(38): 7163-7166
    [32] Mendez D, Klimova E, Klimova T, Fernando L, Hernondez S. Solvent-free aldol condensations: synthesis of ferrocenyldienones[J]. J Organometallic Chem. 2003, 679(1): 10-13
    
    [33] Comisar C M, Savage P E. Kinetics of crossed aldol condensations in high- temperature water[J]. Green Chem. 2004, (4): 227-231
    [34] Mlynarski J, Mitura M. The first example of a catalytic asymmetric aldol- Tishchenko reaction of aldehydes and aliphatic ketones[J]. Tetrahedron Lett.. 2004, 45(41): 7549-7552
    [35] Tichit D, Coq B. Supported choline hydroxide (ionic liquid) as heterogeneous catalyst for aldol condensation reactions[J]. Chem Commun. 2004, (9): 1096-1097
    [36] Hamilton C A, Jackson S D, Kelly G J. Solid base catalysts and combined solid base hydrogenation catalysts for the aldol condensation of branched and linear aldehydes[J]. J Mole Catal. A: Chemical. 2004,263(1): 63-70
    [37] Clerici A, Pastori N, Porta O. Reactivity of methyl mandelate-Ti(IV)-enediolate: oxidative homocoupling versus Aldol and direct Mannich-type syn-diastereoselective condensation[J]. J Org Chem. 2005, 70(10): 4174-4176
    [38] Paarez C N, Henriques C A, Antunes O A C, Monteiro J L F. Effect of acetone/citral molar ratio and reaction conditions in the aldol condensation of citral with acetone catalyzed by a Mg,Al-mixed oxide[J]. J Mole Catal. A: Chemical. 2005, 233(1-2): 83-90
    [39] Shigehisa H, Mizutani T, Tosaki S, Ohshima T, Shibsaki M. Formal total synthesis of (+)-wortmannin using catalytic asymmetric intramolecular aldol condensation reaction[J]. Tetrahedron. 2005,61(21): 5057-5065
    [40] Ungureanu A, Royer S, Hoang T V, Trong O D, Dumitriu E, Kaliaguine S. Aldol condensation of aldehydes over semicrystalline zeolitic-mesoporous UL-ZSM-5[J]. Microporous and Mesoporous Materials. 2005,84(1-3): 283-296
    [41] Vicente J, Chicote M T, Guerrero R, Vicente-Hernandez I, Alvarez-Falcon M M, Jones P G, Bautista D. Metal-Assisted Aldol-Type Condensation of Two Acetimino Ligands To Give a 4-Imino-2-methylpentan-2-amino Rhodium(III) Complex[J]. Organometallics. 2005,24(19): 4506-4508
    [42] Luppi G, Cozzi P G, Monari M, Kaptein B, Broxterman Q B, Tomasini C. Dipeptide-Catalyzed Asymmetric Aldol Condensation of Acetone with (N-Alkylated) Isatins [J]. J Org Chem. 2005, 70(18): 7418-7421
    [43] Abello S, Medina F, Tichit D, Perez-Ramirez J, Cesteros Y, Salagre P, Sueiras J E. Nanoplatelet-based reconstructed hydrotalcites: towards more efficient solid base catalysts in aldol condensations[J]. Chem Commun. 2005, (11): 1453-1455
    [44] Davey P N, Forsyth S A, Gunaratne H Q N. Hardacre C, Mckeown A. Mc-Math S E J, Rooney, Seddon K R. Synthesis of 3-(4-tert-butylphenyl)-2-propen-1-one, a precursor to Lilial, via an aldol condensation in an ionic liquid[J]. Green Chem. 2005, (4): 224-229
    [45] Ahn M, Pietersma A L, Schofield L R, Parker E J. Mechanistic divergence of two closely related aldol-like enzyme-catalysed reactions[J]. Org Biomol Chem. 2005, (22): 4046-4049
    [46] Zou W, Ibrahem I, Dziedzic P, Sunden H, Cordova A. Small peptides as modular catalysts for the direct asymmetric aldol reaction: ancient peptides with aldolase enzyme activity[J]. Chem Commun. 2005, (39): 4946-4948
    [47] Mlynarski J, Jankowska J, Rakiel B. Direct asymmetric aldol-Tishchenko reaction of aliphatic ketones catalyzed by syn-aminoalcohol-Yb(Ⅲ) complexes[J]. Chem Commun. 2005, (38): 4854-4856
    [48] Shiina I, Kawakita Y, Ibuka R, Yokoyama K, Yamai Y. Total synthesis of buergerinin F via effective construction of the asymmetric quaternary carbons using an enantioselective aldol reaction[J]. Chem Commun. 2005, (32): 4062-4064
    [49] Cordova A, Zou W B, Ibrahem I, Reyes E, Enggvist M, Liao W W. Acyclic amino acid-catalyted asymmetric Aldol reacfions[J]. Chem Commun. 2005, (28): 3586-3588
    [50] Shimizu M, Inayoshi K, Sahara T. Diastereoselective reductive imino-aldol reaction of α-imino esters promoted by titanium tetraiodide: synthesis of α, β-diamino esters[J]. Org Biomol Chem. 2005, (12): 2237-2238
    [51] Paterson I, Gottschling D, Menche D. Towards the combinatorial synthesis of spongistatin fragment libraries by using asymmetric aldol reactions on solid support[J]. Chem Commun. 2005, (28): 3568-3570
    [52] Zhu A L, Jiang T, Wang D, Han B X, Liu L, Huang J, Zhang J C, Sun D H. Direct aldol reactions catalyzed by 1, 1, 3, 3-tetramethylguanidine lactate without solvent[J]. Green Chem.. 2005, (7): 514-517
    [53] Iranpoor N, Kazemi F. RuCl_3 catalyses Aldol condensations of aldehydes and ketones[J]. Tetrahedron. 1998, 54(32): 9475-9480
    [54] Deng G S, Ren T G. InCl_3.4H_2O catalyzed aldol condensation of cycloalkanones with aromatic aldehydes[J]. Chin Chem Lett. 2001, 12(10): 859-860
    [55] Kobayashi S, Hachiya I. Lanthanide triflates catalyzed Aldol reaction of aldehydes and ketones[J]. Tetrahedron Lett. 1992, 33(9):1625-1628.
    [56] Kobayashi S, Hachiyal. Lanthanide triflates as water-tolerant Lewis acids. activation of commercial formaldehyde solution and use in the Aldol reaction of silyl enol ethers with aldehydes in aqueous media[J]. J Org Chem. 1994, 59(13):3590-3596
    [57] Kobayashi S, Hachiya I, Takahori T. Lanthanide trifluoromethanesulfonates as reusable catalysts: Aldol reactions in organic solvents[J]. Synthesis 1993, (4): 371-372
    [58] Makioka Y, Nakagawa I, Taniguchi Y, Takaki K, FujiwaraY. Lanthanoid(II) or -(III) alkoxide-promoted reactions of silyl-ketene acetals with aldehydes[J]. J Org Chem. 1993, 58(17): 4771-4774
    [59] Kobayashi S, Hachiya I, Ishitani H, Araki M. Scandium trifluoromethanesulfonate (Sc(OTf)_3) as a novel reusable Lewis acid catalyst in Aldol and Michael reactions[J]. Synlett 1993, (8): 472-474
    [60] Iwata M, Emoto S. Aldol condensation of aldehydes with ketones promoted by the Copper(II) ion. orientation to the chemical model for metalloaldolases[J]. Bull Chem Soc Jpn. 1976,49(5): 1369-1374
    [61] Irie K, Watanabe K. Aldol condensations with metal( II) complex catalysts[J]. Bull Chem Soc Jpn. 1980, 53(5): 1366-1371
    [62] Watanabe K, Imazawa A. Aldol condensations catalyzed by Co( II) complexes of pyridine-containing copolymers[J]. Bull Chem Soc Jpn. 1982, 55(10): 3208-3211
    [63] Nakamo T, Irifune S, Umano S, Inada A, Ishii Y, Ogawa M. Cross-condensation reactions of cycloalkanones with aldehydes and primary alcohols under the influence of Zirconocene complexes[J]. J Org Chem. 1987, 38(9): 2239-2244
    [64] Schutz H. Benzodiazepines. Heidelberg: Springer, 1982
    [65] Smalley R K. In Comprehensive Organic Chemistry. Eds.: Barton D, Ollis W D, Oxford: Pergamon, 1979
    [66] Landquist J K. In Comprehensive Heterocyclic Chemistry, Eds.: Katritzky A R, Rees C W, Oxford: Pergamon, 1984
    [67] Daniel A T, Zhaogen C, Yvan L H. Benzodiazepines. WO 014 895,2004
    [68] Regina J, Lidija K, Virginija B, Vigintas D, Zita S, Vida R, Benedikta P D. Synthesis and antitumour activity of a series of cyclic amidines of 2, 3-dihydro-1H-1, 5-benzodiazepines[J]. Arzneimittel-Forschung. 2002, 52(2), 475-481
    [69] Giancarlo G, Mario D B, Giorgio R, Vigilio B, Massimiliano T, Francesco C, Elisabetta B. 1, 5-benzodiazepines: Part Ⅻ Ⅰ. Substituted 4H-[1, 2, 4] triazolo [4, 3-a] [1, 5] benzodiazepin-5-amines and 4H-imidazo[1, 2-a] [1, 5] benzodiazepin-5-amines as analgesic, anti-inflammatory and/or antipyretic agents with low acute toxicity[J]. Eur J Med Chem. 2002, 37(5): 933-944
    [70] Ricaurte R, Braulio I, Rodrigo A, Jairo O. Preparation of some light-sensitive 2-nitropheny1-2, 3-dihydro-1H-benzodiazepines [J]. Arkivoc. 2004, 13 (1): 67-71
    [71] Farges R C, Torres S R, Pascual F, Ribeiro-do-Valle R M. Involvement of steroids in anti-inflammatory effects of peripheral benzodiazepine receptor ligands[J]. Life Sciences. 2004, 74(11), 1387-1395
    [72] Aversa M C, Fedazzo A, Giannetto P, Kohnke F H. A Convenient synthesis of novel [1, 2, 4] triazolo[4, 3-a] [1, 5] benzodiazepine derivatives[J]. Synthesis. 1986, (3): 230-231.
    [73] Kosychova L, Stumbreviciute Z, Pleckaitiene L, Janciene R, Puodziunaite B D. Synthesis of substituted 5, 6-dihydro-4H-[1, 2, 4] triazolo[4, 3-a] [1, 5] benzodiazepines. Chemistry of Heterocyclic Compounds. 2004, 40(6): 811-815.
    [74] Chimirri A, Gitto R, Quartarone S, Orlando V, De Sarro A, De Sarro G B. Synthesis and pharmacological properties of new 3-ethoxycarbonyl-11H-[1, 2, 4] triazolo[4, 5-c] [2, 3] benzodiazepines[J]. Farmaco. 2002, 57(9): 759-763
    [75] Chimirri, A.; Grasso, S.; Ottana, R.; Romeo, G.; Zappala, M. J. Synthesis of substituted 5, 6-dihydro-4H-[1, 2, 4] triazolo[4, 3-a] [1, 5] benzodiazepines[J]. Heterocyclic Chem. 1990, 27(2): 371-374
    [76] Stahlofen P, Ried W. Synthesis of 1, 5-benzodiazepines[J]. Chem Ber. 1957, 90(5): 815-824
    [77] Ried W, Torinus E. 1, 5-Benzodiazepines[J]. Chem Ber. 1959, 92(15): 2902-2916
    [78] Gheorghe R, Comanita E, Bogdan C. Synthesis and reactivity of Mannich bases. XIV. Base-catalyzed cyclocondensation of β-aminoketones to 1, 5-benzodiazepines and 1, 4-naphthodiazepines. Acta Chimica Slovenica, 2002, 49(3), 575-585
    [79] Herbert J A L, Suschitzky H. Syntheses of hererocyclic compounds: substituted 2, 3-dihydro-1 H-1, 5-benzodiazepines [J]. J Chem Soc Perkin Trans. Ⅰ, 1974, 96(21): 2657-2661
    [80] Morales H R, Bulbarela A, Contreras R. New synthesis of dihydro-and tetrahydro-1, 5-benzodiazepines by reductive condensation of o-phenylenediamine and ketones in the presence of sodium borohaydride[J]. Heterocycles. 1986, 24(1): 135-139
    [81] Jung D I, Choi T W, Kim Y Y, Kim I S, Park Y M, Lee Y G, Jung D H. Synthesis of 1, 5-benzodiazepines derivatives[J]. Synth Commun. 1999, 29(11 ): 1941-1951
    [82] Balakrishna M S, Kaboudin B. A simple and new method for the synthesis of 1, 5-benzodiazepines derivatives on a solid surface[J]. Tetrahedron Lett. 2001, 42(10): 1127-1129
    [83] Gowravaram S, Kumar R G S K, Bhaskar R K, Mallikarjuna N, Yadav J S. A new, efficient and environmentally benign protocol for the synthesis of 1, 5-benzodiaze-pines using cerium (Ⅲ) chloride/sodium iodide supported on silica gel[J]. Adv Synthesis & Catalysis, 2004, 346(8): 921-923
    [84] Benjaram R M, Pavani S M. An efficient synthesis of 1, 5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia[J]. Tetrahedron Lett. 2003, 44(24): 4447-4449
    [85] Minothora P, Julia S, Constantinos T. A. An efficient method for the synthesis of 1, 5-benzodiazepine derivatives under micoware irradiation without solvent[J]. Tetrahedron Lett. 2002, 43(10): 1755-1758
    [86] Yongmin, M.; Yongmin, Z. Derivatives of 2, 3-dihydro-1 H-1, 5-benzodiazepine from o-nitroanilines and chalcones induced by low-valent titanium[J]. Synth Commun. 2002, 32(2), 165-169
    [87] Curini M, Epifano F, Marcotullio M C, Rosati O. Ytterbium triflate promoted synthesis of 1, 5-benzodiazepine derivatives[J]. Tetrahedron Lett. 2001, 42(18): 3193-3195
    [88] Tramontimi M. Advances in the chemistry of Mannich bases[J]. Synthesis. 1973, 703-775
    [89] Arend M, Westermann B, Risch N. Modern variants of the Mannich reaction[J]. Angew Chem Int Ed Engl. 1998, 37(8): 1044-1070
    [90] 张雅文,王建非,沈宗旋.直接不对称催化Mannich反应[J].有机化学.2003,23(11):1324-1329
    [91] Craig J C, Moyle M, Johnson L M. Amine Exchange Reactions. Mannich Bases from Aromatic Amines[J]. J Org Chem. 1964, 29(2), 410-415
    [92] Blatt A H, Gross N. The Addition ofketones to Schiff bases[J]. J Org Chem. 1964, 29(11), 3306-3311
    [93] 徐秀娟,陈光旭.芳香胺的参加Mannich反应[J].化学学报.1982,40(5):463-468
    [94] Yi L, Lei H S, Zou J H, Xu X J. The Mannich reaction between aromatic ketones, aromatic aldehydes and aromatic amines[J]. Synthesis. 1991, (9): 717-718
    [95] Zou J H. The Mannich reaction of dialkyl ketones, aromatic aldehydes and aromatic amines[J]. Synth. Commun. 1996, 28(5): 618-622
    [96] 邹君华.间硝基苯甲醛或间氯苯甲醛与芳香胺和芳香酮的Mannich反应[J].有机化学,1996,16(2):218-222
    [97] Manabe K, Kobayashi S. Mannich-type reactions of aldehydes, amines, and ketones in a colloidal dispersion system created by a bronsted acid-surfactant combined catalyst in water[J]. Org Lett. 1999, 1(12): 1965-1967
    [98] Manabe K, Yuichiro M, Kobayashi S. A bronsted acid-surfactant combined catalyst for Mannich-type reactions of aldehydes, amines, and enolates in water[J]. SynLett. 1999, (9): 1401-1402
    [99] Limura S, Nobutou D, Manabe K, Kobayashi S. Mannich-type reactions in water using a hydrophobic polymer-supported sulfonic acid catalyst[J]. Chem Commun. 2003, (14): 1644-1645
    [100] Loh T P, Liung S B K W, Tan K L, Wei L L. Three Component Synthesis of β-Amino Carbonyl Compounds Using Indium Trichloride-Catalyzed One-pot Mannich-type Reaction in Water[J]. Tetrahedron. 2000, 56(20): 3227-3237
    [101] 王利明,韩建伟,盛佳,樊兆玉,田禾.Yb(OTf)_3催化苯乙酮、芳香醛和芳香胺的Mannich反应:三组分“一锅法”合成β-氨基酮衍生物[J].有机化学.2005,25(5):591-594
    [102] 杨大成,章国林,杨宇,钟裕国.对.甲苯乙酮与芳香醛和芳香胺的Mannich反应[J].高等学校化学学报.2000,21(11):1694-1695
    [103] Yi L, Zou J H, Lei H S, Lin X M, Zhang M X. The Mannich reaction of cycliketones, aromatic aldehydes and aromatic amines[J]. Org Prep Peoced Int. 1991, 23(5): 673-676
    [104] Qian C, Wang L. Addition of silyl ketene acetals to nitrones catalyzed by lanthanide triflates[J]. Tetrahedron. 2000, 56(37): 7193-7197
    [1] Lee T V. Comprehensive Organic Synthesis [M]. Oxford: PergamonPress, 1991
    [2] Hagemeyer H J. Birk-Othmer Encyclopedia of Chemical Technology [M]. NewYork: Wiley, 1991
    [3] Pestryakov A N, Lunin V V. Physicochemical study of active sites of metal catalysts for alcohol partial oxidation[J]. J Mole Catal. A: Chemical. 2000, 158(1): 325-329
    [4] Abdelaziz N A. First example of water-soluble transition-metal catalysts for Oppenauer-type oxidation of secondary alcohols[J]. Tetrahedron Lett. 2001, 42(1): 13-15
    [5] Unnikrishnan R P, Endalkachew S. Selective Oxidation of Alcohols in Gas Phase Using Light-Activated Titanium Dioxide[J]. J Catal. 2002, 211 (2): 434-444
    [6] Lou J D, Xu Z N. Selective solvent-free oxidation of alcohols with potassium dichromate[J]. Tetrahedron Lett. 2002, 43(49): 8843-8844
    [7] Youval S, Vered G L. Catalytic oxidation of alcohols with allyl diethyl phosphate and palladium acetate[J]. J Organometallic Chem. 2002, 650(1-2): 151-156
    [8] Jun-ichi M, Daisuke I, Hiroyuki Y, Teruaki M. N-tert-Butylbenzenesulfenamide-catalyzed oxidation of alcohols to the corresponding carbonyl compounds with N-chlorosuccinimide[J]. Tetrahedron. 2003, 59(35): 6739-6750
    [9] Tatiana L S, Tvan V K. Novel efficient catalysts based on Ru or Pd oxide for selective liquid-phase oxidation of alcohols with nitrous oxide[J]. Catal Commun. 2003, 4(12): 609-614
    [10] Parvaulescu V, Anastasescu C, Su B L. Vanadium incorporated mesoporous silicates as catalysts for oxidation of alcohols and aromatics[J]. J Mole Catal. A: Chemical. 2003, 198(1-2): 249-261
    [11] Stuchinskaya T L, Kozhevnikov I V. Liquid-phase oxidation of alcohols with oxygen catalysed by modified palladium(II) oxide[J]. Catal Commun. 2003, 4(8): 417-422
    [12] Zaere F. The surface chemistry of hydrocarbon partial oxidation catalysis[J]. Catal Today. 2003, 81(2): 149-157
    [13] Furukawa M, Nishikawa Y, Nishiyama S, Tsuruya S. Effect of alkali metal added to supported La catalysts on the catalytic activity in the gas-phase catalytic oxidation of benzyl alcohol[J]. J Mole Catal. A: Chemical. 2004,211(1-2): 219-226
    [14] Brian P B, James P C, Nadine L B, Abhijit K. Pd(II)-biquinoline catalyzed aerobic oxidation of alcohols in water[J]. J Mole Catal. A: Chemical. 2005, 225(1): 111-116
    [15] Hiromichi E, Satoaki O, Tsutomu K. A reasonable explanation for the mechanism of photo-promoted chemoselective aerobic oxidation of alcohols using (ON)Ru(salen) complex as catalyst[J]. Tetrahedron Lett. 2005,46(36): 6049-6052
    [16] Laura P, Francesca P. Oxidation of alcohols and sugars using Au/C catalysts: Part 1. Alcohols[J]. Appl Catal. A: General. 2005, 291(1-2): 199-203
    
    [17] Denis L, Tony B, El Mustapha B. Kinetic and selectivity control of TEMPO electro- mediated oxidation of alcohols[J]. Electrochem Commun. 2005, 7(3): 312-316
    [18] Stuchinskaya T L, Musawir M, Kozhevnikova E F, Kozhevnikov I V. Liquid-phase oxidation of alcohols by oxygen and nitrous oxide catalysed by Ru-Co oxide[J]. J Catal. 2005,231(1): 41-47
    
    [19] Jiang N, Ragauskas A J. TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes with the H_2O_2/HBr/ionic liquid [bmim]PF_6 system[J]. Tetrahedron Lett. 2005, 46(19): 3323-3326
    [20] Burgi T. Combined in situ attenuated total reflection infrared and UV-vis spectroscopic study of alcohol oxidation over Pd/Al_2O_3[J]. J Catal. 2005, 229(1): 55-63
    [21] Hunsen M. Pyridinium chlorochromate catalyzed oxidation of alcohols to aldehydes and ketones with periodic acid[J]. Tetrahedron Lett. 2005,46(10): 1651-1653
    [22] Kishioka S, Yamada A. Kinetic study of the catalytic oxidation of benzyl alcohols by phthalimide-N-oxyl radical electrogenerated in acetonitrile using rotating disk electrode voltammetry[J]. J. Electroanalytical Chem. 2005, 578(1): 71-77
    [23] Brinksma J, Rispens M T, Hage R, Feringa B L. New manganese catalysts for alcohol oxidation[J]. Inorganica Chimica Acta. 2002, 337: 75-82
    [24] Kawabata T, Shinozuka Y, Ohishi Y, Shishido T, Takaki K, Takehira K. Nickel containing Mg-Al hydrotalcite-type anionic clay catalyst for the oxidation of alcohols with molecular oxygen[J]. J Mole Catal. A: Chemical. 2005, 236(1-2): 206-215
    [25] Pearson A J, Kwak Y. A new method for the selective oxidation of allylic and benzylic alcohols[J]. Tetrahedron Lett. 2005,46(32): 5417-5419
    [26] Moghadam M, Tangestaninejad S, Mirkhant V, Mohammadpoor-Baltork I. Mild and efficient oxidation of alcohols with sodium periodate catalyzed by polystyrene-bound Mn(III)porphyrin[J]. Bioorg Med Chem. 2005, 13(8): 2901-2905
    [27] Ligtenbarg A G J, Hage R, Feringa B L. Catalytic oxidations by vanadium complexes[J]. Coordination Chem Rev. 2003,237(1-2): 89-101
    [28] Pillai U R, Sahle-Demessie E. Selective oxidation of alcohols over vanadium phosphorus oxide catalyst using hydrogen peroxide[J]. Appl Catal. A: General. 2004, 276(1-2): 139-144
    [29] Ebitani K, Ji H B, Mizugaki T, Kaneda K. Highly active trimetallic Ru/CeO_2/CoO(OH) catalyst for oxidation of alcohols in the presence of molecular oxygen[J]. J Mole Catal. A: Chemical. 2004,212(1-2): 161-170
    [30] Komano T, Iwasawa T, Tokunaga M, Obora Y, Tsuji Y. MALDI TOF Mass Study on Oligomerization of Pd(OAc)_2(L)_2 (L = Pyridine Derivatives): Relevance to Pd Black Formation in Pd-Catalyzed Air Oxidation of Alcohols[J]. Org Lett. 2005, 7(21): 4677-4679
    [31] Wagner J, Andres H, Rohrbach S, Wagner D, Oberer L, France J. Efficient synthesis of [~3H]-sanglifehrin a via selective oxidation/reduction of alcohols at C_(31) and C_(35)[J]. J Org Chem. 2005,70(23): 9588-9590
    [32] Ben-Daniel R, Alsters P, Neumann R. Selective aerobic oxidation of alcohols with a combination of a polyoxometalate and nitroxyl radical as catalysts[J]. J Org Chem. 2001, 66(25): 8650-8653
    [33] Fritz-Langhals E. Technical production of aldehydes by continuous bleach oxidation of alcohols catalyzed by 4-hydroxy-TEMPO[J]. Org Process Res Dev. 2005, 9(5): 577-582
    [34] Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water[J]. J Am Chem Soc. 2005,127(26): 9374-9375
    [35] Pozzi G; Cavazzini M, Quici S, Benaglia M, Dell'Anna G. Poly(ethylene glycol)-supported TEMPO: An Efficient, recoverable metal-free catalyst for the selective oxidation of alcohols[J]. Org Lett. 2004, 6(3): 441-443
    [36] Kogan V, Quintal M M, Neumann R. Regioselective alkene carbon-carbon bond cleavage to aldehydes and chemoselective alcohol oxidation of allylic alcohols with hydrogen peroxide catalyzed by [cis-Ru(Ⅱ)(dmp)_2(H2O)_2] ~(2+) (dmp = 2, 9-dimethyl-phenanthroline)[J]. Org Lett. 2005, 7(22): 5039-5042
    [37] Li Y, Nakashima D, Ichihashi Y, Nishiyama S, Tsuruya S. Promotion effect of alkali metal added to impregnated Cobalt catalysts in the gas-phase catalytic oxidation of benzyl alcohol[J]. Ind Eng Chem Res. 2004, 43(19): 6021-6026
    [38] Matano Y, Hisanaga T, Yamada H, Kusakabe S, Nomura H, Imahori H. Remarkable substituent effects on the oxidizing ability of triarylbismuth dichlorides in alcohol oxidation[J]. J Org Chem. 2004, 69(25): 8676-8680
    [39] Li Y, Nakashima D, Ichihashi Y, Nishivama S, Tsuruya S. Promotion effect of alkali metal added to impregnated Cobalt catalysts in the gas-phase catalytic oxidation of benzyl alcohol[J]. Ind Eng Chem Res. 2004, 43(19): 6021-6026
    [40] Ben-Daniel R, Alsters P, Neumann R. Selective aerobic oxidation of alcohols with a combination of a polyoxometalate and nitroxyl radical as catalysts[J]. J Org Chem. 2001, 66(25): 8650-8653
    [41] Choudhary R V, Chaudhari A P, Narkhede S V. Solvent-free liquid phase oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using non-noble transition metal containing hydrotalcite-like solid catalysts[J]. Catal Commun. 2003, 4: 171-175
    [42] Xie H, Zhang S, Duan H. An ionic liquid based on a cyclic guanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols[J]. Tetrahedron Lett. 2004, 45: 2013-2015
    [43] Gogoi P, Sarmah G K, Konwar D. DMSO/N_2H_4·2H_2O/I_2/H_2O/CH_3CN: A new system for selective oxidation of alcohols in hydrated media[J]. J Org Chem. 2004, 69(15): 5153-5154
    [44] Velusamy S, Ahamed M, Punniyamurthy T. Novel polyaniline-supported moly-bdenum-catalyzed aerobic oxidation of alcohols to aldehydes and ketones[J]. Org Lett. 2004, 6(26): 4821-4824.
    [45] Liu R, Liang X, Dong C, Hu X. Transition-metal-Free: A highly efficient catalytic aerobic alcohol oxidation process[J]. J Am Chem Soc. 2004, 126(13): 4112-4113
    [46] Barrett A G. M., Braddock D C, Mckinnell R M, Waller F J. Ytterbium(Ⅲ) triflate as a recyclable catalyst for the selective atom economic oxidation of benzyl alcohols to benzaldehydes[J]. Synlett. 1999, 9, 1489-1490
    [47] Unnikrishnan R P, Endalkachew S. Oxidation of alcohols over Fe~(3+)/montmoril-lonite-K10 using hydrogen peroxide[J]. Appl Catal. A: General. 2003, 245(1): 103-109
    [48] Wang J M, Yah L, Li G X, Wang X L, D Y, S J S. Mono-substituted keggin-polyoxometalate complexes as effective and recyclable catalyst for the oxidation of alcohols with hydrogen peroxide in biphasic system[J]. Tetrahedron Lett. 2005, 46(41): 7023-7027
    [49] Grigoropoulou G, Clark J H, Elings J A. Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant[J]. Green Chem. 2003, (1): 1-7
    [50] R. A. Sheldon. Dioxygen Activation and Homgeneous Catalytic Oxidation [M]. Amersterdam: Elsevier, 1991.
    [51] R. Battino (Ed. ), IUPAC Solubility Data Series, vol. 7, Pergamon, New York, 1981, pp. 301 and 320.
    [52] 秦笃捷,王国甲,张林,郝春雁,吴越.杂多化合物催化性能的研究——第四周期过渡金属取代的钼磷三元杂多化合物在环己烯氧化反应中的催化作用[J].分子催化,1996,5(10):357-362
    [53] M. Tamas, B. Alfons. Oxidation of alcohols with molecular oxygen on solid catalysts [J]. Chem Rev. 2004, 104(6): 3037-3058

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700