含氟整理剂的合成及其对表面的改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,氟碳化合物具有极低的表面张力,因此广泛用于拒水拒油整理。随着人们生活水平的提高,一方面人们对拒水拒油整理效果提出了更高的要求,另一方面人们对具有新功能的含氟整理剂也提出了需求。因此,找到能够提高拒水拒油效果的技术和开发出具有新功能的含氟整理剂显得犹为重要。
     在本论文中我们合成了几种含氟整理剂,采用直接或与其它表面改性技术结合的方法对棉织物、玻璃、单晶硅片进行改性,赋予它们不同的功能,并对改性后的效果进行了测试。本论文由以下几部分工作构成:
     1.目前,超疏水表面的制备方法已经成为了人们的研究热点。在本论文中我们将溶胶-凝胶技术与含氟整理剂相结合在织物上制备出具有超疏水和疏油性能的涂层。在正硅酸乙酯,乙醇和水三者的比例不变的实验条件下,通过改变催化剂氨水的量成功制备了一系列不同粒径的SiO_2溶胶样品sol 1-5,这些样品中的颗粒粒径均在100—200nm之间。我们同时合成了含全氟烷基季铵盐硅烷偶联剂PFSC,并将溶胶样品和PFSC共同应用于织物整理。经H_2O和CH_2I_2接触角测试和拒水拒油等级测试结果发现,只有溶胶样品sol 4的粒径大小合适,可以显著增加表面粗糙度,经其整理的织物样品通过含全氟烷基季铵盐硅烷偶联剂PFSC修饰后比只经PFSC整理的棉织物样品的拒水拒油性能得到提高,H_2O的接触角从133°提高到145°,接近于超疏水性能,CH_2I_2的接触角从125°提高到131°;拒水拒油级别分别从3级、4级提高到4级、5级。而经另外四个溶胶样品和PFSC共同整理的织物样品的拒水拒油效果没有得到提高。
     2.通常具有低表面自由能的含氟聚合物材料不易吸附环境中的尘埃或污物粒子。但是一旦被污染,由于它们的高疏水性使得此类材料沾污后很难用水清洗。为了弥补这个不足就需要制备出具有疏水/疏油-亲水可逆转换性能的智能表面,这样就既可以减少在空气中的沾污,又方便沾污后的清洗。在本论文中我们将含全氟烷基丙烯酸酯与丙烯酸采用乳液聚合方式合成了聚(全氟烷基丙烯酸酯-丙烯酸)(PPFAA-AA),并通过传统的轧-烘-焙过程将聚合物乳液整理到棉织物上,形成的涂层具有疏油/疏水-亲水可逆转换功能。在乳化剂量不变条件下,通过改变单体的重量比,得到PPFAA-AA聚合物样品copoly1-4,其中copoly2整理的织物具有明显的疏水-亲水转换性能,水的接触角从刚开始的127°在30min内迅速减小到33°。根据该现象,提出了疏水.亲水转换机理,通过XPS测试润湿前后织物表面PPFAA-AA涂层不同深度化学组成含量变化,验证了该机理。
     3.日常生活中透明基材的上雾现象和衣服上起静电现象经常困扰着人们,其中一个解决方法就是用亲水整理剂进行亲水化处理。基于这个需求在本论文中我们设计了一个亲水拒油聚合物Rf-(DMDAAC)n-Rf,亲水性可以起到防雾和抗静电效果,拒油性可以防止污染减少清洗次数,使整理效果持久。首先合成了全氟聚醚二酰基过氧化物(RfCOO)_2,并用来引发二甲基二烯丙基氯化铵(DMDAAC)聚合,得到含有全氟烷氧基末端基团的二甲基二烯丙基氯化铵聚合物(Rf-(DMDAAC)n-Rf)。通过传统的轧-烘-焙过程将其整理到棉织物上,整理后织物具有亲水拒油性,对水的接触角为0°,对正十六烷的接触角为117.5°。
     4.自组装技术在表面改性中得到了广泛的应用。在本论文最后我们在玻璃和单晶硅基底上将含全氟烷基的化合物利用自组装技术接到基底表面,以期降低表面自由能,实现超薄拒水拒油膜的制备。我们采用自组装方法制备了PFOA-APTES和PFOA-TESPA自组装双层膜。通过原子力显微镜(AFM)、椭圆偏光仪(Ellipsometry)和X-射线光电子能谱(XPS)对PFOA-APTES自组装双层膜的膜性能进行了测试与表征,证明PFOA-APTES自组装双层膜制备成功。利用接触角测试对PFOA-APTES自组装双层膜的拒水拒油性能进行了研究,发现在PFOA与APTES-SAF反应12h后形成的双层膜具有较好的拒水拒油性能。有关PFOA-TESPA自组装双层膜,我们主要是对TESPA-SAF和PFOA-TESPA的制备条件进行了摸索。但从拒水拒油效果来看,PFOA-TESPA自组装双层膜的制备不是很成功。
It has been known that fluorocarbons have an extremely low surface free energy and they are widely applied for water and oil repellent finishing.Along with the improvement of people's living standard,fluorine-containing finishing agents with excellent water and oil repellency and(or)new function are demanding.The employment of other modification technique to improve water and oil repellency and development of fluorine-containing finishing agents with new functions are needed to meet the above demand.
     In this study,several kinds of fluorine-containing finishing agents were synthesized,applied on cotton fabric,glass and crystal silica substrates directly or combining other surface modification technique.The properties of the treated substrates were studied.The main work is described as follows.
     1.At present,the method for the fabrication of superhydrophobic surface has already become the research hot spot.In this study,sol-gel technique was employed and combined with fluorine-containing finishing agents to fabricate superhydrophobic cotton fabric coating.By changing the concentration of NH_3·H_2O catalyst,a series of silica sol samples(sol 1-5)with different silica nanoparticle sizes between 100 and 200nm were prepared successfully.Perfluorooctylated quaternary ammonium silane coupling agents PFSC was synthesized and applied on cotton fabrics with silica sol samples.The hydrophobic and oleophobic properties were determined in terms of H_2O and CH_2I_2 contact angle measurements and water and oil repellency rating measurements.As a result,silica sol sample sol 4 with appropriate size of silica nanoparticles was effective for increasing surface roughness,and the cotton fabric treated with it and PFSC showed better water and oil repellency than with PFSC alone.
     The H_2O contact angles increased from 133°to 145°,which was nearly superhydrophobic;and the CH_2I_2 contact angle increased from 125°to 131°.The water and oil repellency ratings increased from class 3 to 4 and class 4 to 5 respectively.The cotton fabric treated with other four silica sol samples and PFSC showed no increase in water and oil repellency.
     2.Usually the dirt particles do not adhere to low-energy surfaces of fluorinated polymers.However,once it was dirty,it is difficult to clean with water due to its good water repellent property.In light of this limitation,the smart surface exhibiting oleophobic/hydrophobic to hydrophilic switching property was demanded for minimizing adhesion in air and facilitating soil release in water.In this study, poly(perfluoroalkylated acrylate-acrylic acid)(PPFAA-AA)copolymers were prepared by the emulsion copolymerization of perfluoroalkylated acrylate and acrylic acid and applied on cotton fabric by pad-dry-cure process,the PPFAA-AA coating thus obtained exhibited oleophobic/hydrophobic to hydrophilic switching property, With the constant concentration of emulsifying agents,PPFAA-AA samples (eopolyl-4)were synthesized by changing the weight ratios of the two monomers, The copoly2 showed the best hydrophobic to hydrophilic switching property among these samples,and the water contact angles decreased from 127°to 33°within 30min. The hydrophobic to hydrophilie switching mechanism was proposed and verified by XPS measurements of chemical composition changes at different depth of the dry and wet PPFAA-AA coatings on cotton fabrics respectively.
     3.In the daily life,the fog on the transparent substrate and the static on the textile embarrassed people.One solution is to modify the surface with hydrophilic finishing agents.In this study,the polymer Rf-(DMDAAC)n-Rf with hydrophilic and oleophobic properties was designed,the hydrophilicity was used for antifogging and antistatic;the oleophobicity was used for antisticking,so the washing times can be reduced and the finishing effect was prolonged.First,the perfluoropolyether diacyl peroxide((RfCOO)_2)was synthesized and then used for initiating the polymerization of dimethyldiallyl ammonium chloride(DMDAAC)to give the perfluoroalkoxyl end-capped polymer Rf-(DMDAAC)n-Rf.The polymer was applied on cotton fabric by pad-dry-cure process.The treated cotton fabric showed hydrophilic and oleophobic, the water and hexadecane contact angles on the surface were 0°and 117.5°respectively.
     4.Self-assembly technique is widely used in surface modification.At the end of this study,perfluoroalkyl-containing compound was introduced to the surface of the glass and single crystal silicon substrates by self-assembly technique to lower the surface free energy and prepare ultra-thin water and oil repellent films.Self-assembled dual layer films PFOA-APTES on single crystal silicon and PFOA-TESPA on glass substrate were prepared respectively.The structure and morphology of the dual layer film PFOA-APTES were characterized by means of atomic force microscopy(AFM), ellipsometry and X-ray photoelectron spectroscopy(XPS)and the results demonstrated that the dual layer film was prepared successfully.The water and oil repellency of PFOA-APTES were measured in terms of contact angle measurements. The dual layer film PFOA-APTES obtained by reaction of PFOA with APTES-SAF for 12h showed better water and oil repellency than others.About self-assembled dual layer film PFOA-TESPA,the preparation conditions of TESPA-SAF and PFOA-TESPA were mainly studied.But the water and oil repellency measurements indicated that the preparation was not very successful.
引文
1.久保元伸,含氟防水防油剂(Ⅰ):关于防水防油性能的机理,印染,1995,21(12),37-41。
    2.宁世光,物质结构,1982,山东教育出版社,济南,30-34。
    3.Bank,R.E.Fluorocarbons and their derivatives,London,Sottiswood,Balllantyne & Co.Ltd.1964.
    4.梁治齐,陈溥等,氟表面活性剂,1998,中国轻工业出版社,北京,79-80。
    5.Shafrin,E.G.and Zisman,W.A.Constitutive relations in the wetting of low energy surface and the theory of retraction method of preparing monolayers,J.Phys.Chem.,1960,64(5),519-524.
    6.Langmuir,I.The constitution and fundamental properties of solids liquids.Part Ⅰ.Solid,J.Am.Chem.Soc.,1916,38(11),2221-2295.
    7.Langmuir,I.Third Collid Symposium Monograph.Chem.Catalog Co.,New York,1925.
    8.Zisman,W.A.Relation of equilibrium contact angle to liquid and solid constitution.Advances in Chemistry,1964,43,1-51.
    9.Fowkes,F.M.Calculation of work of adhesion by pair potential suummation J.Collid Sci.,1968,28,493-505.
    10.罗巨涛,姜维利,纺织品有机硅及有机氟整理,1999,第1版,中国纺织出版社,北京,7-17。
    11.郭正伟,田存桂,超细纤维织物防水防油整理工艺探讨,印染,2000,26(5),34-35。
    12.Takahashi,S.;Kasemura,T.et al.Surface molecular mobility for copolymers having perfluorooctyl and/or polyether side chains via dynamic contact angle,Polymer,1997,38(9),2107-2111.
    13.Zisman,W.A.Relation of the equilibrium contact angle to liquid and solid construction.In Contact Angle,Wettability and Adhesion,ACS Advances in Chemistry Series,1964,Vol.43(Edited by FM Fowkes),1-51.
    14.Bernett,M.K.and Zisman,W.A.Wetting properties of acrylic and methacrylic polymers containing fluorinated side chains,J.Phys.Chem.,1962,66,1207-1208.
    15.Shafrin,E.G.and Zisman,W.A.Constitutive relations in the wetting of low energy surface and the theory of retraction method of preparing monolayers,J.Phys.Chem.,1960,64,519-524.
    16.Park,I.J.;Lee,S.B.and Choi,C.K.Surface properties and structure of poly(perfluoroalkylethyl methacrylate),Journal of Collid and Interface Science,1996,18(2),284-288.
    17.Park,I.J.;Lee,S.B.and Choi,C.K.Surface properties of the fluorine-Containing graft copolymer of poly((perfluoroalkyl)ethyl methacrylate)-g-poly(methyl methacrylate),Macromolecules,1998,31,7555-7558.
    18.Thomas,R.R.;Anton,D.R.and Graham,W.F.Preparation and surface properties of acrylic polymers containing fluorinated monomers,Macromolecules,1997,30(10),2883-2890.
    19.Chuji,Y.O.;Hiraiwa,A.K.;Kobayashi,H.I.Synthesis of fluorine-containing graft copolyamides by using condensation-type macromonomers,J.Polymer Sci.,Part A:polymer Chemistry,1988,26(1):2991-2996.
    20.Park,I.J.and Lee,S.B.et al.Synthesis of fluorine-containing graft copolymers of perfluoroalkylethyl methacrylate]-g-poly(methyl methacrylate)by the macromonomer technique and emulsion copolymerization method,Polymer,1997,38(10),2523-2527.
    21.Greenwood,E.J.and Lore,A.L.Oil and water-repellent copolymers.U.S.Pat.4742140,1988.
    22.Michels,G.and Ehlert,H.A.,Fluoring-containing copolymers and aqueous dispersion prepared therefrom,U.S.Pat.5387640,1995.
    23.Pittman,A.G.and Ludwig,B.A.,Effect of polymer crystallinity on the wetting properties of certain fluoroalkyl acrylates,J.Polymer Sci.,Part A-1,1969,7(11),3053-3066.
    24.Katano,Y.;Tomono,H.and Nakajima,T.Surface property of polymer films with fluoroalkyl side chains,Macromolecules,1994,27,2342-2344.
    25.Morita,M.;Ogisu,H.and Kubo,M.Surface properties of perfluoroalkylethyl acrylate/n-alkyl acrylate copolymers,The 14th International Symposium on Fluorine Chemistry,1C14(1994).
    26.Park,I.J.;Lee,S.B.and Choi,C.K.Surface property of poly (perfluoroalkylethyl methacrylate)/poly(n-alkylethyl methacrylate)s mixtures,J.Appl.Poly.Sci.,1994,54(10),1449-1454.
    27.Bongiovanni,R.and Pollicino,N.et al.Surface properties of networks containing Fluorinated acrylic monomers,Polymer for Adv.Tech.,1996,7,403-408.
    28.Fox,H.W.;Zisman,W.A.The spreading of liquids on low-energy surfaces.I.Polytetrafluoroethylene,Journal of Colloid Science,1950,5,514-531.
    29.Lau,W.W.Y.;Burns,C.M.Effect of temperature and molecular weight on the rate of spreading of polystyrene melts on plane soda lime glass surfaces,J.Polym.Sci.Polym.Phys.Ed.,1974,12(2),431-439.
    30.Izumi,K.;Tanaka,H.;Murakami,M.;Tohge,N.;Minami,T.Coating of fluorine-doped zirconia films on steal sheets by sol-gel method,Non-Cryst.Solids,1990,121(1-3),344-347.
    31.Tada,H.;Nagayama,H.Chemical vapor surface modification of porous glass with fluoroalkyl-functionalized silanes.2.Resistance to water,Langmuir,1995,11,136-142.
    32.Yoshino,N.;Yamamoto,Y.;Seto,T.;Tominaga,S.;Kawase,T.Syntheses and reactions of metal organics.ⅩⅦ.Synthesis of silane coupling agents having a fluorocarbon chain and surface modification of glass plates,Bull.Chem.Soc.,Japn,1993,66(2),472-476.
    33.Tadanaga,K.;Ktaka,N.;Minami,T.Super-water-repellent Al_2O_3 coating films with high transparency,J.Am.Ceram.Soc.,1997,80(4),1040-1042.
    34.Tadanaga,K.;Ktaka,N.;Minami,T.Formation process of super-water-repellent Al_2O_3 coating films with high transparency by the sol-gel method,J.Am.Ceram.Soc.,1997,80(12),3213-3216.
    35.Stiegman,A.E.;Anderson,M.A.;Kim,S.S.Polymerization of organic monomers in an active silica xerogel matrix:A new route to nanocomposite fabrication,Proceeding of the American Chemical Society Division of Polymeric Materials Science and Engineering,73(Fall Meeting,Chicago,1995),169.
    36.Stiegman,A.E.;Ecker,H.;Plett,G.;Kim,S.S.Vanadia/silica xerogels and nanocomposites,Chem.Mater.,1993,5(11),1591 - 1594.
    37.Mayo,E.I.;Lochner,E.J.;Stiegman,A.E.Use of photoreactive sol-gel interfaces to form robust low-surface-energy fluoropolymer-silica nanocomposite coatings,J.Phys.Chem.B,1999,103(44),9383-9386.
    38.Fox,H.W.;Zisman,W.A.The spreading of liquids on low-energy surfaces.I.Polytetrafluoroethylene,J.Colloid Sci.,1950,5,514-531.
    39.Suzuki,M.;Saotome,Y.;Yanagisawa,M.Characterization of monolayer and bilayer(polymer/monolayer)structures for their use as a lubricant,Thin Solid Films,1988,160,453-462.
    40.Nakahama,H.;Miyata,S.;Wang,T.T.;Tasaka,S.Preparation of multilayered Langmuir-Blodgett films of a short-chain perfluorinated carboxylic acid,Thin Solid Films,1986,141(2),165-169.
    41.Soga,M.;Ogawa,K.;Ozaki,S.;Masuda,Y.;Goto,K.Hydrophobic treatment of glass plates with perfluoroalkyl trichlorosilanes,Hyomen Kagaku,1993,14(10),630-635.
    42.Takai,O.;Hozumi,A.;Sugimoto,,N.Coating of transparent water-repellent thin films by plasma-enhanced CVD,J.Non-Cryst.Solids,1997,218,280-285.
    43.Hozumi,A.;Kakinoki,N.;Asai,Y.;Takai,O.Fluorine-contained films with high water-repellency and transparency prepared by RF plasma-enhanced CVD.J.Mater.Sci.Lett.,1996,15(8),675-677.
    44.Banga,R.;Yarwood,J.;Morgan,A.M.;Evans,B.;Kells,J.FTIR and AFM studies of the kinetics and self-assembly of alkyltrichlorosilanes and (perfluoroalkyl)trichlorosilanes onto glass and silicon,Langmuir,1995,11(11),4393-4399.
    45.Tada,H.;Nagayama,H.Chemical vapor surface modification of porous glass with fluoroalkyl-functional silanes.1.Characterization of the molecular layer,Langmuir,1994,10(5),1472-1476.
    46.Tada,H.;Shimoda,K.;Goto,K.Effects of chemical vapor surface modification of glass air filter with fluoroalkylsilane on its particle trapping efficiency,J.Electrochem.Soc.,1995,142(12),L230-L232.
    47.Tada,H.Surface reaction of fluoroalkyl-functional silanes on SnO2,J.Electrochem.Soc.,1995,142(1),L11-L13.
    48.Tada,H.;Nagayama,H.Chemical vapor surface modification of porous glass with fluoroalkyl-functionalized silanes.2.Resistance to water,Langmuir,1995, 11(1),136-142.
    49.Hoffmann,P.W.;Stelzle,M.;Rabolt,J.F.Vapor phase self-assembly of fluorinated monolayers on silicon and germanium oxide,Langmuir,1997,13(7),1877-1880.
    50.Geer,R.E.;Stenger,D.A.;Chen,M.S.;Calvert,J.M.;Shashidhar,R.;Jeong,Y.H.;Pershan,P.S.X-ray and ellipsometrie studies of self-assembled monolayers of fluorinated chlorosilanes,Langmuir,1994,10(4),1171-1176.
    51.Hozumi,A.;Ushiyama,K.;Sugimura,H.;Takai,O.Fluoroalkylsilane monolayers formed by chemical vapor surface modification on hydroxylated oxide surfaces,Langmuir,1999,15(22),7600-7604.
    52.Hozumi,A.;Takai,O.Preparation of ultra water-repellent films by microwave plasma-enhanced CVD,Thin Solid Films,1997,303(1,2),222-225.
    53.Badyal,J.P.S.;Coulson,S.R.;Willis,C.R.;Brewer,S.A.Oil- and water-repellent coatings for fabrics and other surfaces,WO 9858117,1998.
    54.Coulson,S.R.;Woodward,I.S4 Badyal,J.P.S.;Brewer,S.A.;Willis,C.Ultralow surface energy plasma polymer films,Chem.Mater.,2000,12(7),2031-2038.
    55.Torstensson,M.;Ranby,B.;Hult,A.Monomerie surfaetants for surface modification of polymers,Macromolecules,1990,23(1),126-132.
    56.LeGrand,D.G.;Gaines,G.L.Surface activity of block copolymers of dimethylsiloxane and bisphenol-A carbonate in polycarbonate,Polym.Prepr.,1970,11(2),442-446.
    57.Yamashita,Y..Modification of polymer surfaces by surface active graft copolymers,Contemp.Top.Polym.Sci.,1984,4,463-477.
    58.Yamashita,Y.Synthesis and application of macromolecular surfactants by macromonomer technique,Polym.Prepr.,1986,27(2),27-28.
    59.Rempp,P.F.;Franta,E.Maeromonomers:synthesis,characterization and applications.Adv.Polym.Sci.,1984,58,1-53.
    1.Gan,H.;Herminghaus,S.;Lenz,P.and Lipowsky,R.Liquid morphologies on structured surfaces:from microchannels to microchips,Science,1999,253(5398),46-49.
    2.Chen,W.;Fadeev,Y.;Heieh,M.C.;Oner,D.;Youngblood,J.and McCarthy,T.J.Ultrahydrophobic and ultralyophobic surfaces:some comments and examples,Langmuir,1999,15(10),3395-3399.
    3.Nakajima,A.;Fujishima,A.;Hashimoto,K.and Watanabe,T.Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate,Adv.Mater.,1999,11(16),1365-1368.
    4.Onda,T.;Shibuichi,S.;Satoh,N.;Tsujii,K.Super-water-repellent fractal surfaces,Langmuir,1996,12(9),2125-2127.
    5.Young,T.Philos.Trans.R.Soc.London,1805,95,65.
    6.Wenzel,R.N.Surface roughness and contact angle,J.Phys.Colloid Chem.,1949,53,1466-1467.
    7.Cassie,A.B.D.Contact angles,Discuss.Farady Soc.,1948,(3),11-16.
    8.Nishino,T.;Meguro,M.;Nakamae,K.The lowest surface free energy based on -CF3 alignment,Langmuir,1999,15(13),4321-4323.
    9.Nakajima,A.;Fujishima,A.;Hashimoto,K.Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate,Adv.Mater.,1999,11(16),1365-1368.
    10.Jiang,L.;Liu,H.;Feng,L.et al.Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity,Langmuir,2004,20(14),5659-5661.
    11.Jiang,L.;Li,H.J.;Zhu,D.B.et al.Super-"amphiphobic" aligned carbon nanotube films,Angew.Chem.Int.Ed.,2001,40(9),1743-1746.
    12.李欢军,朱道本,王贤宝,宋延林,刘云圻,李前树,江雷,超疏水多孔阵列碳纳米管薄膜,高等学校化学学报,2001,22,759-761。
    13.Favia,P.;Cicala,G.;Milella,A.et al.Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges,Surface and Coatings Technology,2003,169-170,609-612.
    14.Coulson,S.R.;Woodward,I.;Badyal,J.P.S.Super-repellent composite fluoropolymer surfaces,J.Phys.Chem.B,2000,104(37),8836-8840.
    15.Wu,Y.Y.;Sugiruma,H.;Takai,O.et al.Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma-enhanced CVD at low substrate temperatures,Thin Solid Films,2003,435(1-2),161-164.
    16.Hozumi,A.Takai,O.Preparation of ultra water-repellent films by microwave plasma-enhanced CVD,Thin Solid Films,1997,303(1,2),222-225.
    17.Takai,O.;Hozumi,A.;Sugimoto,N.Coating of transparent water-repellent thin films by plasma-enhanced CVD,Journal of Non-Crystalline Solids,1997,218,280-285.
    18.Hozumi,A.;Takai,O.Preparation of silicon oxide films having a water-repellent layer by multiple-step microwave plasma-enhanced chemical vapor deposition,Thin Solid Films,1998,334,54-59.
    19.Rao,A.V.;Manish,M.K.;Amalnerkar,D.P.;et al.Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor,Journal of Non-Crystalline Solids,2003,330(1-3),187-195.
    20.Shang,H.M.;Wang,Y.;Limmer,S.J.Optically transparent superhydrophobic silica-based films,Thin Solid Films,2005,472(1-2),37-43.
    21.Tadanaga,K.;Katata,N.;Minami,T.Formation process of super-water-repellent Al_2O_3 coating films with high transparency by the sol-gel method,J.Am.Ceram.Soc.,1997,80(12),3213-3219.
    22.Tadanaga,K.;Kitamuro,K.;Matsuda,A.Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method,J.Sol-gel Sci.Technol.,2003,26,705-708.
    23.Pilotek,S.;Schmidt,H.K.Wettability of microstructured hydrophobic sol-gel coatings,J.Sol-gel Sci.Technol.,2003,26,789-792.
    24.Shirtcliffe,N.J.;McHale,G.;Newton,M.I.Intrinsically superhydrophobic organosilica sol-gel foams,Langmuir,2003,19(14),5626-5631.
    25.Nakajima,A.;Hashimoto,K.;Watanabe,T.Preparation of hard super-hydrophobic films with visible light transmission,Thin Solid Films,2000,376,140-143.
    26.Nakajima,A.;Hashimoto,K.;Watanabe,T.et al.Processing of roughened silica film by coagulated colloidal silica for super-hydrophobic coating,Journal of Materials Science Letters,2001,20,1975-1977.
    27.Xu,J.;Jiang,L.;Xie,Q.D.et al.Facile creation of a super-amphiphobic coating surface with bionic microstructure,Adv.Mater.,2004,16,302-305.
    28.郭兴林,谢琼丹,赵宁,梁松苗,王笃金,徐坚,,仿生高分子的研究进展,化学进展2004,16(6),1023-1029。
    29.Shang,H.M.;Wang,Y.;Limmer,S.J.Optically transparent superhydrophobic silica-based coatings,Proceedings of SPIE,2003,5224,70-77.
    30.Ren,S.;Yang,S.R.;Xiao,X.D.et al.Preparation and characterization of an ultrahydrophobic surface based on a stearic acid self-assembled monolayer over polyethyleneimine thin films,Surf.Sci.,2003,546,64-74.
    31.Shiu,J.Y.;Kuo,C.W.;Chen,P.L.Fabrication of tunable superhydrophobic surfaces,Proceedings of SPIE,2005,5648,325-332.
    32.T.Teranishi,K.Kamitani and T.Sunada,U.S.Patent 6511753,(2003).
    33.B.Mahltig,D.Fiedler and H.Bottcher,J.Sol-gel Sci.Technol.32(2004)219.
    34.Luzinov,I.;Brown,P.;Chumanov,G.and Minko,S.National Textile Center Annual Report(Project No.C04-CL06),2004.
    35.赵汇生,狄剑锋,织物的拒水拒油透气整理,中国个体防护装备2001,(3),17-19。
    36.瞿继卫,张良莹等,溶胶-凝胶法制备TiO_2-SiO_2复合薄膜的研究,功能材料,1998,29(3),284-286。
    37.Mahltig,B.;Fiedler D.and Bottcher,H.Antimicrobial sol-gel coatings,J.Sol-gel Sci.Technol.,2004,32,219-222.
    38.Schramm,C.;Binder,W.H.and Tessadri,R.Durable press finishing of cotton fabric with 1,2,3,4-butanetetracarboxylic acid and TEOS/GPTMS,J.Sol-gel Sci. Technol.,2004,29(3),155-165.
    39.Daoud,W.A.;Xin,J.H.and Tao,X.M.Superhydrophobic silica nanocomposite coating by a low-temperature process,J.Am.Ceram.Soc.,2004,87(9),1782-1784.
    40.Ramharack,R.;and Nguyen,T.H.Fluoropolymers of very low surface energies,J.Polymer Sci.,Part C,1987,25(3),93-98.
    41.Morita,M.Ogisu,H.and Kubo,M.Surface properties of perfluoroalkylethyl acrylate/n-alkyl acrylate copolymers,J.Appl.Polym.Sci.,1999,73(9),1741-1749.
    42.Kassis,C.M.;Steehler,J.K.;Betts,D.E.et al.XPS studies of fluorinatd acrylate polymers and block copolymer with polystyrene,Macromolecules,1996,29,3247-3254.
    43.于福喜,现代玻璃科学技术(下册):特种玻璃工艺,1990,上海科学技术出版社,上海,390-419。
    44.黄宪,王彦广,陈振初,新编有机合成化学,2002,化学工业出版社,北京。
    45.Shue,Y.K.;Carrzra,G.M.Amide bond surrogates:a general synthetic route to trans carbon-carbon double bond isosteres,Tetrahedron Lett.,1987,28,3225-3228.
    46.Kfishnamurthy,S.;Brown,H.C.Selective Reductions 27.Reaction of Alkyl Halides with Representative Complex Metal Hydrides and Metal Hydrides Comparison of Various Hydride Reducing Agents,J.Org.Chem.,1980,45,849-856.
    47.Sam,D.J.;Simmons,H.E.Crown polyether chemistry.Potassium permanganate oxidation in benzene,J.Am.Chem.Soc.1972,94,4042-4025.
    48.Boger,D.L.Modern Organic Chemistry,The Scripps Research Institute,2001.
    49.Achilefia S.;Mansuy L.;Selve C.;Thiebant S.Synthesis of 2H,2H-perfluoroalkyl and 2H-perfluoroalkenyl carboxylic acids and amides,J.Fluorine Chem.,1995,70(1),19-26.
    50.Tolle S.;Zuberi T.;Zuberi S.;Warisonoicharoen W.;Lawrence M.J.Physicochemical and solubilization properties of N,N-dimethyl-N-(3- dodecylcarbonyloxypropyl)amineoxide:a biodegradable non-ionic surfactant,J.Pharm.Chem.,89,2000,798-806.
    51.AATCC Technical Manual,Vol.78,2003.
    52.Castelvetro,V.;Francini,G.;Ciardelli,G.et al.Evaluating fluorinated acrylic latexes as textile water and oil repellent finishes,Textile Res.J.,2001,71(5),399-406.
    53.Brace N.O.Some approaches to the synthesis of fluorinated alcohols and esters.Ⅱ Use of fluoroalkyl iodides for the synthesis of fluoroalkyl alkanols,J.Fluorine Chem.,20,1982,313-327.
    54.Vincent J.M.;Rabion A.;Yachandra V.K.and Fish R.H.Fluorous biphasic catalysis:complexation of 1,4,7-[C_8F_(17)(CH_2)_3]_3-1,4,7- triazacyclononane with [M(C_8F_(17)(CH_2)_2CO_2)_2](M=Mn,Co)to provide perfluoroheptane- soluble catalysts for alkane and alkene functionalization in the presence of t-BuOOH and O_2,Angew.Chem.Int.Ed.Engl.,1997,36,2346-2349.
    1.Ha,J.W.;Park,I.J.;Lee,S.B.Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films,Macromolecules 2005,38,736-744.
    2.Owen,M.J.Surface tension of silicone release paper coatings,J.Coat.Technol.1981,53(679),49-53.
    3.Lindner,E.;A low surface flee energy approach in the control of marine biofouling,Biofouling,1992,6(2),193-205.
    4.李冀生,王美玲,党鸿辛,FM-110干膜润滑材料之研究,摩擦学学报,1993,13(3),208-217。
    5.Klinger,L.;Grifflth,J.R.;Rail,C.J.N.Fluoropolymer barriers to stress corrosion in optical fibers,Org.Coat.Appl.Polym.Sci.Proc.1983,48,407-411.
    6.Bonardi,C.Fluroracrylic telomers and their use as waterproofing and oilproofing products on diverse substrates,Eur.Pat 426430,1991.
    7.DeMarco,C.G.;McQuade,A.J.;Kennedy,S.J.Water-repellent finish,Mod.Text.Mag.1960,40(2),50-56.
    8.Matsumoto,Y.;Yoshida,K.;Ishida,M.A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices,Sensors and Actuators,1998,A66,308-314.
    9.田军,薛群基,低表面能涂层降低流体噪声的试验研究,应用材料学报,1999,17,114-115。
    10.孙亚斌,丁小斌等,智能表面,化学通报,2006,(4),252-260。
    11.Sawada,H.;Yoshioka,H.;Kawase,T.;Takahashi,H.;Abe,A.;Ohashi,R.Synthesis and applications of a variety of fluoroalkyl end-capped oligomers/silica gel polymer hybrids,J.Appl.Polym.Sci.2005,98(1),169-177.
    12.(a)Vaidya,A.;Chaudhury,M.J.Synthesis and surface properties of environmentally responsive segmented polyurethanes,Journal of Colloid and Interface Sci.2002,249(1),235-245;(b)Ward,D.R.S.WO 8505373 A1,1985 [Thoratec Laboratories Corp.,USA];(c)Takahara,A.;Okkema,A.Z.;Cooper,S.L.;Coury,A.J.Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes,Biomaterials 1991,12(3),324-334;(d)Okkema,A.Z.;Fabrizius,D.J.;Grasel,J.G.;Cooper,S.L.;Zdrahala,R.J.Bulk,surface and blood-contacting properties of polyether polyurethanes modified with polydimethylsiloxane macroglycols,Biomaterials 1989,10(1),23-32;(e)Deng,Z.;Schreiber,H.P.Orientation phenomena at polyurethane surfaces,J.Adhesion 1991,36(1),71-82;(f)Pike,J.K.;Ho,T.;Wynne,K.J.Water-induced surface rearrangements of poly(dimethylsiloxane-urea-Urethane)segmented block copolymers,Chem.Mater.1996,S(4),856-860.
    13.周钰明,黄静艳,徐群华,含氟整理剂的研究进展,现代化工,2001,21(5),9-12。
    14.Chen,I.I.;Sheu,Y.L.et al.Morphology of perfluoroalkylacrylate/stearyl methacrylate polymers and their effect on water/oil Repellency,J.Appli.Polym.Sci.,1997,63(7),903-909.
    15.Shimizu,T.;Tanaka,Y.;Kutsumizu,S.;Yano,S.Ordered structure of poly(1H,1H-fluoroalkyl alpha-fluoroacrylate)s,Macromolecules,1996,29,156-164.
    16.Mera,A.E.;Goodwin,M.;Pike,J.K.;Wynne,K.J.Synthesis,characterization and surface analysis using dynamic contact angle measurements of graft copolymers:poly(methyl methacrylate)-g-poly(dimethylsiloxane)and poly(methyl methacrylate)-g-poly(trifluoropropylmethylsiloxane),Polymer,1999,40(2),419-427.
    17.Tal'roze,R.V.;Rogozhina,E.V.;Kuptsov,S.A.;Murzabekova,T.G.;Rebrov,A.I.;Topchiev,D.A.Microphase-separated structures based on N-substituted polydiallylamines,Macromol.Rapid Communi.,1998,19(10),517-522.
    18.张蕊雪,周钰明,含氟丙烯酸酯织物整理剂的合成,东南大学研究生学报,2004,1(1),148-151。
    19.余樟清,李伯耿,潘祖仁,MBHD四元共聚物乳液的合成与表征,高分子材料科学与工程2000,16(4),46-49。
    20.孙尧,许国志,乳液合成配方设计原理,塑料制造,2007,(3),60-62。
    21.王国建,刘琳.建筑涂料与涂装,北京,中国轻工业出版社,2002,33-38。
    22.沈一丁,辛华,含氟丙烯酸酯共聚物乳液的制备及复配研究,有机硅氟资讯,2005,(6),23-26。
    23.Stepanova,T.P.Study of dipole moments and structure of fluorinated n-alkyl methacrylates,Zh.Fiz.Khim.,1984,58,1949-1954.
    24.Okawara,A.;Maekawa,T.;Ishida,Y.;Matsuo,M.Polym.Prepr.Jpn.,1991,10,389.
    25.Katano,Y.;Tomono,H.;Nakajima,T.Surface property of polymer films with fluoroalkyl side chains,Macromolecules,1994,27(8),2342-2344.
    1.张刚,崔占臣,杨柏,透明材料的表面改性与防雾防霜性,功能高分子学报,2000,13(1),97-102。
    2.赵镛一,张城勋,朴贞玉,防雾耐磨涂料组合物及用其涂覆的合成树脂制品,CN 1098429A,1995。
    3.张刚,崔占臣,杨柏,亲水性防雾防霜耐磨涂料及其应用,CN 1265408A,2002。
    4.吴红玲,张成,浅谈纺织品抗静电整理技术,四川丝绸,2007,(2),30-32。
    5.Sawada,H.;Gong,Y.-F.;Minoshima,Y.;Matsumoto,T.;Nakayama,M.;Kosugi,M.;Migita,T.Synthesis and surfactant properties of fluoroalkylated oligomers containing carboxy groups,J.Chem.Soc.,Chem.Commun.,1992,(7),537-538.
    6.Sawada,H.;Minoshima,Y.;Nakajima,H.Reactions of acrylic acid with fluoroalkanoyl peroxides-the formation of acrylic acid oligomers containing two fluoroalkylated end-groups,J.Fluorine Chem.,1993,65,169-173.
    7.Sawada,H.;Gong,Y.-F.;Matsumoto,T.;Kosugi,M.;Migita,T.Synthesis and surface properties of perfluoro-oxa-alkylated oligomers,Chem.Lett.,1992,(4),531-534.
    8.Sawada,H.;Sumino,E.;Oue,M.;Mitani,M.;Nakajima,H.;Nishida,M.;Moriya,Y.Synthesis of a novel polymeric perfluorooxaalkane diacyl peroxide.A convenient tool for the introduction of the perfluoro-oxa-alkylene unit,J.Chem.Soc.,Chem.Commun.,1994,(2),143-144.
    9.Sawada,H.;Sumino,E.;Oue,M.;Baba,M.;Kira,T.;Shigeta,S.;Mitani,M.;Nakajima,H.;Nishida,M.;Moriya,Y.Synthesis and surfactant properties of novel acrylic acid oligomers containing perfiuoro-oxa-alkylene units:an approach to anti-human immunodeficiency virus type-1 agents,J.Fluorine Chem.,1995,74(1),21-26.
    10.Sawada,H.;Yamaguchi,K.;Mitani,M.;Nakajima,H.;Nishida,M.;Moriya,Y.Synthesis and properties of fluoroalkylated vinyl alcohol oligomers,Polymer,1994,35(2),444-445.
    11.Sawada,H.;Tanba,K.-i.;Oue,M.;Kawase,T.;Mitani,M.;Minoshima,Y.;Nakajima,H.;Nishida,M.;Moriya,Y.Synthesis and properties of novel fluoroalkylated allyl alcohol oligomers,Polymer,1994,35(18),4028-4030.
    12.Sawada,H.;Tanba,K.-i.;Oue,M.;Kawase,T.;Hayakawa,Y.;Mitani,M.;Minoshima,Y.;Nishida,M.;Moriya,Y.Synthesis and surfactant properties of novel fluoroalkylated allyl- and diallylammonium chloride oligomers,Polymer,1995,36(10),2103-2105.
    13.Sawada,H.;Nakayama,M.Synthesis of fluorine-containing organosilicon oligomers,J.Chem.Soc.,Chem.Commun.,1991,(10),677-678.
    14.Sawada,H.;Minoshima,Y.;Matsumoto,T.;Nakayama,M.;Gong,Y.-F.;Kosugi,M.;Migita,T.Reactions of fluoroalkanoyl peroxides with organosilicon compounds,J.Fluorine Chem.,1992,59(2),275-283.
    15.Abe,M.;Matsuda,K.;Ogino,K.;Sawada,H.;Nishiyama,K.Reduction of the friction coefficient of liquid paraffin by novel fluorosilicones,Langrnuir 1993,9(11),2755-2757.
    16.Sawada,H.;Itoh,N.;Kawase,T.;Mitani,M.;Nakajima,H.;Nishida,M.;Moriya,Y.Synthesis and surfactant properties of novel amphiphilic fluorinated silicon oligomers containing carboxy groups,Langmuir,1994,10(4),994-995.
    17.Sawada,H.;Ohashi,A.;Oue,M.;Baba,M.;Abe,M.;Mitani,M.;Nakajima,H.Synthesis and surfactant properties of fluoroalkylated acrylic acid co-oligomers containing dimethylsilicone segments as potential inhibitors of HIV-1,J.Fluorine Chem.,1995,75(2),121-129.
    18.Galimberti,M.;Barchiesi,E.;Navarrini,W.α-Branched-perfluorodiacyl peroxides:Preparation and characterization,J.Fluorine Chem.,2005,126(4),587-593.
    19.Zhao,C.;Zhou,R.;Pan,H.;Jin,X.;Qu,Y.;Wu,C.;Jiang,X.Thermal decomposition of some perfluoro- and polyfluorodiacyl peroxides,J.Org.Chem.,1982,47(11),2009-2013.
    20.Sawada,H.Fluorinated organic peroxides - their decomposition behavior and applications,Rev.Heteroatom Chem.,1993,S,205-231.
    21.Wlassics,I.;Tortelli,V.;Sala,M.;Montrone,D.Perfluopolyether(PFPE)(poly)diacyl peroxides:synthesis and applications.J.Fluorine Chem.,2003,121(1),65-74.
    22.Butler,G.B.;Angelo,R.J.Preparation of polymerization of Uunsaturated quaternary ammonium compounds Ⅷ.A proposed alternating intermolecularintermolecular chain propagation.J.Am.Chem.Soc.,1957,79,3128-3131.
    23.Hawthome,D.G.;Solomon,D.H.J.Macromol.Sci.Chem.,1976,A10,923.
    24.Wandrey,C.;Jaeger,W.;Reinisch,G.;Hahn,M.;Engelhardt,G.;Jancke,H.;Ballschuh,D.Chemical structure of poly(dimethyldiallylammonium chloride),Acta Polym.,1981,32 177.
    25.Sawada,H.Fluorinated peroxides,Chem.Rev.1996,96(5),1779-1808.
    26.Lin,X.J.;Zhong,A.Y.;Chen,D.B.et al.Studies on self-assembly and characterization of poly-electrolytes and organic dyes,J.Appl.Polym.Sci.,2003,87,369-374.
    1.Whitesides,G.M.;Mathias,J.P.;Seto,C.T.Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures,Science,1991,254,1312-1319.
    2.Yuan,Q.H.;Wan,L.J.;Jude,H.et al.Self-organization of a self-assembled supramolecular rectangle,square,and three-dimensional cage on Au(111)Surfaces,J.Am.Chem.Soc.,2005,127,16279-16286.
    3.王俊,曾百肇,周性尧,自组装膜技术在电分析化学中的应用,分析科学学报,2000,16(3),253-258。
    4.Ulman,A.Formation and structure of self-sssembled monolayers,Chem.Rev.,1996,96(4),1533-1554.
    5.Bunker,B.C.;Pieke,P.C.;Tarasevich,B.J.;Campbell,A.A.;Fryxell,G.E.;Graff,G.L.;Song,L.;Liu,J.;Virden,J.W.;McVay,G.L.Ceramic thin-film formation on functionalized interfaces through biomimetic processing,Science,1994,264(5155),48-55.
    6.Gauthier,S.;Aime,J.P.;Bouhacina,T.;Attias,A.J.;Desbat,B.Study of gragted silane molecules on silica surface with an atomic force microscope,Langmuir,1996,12(21),5126-5137.
    7.Mcgovern,M.E.;Kallury,K.M.R.;Thompson,M.Role of solvent on the silanization of glass with octadecyltrichlorosilane,Langmuir,1994,10(10)3607-3614.
    8.Gao,W.;Reven,L.Solid-state NMR studies of self-assembled monolayers,Langmuir,1995,11(6),1860-1863.
    9.Silberzan,P.;Leger,L.;Ausserre,D.;Benattar,J.J.Silanation of silica surfaces.A new method of constructing pure or mixed monolayers,Langmuir,1991,7(8),1647-1651.
    10.Nakagawa,T.;Soga,M.Contact angle and atomic force microscopy study of reactions of n-alkyltrichlorosilanes with muscovite micas exposed to water vapor plasmas with various power densities,Jpn.J.Appl.Phys.,1997,36(11),6915-6921.
    11.徐国华,Ko.H igashitani,Formation of OTS self-assembled monolayer on glass surface investigated by AFM,高等学校化学学报,2000,21(8),1257-1260。
    12.Vaidya,R.;Simonson,R.J.;Cesarano,J.;Dimos,D.;Lopez,G.P.Formation and stability of self-assembled monolayers on thin films of lead zirconate titanate (PZT),Langmuir,1996,12(11),2830-2836.
    13.王栋,万立骏,王琛等,纳米科学研究中的扫描探针显微学,过程工程学报,2002,2(4),291-294。
    14.潘冰,董申,闫永达等,原子力显微镜在分子自组装研究中的应用,研究探索,2006,(5),68-70。
    15.王宁,丁克强,童汝亭等,席夫碱自组装单分子膜的电化学行为,物理化学 学报,2002,18(9),846-849。
    16.崔晓莉,江志裕,膜电阻对自组装膜修饰电极电化学行为的影响,电化学,2001,7(3),270-275。
    17.Ishida,T.;Choi,N.High-resolution x-ray photoelectron spectra of organosulfur monolayers on Au(111):S(2p)spectral dependence on molecular species,Langmuir,1999,15(20),6799- 6806.
    18.欧阳健明,LB膜原理与应用,广州,暨南大学出版社,1999,200-201。
    19.Ouyang,J.M.,Zheng,W.J.;Huang,N.X.X-ray photoelectron spectroscopy study of Langmuir-Blodgett films of N-octadecyl-8-hydroxy-2-quinoline carboxamide deposited from subphases containing metal ions,Thin Solid Films,1999,340(1,2),257-263.
    20.Huang,X.;Huang,H.;Wu,N.;Hu,R.;Zhu,T.;Liu,Z.Investigation of structure and chemical states of self-assembled Au nanoscale particles by angle-resolved x-ray photoelectron spectroscopy.Sur.Sci.,2000,459,183-190.
    21.顾惕人,马季铭等编著,表面化学,北京,科学出版社,1994,368-373。
    22.Ramharack,R.and Nguyen,T.H.,Fluoropolymers of Very Low Surface Energies,J.PolymerSci.,Part C,1987,25(3),93-98.
    23.Morita,M.;Ogisu,H.and Kubo,M.Surface Properties of Perfluoroalkylethyl acrylate/n-alkyl acrylate Copolymers,J.Appl.Polym.Sci.,1999,73(9),1741-1749.
    24.胡晓莉,雒建斌,温诗铸,磁头表面氟代硅烷自组装膜的制备和表征,清华大学学报(自然科学版),2006,46(5),621-624。
    25.谷国团,张治军,党鸿辛,二甲基-γ-全氟辛酰氧丙基硅烷自组装膜的制备及其摩擦学性能研究,摩擦学学报,2002,22(3),170-174。
    26.莫宇飞,白明武,全氟羧酸自组装分子润滑膜的纳米摩擦学性能的研究,润滑与密封,2007,32(11),18-21。
    27.Cho,W.K.;Park,S.;Jon,S.and Choi,I.S.Water-repellent coating:formation of polymeric self-assembled monolayers on nanostructured surfaces,Nanotechnology,2007,18,395602/1-395602/7.
    28.Li,D.;Ratner,M.A.;Marks,T.J.Chromophoric self-assembled multilayers. Organic superlattice approaches to thin-film nonlinear optical materials,J.Am.Chem.Soc.,1990,112,7389-7390.
    29.Huang,D.;Xiao,Z.D.;Gu,J.H.TiO2 thin films formation on industrial glass through self-assembly processing,Thin Solid Films,1997,305,110-115.
    30.Tsukruk,V.V.;Luzinov,I.;Julthongpiput,D.Sticky molecular surfaces:epoxysilane self-assembled monolayers,Langmuir,1999,15(9),3029-3032.
    31.Du,Y.Z.;Wood,L.L.;Saavedra,S.S.Growth behavior and structure of alkyltrichlorosilane monolayers bearing thioacetate and acetate tailgroups,Materials Science and Engineering C,Biomimetic and Supramolecular Systems,2000,7(2),161-169.
    32.Appelhans,D.;Ferse,D.;Adler,H.J.P.;Plieth,W.;Fikus,A.;Grundke,K.;Schmitt,F.J.;.Bayer,T.;Adolphi,B.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,161(1),203-212.
    33.Howarter,J.A.;Youngblood,J.P.Optimization of silica silanization by 3-aminopropyltriethoxysilane,Langmuir,2006,22(26),11142-11147.
    34.Thunemann,A.F.;Lochhaas,K.H.Self-assembly ofperfluorodecanoic acid with cationic copolymers:ultra-low energy surfaces and mesomorphous structures,Langmuir,1998,14,4898-4903.
    35.Okuzaki,H.;Eguchi,Y.;Osada,Y.Size effect of the alkyl chain of the surfactant on the chemomechanical movement of a polymer gel,Chem.Mater.,1994,6(10),1651-1653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700