氟磺酰亚胺碱金属盐和离子液体:合成、表征以及在锂离子电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非水电解液是锂(离子)电池的关键材料之一,与电池的循环寿命、耐高温性、安全性等关键性能密切相关。现已商业化的二次锂(离子)电池电解液主要由有机碳酸酯(如碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)和碳酸乙烯酯(EC)等)、LiPF6导电盐以及各种功能添加剂等组成。有机碳酸酯电解液存在溶剂易挥发和易燃等缺点,电池在不当使用时(如过充、短路等),易造成电池热失控,发生燃烧甚至爆炸等安全事故。LiPF6本征化学活性高,对水、热敏感,热分解产生的HF和PF5是影响电池循环寿命的重要因素。因此传统的碳酸酯和LiPF6电解液体系已成为二次储能电池大型化、高功率化的技术瓶颈。本论文以“氟磺酰亚胺”为中心,围绕锂离子电池电解质的安全性和循环性展开研究。主要工作包括氟磺酰亚胺碱金属盐(尤其是锂盐)、离子液体及相关前驱体的合成,氟磺酰亚胺离子液体和氟磺酰亚胺锂-碳酸酯电解液基础物化性质的研究,以及它们作为电解液在锂(离子)电池体系中的性能评价。
     论文第一章回顾了锂(离子)电池的发展历史,简要介绍锂离子电池的结构组成和工作原理。然后详尽综述了锂离子电池电解液的溶剂、导电锂盐,以及离子液体电解液的研究进展,同时分析了锂离子电池的组成材料与电池的安全性能和循环寿命之间的影响关系。
     在第二章中,以CnF2n+1SO2NH2、SOC12和CISO3H为原料制备氯磺酰亚胺([HN(SO2C1)(SO2CnF2n+1)]),随后采用SbF3进行氟化反应得到氟磺酰亚胺([HN(SO2F)(SO2CnF2n+1)])。在CH3CN溶剂中,由氟磺酰亚胺和碳酸盐中和制备钾盐、铷盐和铯盐。通过氟磺酰亚胺钾在无水CH3CN中与LiC1O4或者NaC1O4交换制备相应的锂盐或者钠盐。各步反应产物的结构采取1H NMR(核磁共振)、19F NMR、FTIR(红外光谱)、ESI-MS(质谱)和EA(元素分析)进行了表征。碱金属盐的热性能由DSC(差示扫描量热)和TG(热重)进行分析,其中氟磺酰亚胺碱金属盐体现出较低的熔点(94-198℃)和较高的热分解温度(223-369℃)。
     在第三章中,碘(氯)化锍盐([SR1R2R3]+ or SR1; R1,R2, R3=alkyl or CH3OCH2CH2)与[N(SO2F)(SO2CnF2n+1)]-组合成85个新型的锍盐离子液体,并通过1H NMR、19FNMR、ESI-MS和EA对产物结构进行了表征。锍盐离子液体体现出低粘度、高电导率的优越性质,但是其还原电位较高(大约-2.50 V vs. Fc/Fc+),分解温度在236-312℃之间。引入醚键可以有效较低离子液体的粘度和玻璃化温度,提高电导率,但是同时削弱了离子液体的耐氧化还原性能。研究表明S222FSI-LiFSI (0.32 mol kg-1)电解液可以有效抑制$222+在低电位下的电化学还原反应,在Ni电极表面可以观察到可逆的锂沉积/溶出过程。
     在第四章中,系统研究了Li[N(SO2F)(SO2CnF2n+1)]在碳酸丙烯酯(PC)电解液中(c=1.0 M)的物化和电化学性质。研究结果表明,随着[N(SO2F)(SO2CnF2n+1)]-氟碳链的增长,电解液的粘度增大,电导率下降,氧化电位(Eox)和阴离子的HOMO值(-Ehomo)同步提高,在-150-30℃C区间内电解液仅存在玻璃化转变。Li[N(SO2F)(SO2CF3)] (LiFTFSI)在电位高于3.7 V (vs. Li+/Li)时对铝箔表现出严重的腐蚀性。恒电位直流极化测试表明Li[N(SO2F)2] (LiFSI)和Li[N(SO2F)(SO2C2F5)] (LiFPFSI)在4.5 V (vs. Li+/Li)的条件下对铝箔不能长时间保持稳定,而Li[N(SO2F)(SO2C4F9)] (LiFNFSI)、Li[N(SO2F)(SO2C6F13)] (LiFHFSI)和Li[N(SO2F)(SO2C8F17)] (LiFOFSI)对A1箔的电化学行为与LiPF6类似,表现出明显的钝化性能。LiFNFSI-PC电解液在0.01-2.00 M浓度范围内,粘度、电导率与浓度的关系分别较好地符合Jones-Dole以及Casteel-Amis关系式。此外,较高的∧imp/∧diff比值表明LiFNFSI在PC溶液中具有很好的解离性能,可以有效提高电解液的离子导电性和Li+离子迁移数。
     在第五章中,对比研究了LiFSI和LiPF6在EC/EMC (3:7, v/v)电解液体系中相关的性质。与LiPF6相比,LiFSI电解液具有略低的粘度、较高的电导率和锂离子迁移数,以及更优越的耐水解性能,且氧化电位高达5.6 V (vs. Li+/Li)。当电解液中C1-含量较低时,对A1箔表现出较好钝化性。基于LiFSI电解液的Li/LiCoO2半电池和graphite/LiCoO2锂离子电池比相同条件下的LiPF6电池体现出更优越的循环和倍率性能。另外,研究表明LiFSI电解液中的H20含量达到1000 ppm时,graphite/LiCoO2电池依然可以正常工作;电解液中适当的Na+离子含量对电池的循环性能影响较小;而K+则导致致命的破坏性。
     在第六章中,研究了一种新型的导电盐LiFNFSI,发现其在碳酸酯电解液中具有优越的高温特性。在-20-60℃温度范围内,LiFNFSI-EC/EMC (3:7, v/v)电解液的电导率与LiC1O4相当,氧化电位为5.7 V (vs. Li+/Li),对Al箔体现出良好的钝化性能。LiFNFSI的热分解温度为220℃,其电解液对水和热的稳定性明显优于LiPF6,在85℃放置两周时基本不变色,不分解。以LiFNFSI为导电盐的graphite/LiCoO2电池比LiPF6的电池具有更优越的室温或者高温(60℃)循环性能,以及高温储存性能。
The commercial non-aqueous electrolyte is typically a mixture of carbonated solvents (such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and ethylene carbonate (EC)), LiPF6 and varieties of functional additives, which makes up the key material for Li-ion batteries (LIBs). Several crucial properties, such as the cycling life, resilience to elevated temperature and safety problems, are close relative to the electrolyte because of the volatile and inflammable organic solvents and the reactive LiPF6. When LIBs are under abusive conditions, the potential exists to heat a cell beyond its thermal stability limit, and then thermal runaway would be initiated, sometimes resulting in combustion and even explosion incidents. Meanwhile, HF and PF5 would be generated, which have been certified as the main factors to break down the cycling performance of LIBs, once the LiPF6-based electrolyte is thermal operated or contaminated by moisture or alcohol impurities. Therefore, the conventional non-aqueous electrolytes based on carbonates and LiPF6 have become the bottle-neck of rechargeable energy-storage devices with large energy density and high power source. A serial lithium salts and ionic liquids (ILs) based on the weakly-coordinating fluorosulfonylimide anions (n=0,1,2,4,6,8) were designed and prepared in this thesis. Their physicochemical, electrochemical properties and application in the field of LIBs electrolytes were also investigated extensively.
     In chapter 1, the development and status corresponding to LIBs, as well as their constituents and operation mechanism, were introduced. Afterward the electrolyte reviews, including the organic solvents, conductive salts and ionic liquids, were detained. And the influencing factors of the safty issues and capacity fading for LIBs were also analyzed.
     In chapter 2, the intermediates of HN(SO2C1)(SO2CnF2n+1) would be obtained by reaction of CnF2n+1SO2NH2, SOC12 and CISO3H in one pot, subsequently to derive HN(SO2F)(SO2CnF2n+1) by fluorination with SbF3. The alkali salts of potassium, rubidium and cesium were prepared according to the neutralization of HN(SO2F)(SO2CnF2n+1) with alkali carbonates. Meanwhile, the lithium and sodium salts should be received by exchanging KN(SO2F)(SO2CnF2n+1) with LiC104 or NaC104 in CH3CN solvent for the purpose of excluding the H2O contamination. All the products were selectively conformed by means of 1H NMR,19F NMR, ESI-MS, FT-IR and EA. And the thermal properties of the alkali salts were characterized using DSC and TG methods, with the results that Tm ranging form 94 to 198℃, and Td from 223 to 369℃, respectively.
     Eighty-five novel ILs comprised of the sulfonium cations ([SR1R2R3]+ or SR1; R1, R2, R3 =alkyl or CH3OCH2CH2) and [N(SO2F)(SO2CnF2n+1)]- anions were prepared in chapter 3, and conformed employing 1H NMR,19F NMR, ESI-MS and EA analytical methods. The sulfonium serial ILs generally showed low viscosity and high conductivity, and would decompose from 236 to 312℃. However, they were more weakly resistant toward reduction (ca.-2.50 V vs. Fc+/Fc) as compared with the tetraalkyl ammonium based salts. As introducing ether function to the sulfonium cations, the results indicated that it would tend to bring down the viscosity and glass transition temperature and increase the ionic conductivity, while their resistance to anodic oxidation and cathodic reduction was weakened simultaneously. A reverse Li+ deposit-dissolve process on the Ni electrode was detected for S222FSI-LiFSI (0.32 mol kg-1) electrolyte, indicating an effective SEI film would be formed on the Ni electrode to restrain the S222+ cation decomposing, which was absolutely different from S222TFSI-LiTFSI electrolyte.
     Solutions of Li[N(SO2F)(SO2CnF2n+1)] dissolved in PC solvent were studied intensively in chapter 4. Several regulations, that the viscosity of the electrolyte increasing, the conductivity decreasing, and the oxidation potential improving together with the HOMO values, were found as the fluoroalkyl chain was enlarged. And only glass transitions were observed in the temperature range of-150 to 30℃. Li[N(SO2F)(SO2CF3)] (LiFTFSI) exhibited severe corrosion to Al foil with an initial potential of 3.7 V (vs. Li+/Li) by cyclic voltammetry (CV) measurement. Li[N(SO2F)2] (LiFSI) and Li[N(SO2F)(SO2C2F5)] (LiFPFSI) were testified unstable when polarized at 4.5 V (vs. Li+/Li) for long time, whereas anions with longer fluoroalkyl chains, such as Li[N(SO2F)(SO2C4F9)] (LiFNFSI)、Li[N(SO2F)(SO2C6F13)] (LiFHFSI) and Li[N(SO2F)(SO2C8F17)] (LiFOFSI), showed similar electrochemical response toward Al electrode to LiPF6. A serial of LiFNFSI-PC electrolytes with concentrations from 0.01 to 2.00 M were also investigated. Correlations of the concentration with viscosity (or conductivity) was perfectively fitted by Jones-Dole (or Casteel-Amis) function. And the large values of∧imp/∧diff implied a high dissociation degree for LiFNFSI in PC solution, which was beneficial for high ionic conductivity and Li+ transference number.
     In chapter 5, lithium bis(fluorosulfonyl)imide (LiFSI) has been studied in comparison with LiPF6 in EC/EMC (3:7, v/v) electrolyte, in terms of the physicochemical and electrochemical properties. It exhibited far superior stability towards hydrolysis than LiPF6. Solution comprised of LiFSI was less viscous, more conductive and provided with larger Li+ transference number than that containing LiPF6. The stability of LiFSI-based electrolyte on the Pt electrode was detected highly up to 5.6 V (vs. Li+/Li). And a non-corrosion performance toward Al in the high potential region (3.0~5.0 V vs. Li+/Li) had been confirmed for high purity LiFSI electrolytes using CV, SEM and chronoamperometry, whereas Al corrosion indeed occurred in the LiFSI-based electrolytes tainted with trace amounts of LiCl (50 ppm). With high purity, LiFSI outperformed LiPF6 in both Li/LiCoO2 and graphite/LiCoO2 cells. Furthermore, in contrary to LiPF6, graphite/LiCoO2 cell constituted of LiFSI-based electrolyte operated normally, even though 1000 ppm H2O was contained. Appropriate Na+ content in the LiFSI electrolyte hardly affected the cycling performance of the graphite/LiCoO2 cell, while K+ added with 0.2 M content almost destroyed the cell.
     A novel lithium salt, lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imde (LiFNFSI), was investigated as conducting salt for lithium-ion cells in chapter 6. The neat salt (Td:220℃) and the corresponding electrolyte showed better thermal stability than LiPF6. Contrary to the absolutely decomposition of LiPF6 in EC/EMC (3:7, v/v) solvent after aging at 85℃for 2 w, LiFNFSI electrolyte stayed colorless and transparent at the same condition. The electrolyte comprised of 1.0 M LiFNFSI in EC/EMC (3:7, v/v) showed high conductivity comparable to LiC1O4, good electrochemical stability, and would not corrode Al collector. At both room temperature (25℃) and elevated temperature (60℃), the graphite/LiCoO2 cells with LiFNFSI exhibited better cycling performances than those with LiPF6. These outstanding properties of LiFNFSI made it an attractive candidate to overcome the rapid capacity fading of LIBs at elevated temperatures.
引文
[1]郑洪河.锂离子电池电解质(第一版).北京:化学工业出版社,2007.4-5
    [2]吴宇平,张汉平,吴峰等.聚合物锂离子电池.(第一版).北京:化学工业出版社,2007.328-334
    [3]Whittingham M. S., Electrical energy storage and intercalation chemistry. Science,1976,192 (4244): 1126~1127
    [4]Whittingham M. S., Chemistry of intercalation compounds:Metal guests in chalcogenide hosts. Prog, Solid State Chem.,1978,12 (1):41~199
    [5]Armand M. B., In Materials for Advanced Battery. Plenum, New York,1980,145
    [6]Mizushima K., Jones P. C., Wiseman P. J., et al., Lithium cobalt oxide (LixCoO2) (0    [7]Yamahira T., Kato H., Anzai M., Cathodes for secondary nonaqueous-electrolyte batteries.1989, EP391281
    [8]Nagamura T., Tazawa K., Prog. Batteries Sol. Cells,1990,9:20
    [9]郑洪河.锂离子电池电解质.(第一版).北京:化学工业出版社,2007.12-16
    [10]Xu K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev.,2004, 104 (10):4303~4417
    [11]Fry A. J., Synthetic Organic Electrochemistry. London:John Wiley,1989
    [12]Aurbach D., Nonaqueous electrochemistry. New York:Marcel Dekker, Inc.,1999
    [13]Zoski C. G., Handbook of Electrochemistry. UK:Elesevier,2007
    [14]郑洪河.锂离子电池电解质.(第一版).北京:化学工业出版社,2007.23-25
    [15]Xu K., Lee U., Zhang S. S., et al., Chemical Analysis of Graphite/Electrolyte Interface Formed in LiBOB-Based Electrolytes. Electrochem. Solid-State Lett.,2003,6 (7):A144~A148
    [16]Xu K., Zhang S. S., Poese B. A., et al., Lithium Bis(oxalato)borate Stabilizes Graphite Anode in Propylene Carbonate. Electrochem. Solid-State Lett.,2002,5 (11):A259~A262
    [17]Zhuang G. V., Xu K., Jow T. R., et al., Study of SEI Layer Formed on Graphite Anodes in PC/LiBOB Electrolyte Using IR Spectroscopy. Electrochem. Solid-State Lett.,2004,7 (8):A224~A227
    [18]Lanz M., Novak P., DEMS study of gas evolution at thick graphite electrodes for lithium-ion batteries:the effect of y-butyrolactone. J. Power Sources,2001,102 (1-2):277~282
    [19]Takami N., Ohsaki T., Hasebe H., et al., Laminated Thin Li-Ion Batteries Using a Liquid Electrolyte. J. Electrochem. Soc.,2002,149 (1):A9~A12
    [20]Foos J. S., Stolki T. J., A new ether solvent for lithium cells. J. Electrochem. Soc.,1988,135 (11): 2769-2771
    [21]Watanabe Y., Kinnoshita S., Wada S., et al., Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells. J. Power Sources,2008,179 (2):770~779
    [22]Wrodnigg G. H., Wrodnigg T., Besenhard J. O., et al., Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochem. Commun.,1999,1 (3-4):148~150
    [23]Wrodnigg G. H., Besenhard J. O., Winter M., Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J. Electrochem. Soc.,1989,146 (2):470~472
    [24]Wrodnigg G. H., Besenhard J. O., Winter M., Cyclic and acyclic sulfites:new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?. J. Power Sources,2001,97-98:592~594
    [25]Aravindan V., Gnanaraj J., Madhavi S., et al., Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries. Chem, Eur. J.,2011,17 (51):14326~14346
    [26]郑洪河.锂离子电池电解质.(第一版).北京:化学工业出版社,2007.32-42
    [27]Aurbach, D., Ein-Eli, Y., Markovsky, B., et al., The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries. II. Graphite electrodes. J. Electrochem. Soc., 1995,142 (9):2882~2990
    [28]Aurbach, D., Zaban, A., Schecheter, A., et al., The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries. I. Li metal anodes. J. Electrochem. Soc.,1995, 142 (9):2873~1982
    [29]Li Q., Sun H. Y., Takeda Y, et al, Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte. J. Power Sources,2001,94 (2):201~ 205
    [30]Choi N.-S., Lee Y. M., Park J. H., et al., Interfacial enhancement between lithium electrode and polymer electrolytes. J. Power Sources,2003,119-121,610~616
    [31]Angell C. A., Liu C., Sanchez E., Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature,1993,362 (6416):137~139
    [32]Bretherick L., Solvated metal perchlorates. Chem. Eng. News,1990,68 (22):4
    [33]Desjardins C. D., Cadger T. G., Salter R. S., et al., Lithium cycling performance in improved lithium hexafluoroarsenate/2-methyltetrahydrofuran electrolytes. J. Electrochem. Soc.,1985,132 (3):529~ 533
    [34]Abraham K. M., Goldman J. L., Natwig D. L., Characterization of ether electrolytes for rechargeable lithium cells. J. Electrochem. Soc.,1982,129 (11):2404~2409
    [35]Aurbach D., Ein-Ely Y, Zaban A., The surface chemistry of lithium electrodes in alkyl carbonate solutions. J. Electrochem. Soc.,1994,141 (1):L1~L3
    [36]Nanjundiah C., Goldman J. L., Dominey L. A., et al., Electrochemical stability of lithium M hexafluoride (M=phosphorus, arsenic, antimony) in tetrahydrofuran and sulfolane. J. Electrochem. Soc.,1988,135 (12):2914~2917
    [37]Peled E., Golodnitsky D., Menachem C., et al., Advanced tool for the selection of electrolyte components for rechargeable lithium batteries. J. Electrochem. Soc.,1998,145 (10):3482~3486
    [38]Takata K., Morita M., Matsuda Y., et al., Cycling characteristics of secondary lithium electrode in lithium tetrafluoroborate (LiBF4)/mixed ether electrolytes. J. Electrochem. Soc.,1985,132 (1):126~ 128
    [39]Ue M., Fujii T., Zhou Z. B., et al., Electrochemical properties of Li[CnF2n+1BF3] as electrolyte salts for lithium-ion cells. Solid State Ionics,2006,177 (3-4):323~331
    [40]Zhang S. S., Xu K., Jow T. R., Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. J. Solid State Electrochem.,2003,7 (3):147~151
    [41]Zhang S. S., Xu K., Allen J. L., et al., Effect of propylene carbonate on the low temperature performance of Li-ion cells. J. Power Sources,2002,110 (1):216~221
    [42]Koch V. R., Young J. H., The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J. Electrochem. Soc.,1978,125 (9):1371~1377
    [43]张晰岳,周园,邓小宇等.锂离子电池LiBF4基液体电解质研究进展.化学通报,2007,(12):929-935
    [44]Zhang S. S., Xu K., Jow T. R., Study of LiBF4 as an electrolyte salt for a Li-ion battery. J. Electrochem. Soc.,2002,149 (5):A586~A590
    [45]Takami N., Ohsaki T., Hasebe H., et al., Laminated thin Li-ion batteries by using a liquid electrolyte. J. Electrochem. Soc.,2002,149 (1):A9~A12
    [46]Zhang S. S., Xu K., Jow T. R., A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Commun.,2002,4 (11):928~932
    [47]Wietelmann U., Lischka U., Wegner M., Lithium bisoxalatoborate, the production thereof and its use as a conducting salt,2003, US 6506516
    [48]Xu W., Angell C. A., LiBOB and its derivatives. Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem. Solid-State Lett.,2001,4 (1):E1~E4
    [49]Xu K., Zhang S. S., Jow T. R., et al., Li[bis(oxalato)borate] as salt for lithium-ion batteries a possible solution for high temperature operation. Electrochem. Solid-State Lett.,2002,5 (1):A26~A29
    [50]Xu K., Zhang S. S., Lee U., et al., LiBOB:Is it an alternative salt for lithium ion chemistry?. J. Power Sources,2005,146 (1-2):79~85
    [51]Xu K., Lee U., Zhang S. S., et al.,208th ECS Meeting. LosAngeles,2005, Abstract No.219
    [52]薛照明,陈春华.锂离子电池非水电解质锂盐的研究进展.化学进展,2005,17(3):399-405
    [53]Xu W., Shusterman A. J., Marzke R., et al., LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications. J. Electrochem. Soc.,2004,151 (4): A632-A638
    [54]Lee H. S., Ma Z. F., Yang X. Q., et al., Synthesis of a Series of Fluorinated Boronate Compounds and Their Use as Additives in Lithium Battery Electrolytes. J. Electrochem. Soc.,2004,151 (9):A1429~ A1435
    [55]Zhang S. S., An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun.,2006,8 (9):1423~1428
    [56]Yang L., Furczon M. M., Xiao A., et al., Effect of impurities and moisture on lithium bisoxalatoborate (LiBOB) electrolyte performance in lithium-ion cells. J. Power Sources,2010,195 (6):1698~1705
    [57]Li J., Xie K., Lai Y, et al., Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells. J. Power Sources,2010,195 (16):5344~5350
    [58]Zhou Z. B., Takeda M., Fujii T., et al., Li[C2F5BF3] as an Electrolyte Salt for 4 V Class Lithium-Ion Cells. J. Electrochem. Soc.,2005,152 (2):A351~A356
    [59]Zhang S. S., LiBF3Cl as an alternative salt for the electrolyte of Li-ion batteries. J. Power Sources, 2008,180(1):586~590
    [60]Sloop S. E., Kerr J. B., Kinoshita K., The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. J. Power Sources,2003,119-121:330~337
    [61]庄全超,武山,刘文元.锂离子电池电解液杂质的影响及去除技术.电池工业,2006,11(1):48-52
    [62]Gummody R. J., Thackeray M. M., An investigation of spinel-related and orthorhombic LiMnO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc.,1994,141:1178~1182
    [63]Aurbach D., Markovsky B., Schechter A., et al., A comparative study of sythetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc.,1996,143 (12):3809~3819
    [64]Aurbach D., Zinigrad E., Cohen Y., et al., A short review of failure mechaniums of lithium metal and lithiated graphite anodes in liquid electrolyte solution. Solid State Ionics,2002,148 (3-4):405~416
    [65]Aurbach D., Weissman I., Zaban A., et al., On the role of water contamination in rechargeable Li batteries. Electrochim. Acta,1999,45:1135~1140
    [66]Aurbach D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources,2000,89 (2):206~218
    [67]Campion C. L., Li W., Lucht B. L., Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries. J. Electrochem. Soc.,2005,152 (12):A2327~A2334
    [68]Amatucci G. G., Tarascon J. M., Klien L. C., et al., Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics,1996,83 (1-2):167~173
    [69]Peled E., Golodnitsky D., Ardel G., et al., The SEI model-application to lithium-polymer electrolyte batteries. Electrochim. Acta,1995,40 (13-14):2197~2204
    [70]Roth E. P., Doughty D. H., Thermal abuse performance of high-power 18650 Li-ion cells. J. Power Sources,2004,128 (2):308~318
    [71]Gnanaraj J. S., Zinigrad E. Z., Levi M. D., et al., A comparison among LiPF6, LiPF3(CF2CF3)3 (LiFAP), and LiN(SO2CF2CF3)2 (LiBETI) solutions:electrochemical and thermal studies. J. Power Sources,2003,119-121:799~804
    [72]Gnanaraj J. S., Zinigrad E., Asraf L., et al., On the use of LiPF3(CF2CF3)3 (LiFAP) solutions for Li-ion batteries. Electrochemical and thermal studies. Electrochem. Commun.,2003,5 (11):946~ 951
    [73]Aurbach D., Gnanaraj J. S., Geissler W., et al., Vinylene Carbonate and Li Salicylatoborate as Additives in LiPF3(CF2CF3)3 Solutions for Rechargeable Li-Ion Batteries. J. Electrochem. Soc.,2004, 151 (1):A23~A30
    [74]Gnanaraj J. S., Levi M. D., Gofer Y., et al., LiPF3(CF2CF3)3:A Salt for Rechargeable Lithium Ion Batteries. J. Electrochem. Soc.,2003,150 (4):A445~A454
    [75]Schmidt M., Heider U., Kuehner A., et al., Lithium fluoroalkylphosphates:a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J. Power Sources,2001,97-98:557~560
    [76]Handa M., Suzuki M., Suzuki J., et al., A new lithium salt with a chelate complex of phosphorus for lithium battery electrolytes. Electrochem. Solid-State Lett.,1999,2 (2):60~62
    [77]Xiao A., Yang L., Lucht B. L., Thermal Reactions of LiPF6 with Added LiBOB Electrolyte Stabilization and Generation of LiF4OP. Electrochem. Solid-State Lett,2007,10 (11):A241~A244
    [78]Xu M., Xiao A., Li W., et al., Investigation of Lithium Tetrafluorooxalatophosphate as a Lithium-Ion Battery Electrolyte. Electrochem. Solid-State Lett.,2009,12 (8):A155~A158
    [79]Qin Y., Chen Z., Liu J., et al., Lithium Tetrafluoro Oxalato Phosphate as Electrolyte Additive for Lithium-Ion Cells. Electrochem. Solid-State Lett,2010,13 (2):A11~A14
    [80]Xu M., Xiao A., Li W., et al., Investigation of Lithium Tetrafluorooxalatophosphate [LiPF4(C2O4)] as a Lithium-Ion Battery Electrolyte for Elevated Temperature Performance. J. Electrochem. Soc.,2010, 157(1):A115~A120
    [81]Ue M., Mori S., Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate-Ethyl Methyl Carbonate Mixed Solvent. J. Electrochem. Soc.,1995,142 (8):2577~2581
    [82]a)聂进,赵忠明,小林宏等.一类新型多氟氮超酸锂盐电解液的性质研究.华中理工大学学报1996,24(7):96-98b) Kita F., Kawakami A., Nie J., et al. On the characteristics of electrolytes with new lithium imide salts. J. Power Sources,1997,68 (2):307~310
    [83]Kita F., Sakata H., Sinomoto S., et al., Characteristics of the electrolyte with fluoro organic lithium salts. J. Power Sources,2000,90 (1):27~32
    [84]Foropoulos J., DesMarteau D. D., Synthesis, Properties, and Reactions of Bis((trifluoromethyl)sulfonyl) Imide, (CF3SO2)2NH. Inorg. Chem.,1984,23 (23):3720~3723
    [85]Armand M. B., El Kadiri C. E. M. F., Bisperhaloacyl or bisperhalosulfonyl imides of alkali metals, their solid solutions with polymers, and their use as battery electrolytes.1985, US 4505997
    [86]Ishikawa M., Kamohara H., Morita M., et al., Li(CF3SO2)2N as an electrolytic salt for rechargeable lithium batteries with graphitized mesocarbon microbeads anodes. J. Power Sources,1996,62 (2): 229-232
    [87]Krause L. J., Lamanna W., Summerfield J., et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources,1997,68 (2):320~325
    [88]Kanamura K., Anodic oxidation of nonaqueous electrolytes on cathode materials and current collectors for rechargeable lithium batteries. J. Power Sources,1999,81-82:123~129
    [89]Nakajima T., Mori M., Gupta V., et al., Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sci.,2002,4 (11-12):1385~1394
    [90]Wang X., Yasukawa E., Mori S., Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochim. Acta,2000,45 (17):2677~2684
    [91]Zhang X, Devine T. M., Factors That Influence Formation of AlF3 Passive Film on Aluminum in Li-Ion Battery Electrolytes with LiPF6. J. Electrochem. Soc.,2006,153 (9):B375~B383
    [92]Garcia B., Armand M., Aluminium corrosion in room temperature molten salt.J. Power Sources, 2004,132 (1-2):206~208
    [93]Lux S. F., Schmuck M., Appetecchi G. B., et al., Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes:II. Evaluation of specific capacity and cycling efficiency and stability at room temperature. J. Power Sources,2009,192 (2):606~611
    [94]Zhou Q., Henderson W. A., Appetecchi G B., et al., Physical and Electrochemical Properties of N-Alkyl-N-methylpyrrolidinium Bis(fluorosulfonyl)imide Ionic Liquids:PY13FSI and PY14FSI. J. Phys. Chem. B,2008,112 (43):13577~13580
    [95]郑洪河.锂离子电池电解质.(第一版).北京:化学工业出版社,2007.237-261
    [96]余碧涛,李福,仇卫华.锂电池离子液体电解质的研究进展.化工进展,2004,23(11):11951198
    [97]郑洪河,石静,刘云伟等.室温离子液体电解质与锂离子电池碳负极材料的相容性.化学通报, 2008,(7):488-494
    [98]Abbott A. P., McKenzie K. J., Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys.,2006,8 (37):4265~4279
    [99]Sakaebe H., Matsumoto H., Tatsumi K., Application of room temperature ionic liquids to Li batteries. Electrochim. Acta,2007,53 (3):1048~1054
    [100]Ishikawa M., Sugimoto T., Kikuta M., et al., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources,2006, 162(1):658~662
    [101]Sugimoto T., Atsumi Y., Kikuta M., et al., Ionic liquid electrolyte systems based on bis(fluorosulfonyl)imide for lithium-ion batteries. J. Power Sources,2009,189 (1):802~805
    [102]Sugimoto T., Kikuta M., Ishiko E., et al., Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties. J. Power Sources,2008, 183(1):436~440
    [103]Fung Y. S., Zhou R. Q., Room temperature molten salt as medium for lithium battery. J. Power Sources,1999,81-82:891~895
    [104]Ui K., Yamamoto K., Ishikawa K., et al., Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte:Performance of electroplated Al film negative electrode. J. Power Sources,2008,183 (1):347~350
    [105]Wilkes J. S., Zaworotko M. J., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem. Commun.,1992, (13):965~967
    [106]Bonhote P., Dias A.-P., Armand M., et al., Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem.,1996,35 (5):1168~1178
    [107]Matsumoto H., Sakaebe H., Tatsumi K., Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte.J. Power sources,2005,146 (1-2):45~50
    [108]Nakagawa H., Izuchi S., Kuwana K., et al., Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J. Electrochem. Soc.,2003,150 (6): A695-A670
    [109]Garcia B., Lavallee S., Perron G., et al., Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta,2004,49 (26):4583~4588
    [110]Diaw M., Chagnes A., Carre B., et al., Mixed ionic liquid as electrolyte for lithium batteries. J. Power Sources,2005,146 (1-2):682~684
    [111]Chagnes A., Diaw M., Carre B., et al., Imidazolium-organic solvent mixtures as electrolytes for lithium batteries. J. Power Sources,2005,145 (1):82~88
    [112]Hozapfel M., Jost C., Noyak P., Stable cycling of graphite in an ionic liquid based electrolyte. Chem. Commun.,2004, (18):2098~2099
    [113]Hozapfel M., Jost C., Schwab A. P., et al., Stabilization of lithiated graphite in an electrolyte based on ionic liquids:an electrochemical and scanning electron microscopy study. Carbon,2005,43 (7): 1488-1498
    [114]Matsumoto H., Sakaebe H., Tasumi K., et al., Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]-. J. Power Sources,2006,160 (2):1308~1313
    [115]Guerfi A., Duchesne S., Kobayashi Y., et al., LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide [FSI]-for Li-ion batteries. J. Power Sources,2008,175 (2):866~ 873
    [116]Seki S., Kobayashi Y., Miyashiro H., et al. Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J. Phys. Chem. B,2006,110 (21):10228~10230
    [117]Egashira M., Todo H., Yoshimoto N., et al., Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries.J. Power Sources,2007,174 (2):560~564
    [118]Katayama Y., Yukumoto M., Miura T., Electrochemical intercalation of lithium into graphite in room-temperature molten salt containing ethylene carbonate. Electrochem. Solid-State Lett.,2003,6 (5):A96~A97
    [119]Sakaebe H., Matsumoto H., N-Methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery. Electrochem. Commun.,2003,5 (7):594~598
    [120]Sakaebe H., Matsumoto H., Tatsumi K., Discharge-charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation-Effect of the structure. J. Power Sources,2005,146 (1-2):693~697
    [121]Egashira M., Okada S., Yamaki J.-I., et al., The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J. Power Sources, 2004,138 (1-2):240~244
    [122]Egashira M., Nakagawa M., Watanabe I., et al., Cyano-containing quaternary ammonium-based ionic liquid as a 'co-solvent' for lithium battery electrolyte. J. Power Sources,2005,146 (1-2):685~ 688
    [123]Egashira M., Tanaka-Nakagawa M., Watanabe I., et al., Charge-discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J. Power Sources,2006,160 (2):1387~1390
    [124]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: 1-Alkyl(AlkylEther)-3-methylimidazolium Perfluoroalkyltrifluoroborate. Chem. Eur. J.,2004,10 (24):6581~6591
    [125]Zhou Z. B., Matsumoto H., Tatsumi K., Cyclic Quaternary Ammonium Ionic Liquidswith Perfluoroalkyltrifluoroborates:Synthesis, Characterization, and Properties. Chem. Eur. J.,2006,12 (8):2196~2212
    [126]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: Aliphatic Quaternary Ammonium Salts with Perfluoroalkyltrifluoroborates. Chem. Eur. J.,2005,11 (2):752~766
    [127]Seki S., Ohno Y., Miyashiro H,. Et al., Quaternary Ammonium Room-Temperature Ionic Liquid/Lithium Salt Binary Electrolytes:Electrochemical Study. J. Electrochem. Soc.,2008,155 (6): A421-A427
    [128]Sato T., Maruo T., Marukane S., et al., Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. J. Power Sources,2004,138 (1-2):253~261
    [129]Seki S., Kobayashi Y., Miyashiro H., et al., Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material. Chem. Commun.,2006, (5):544~545
    [130]Shirai A., Fujii K., Seki S., et al., Solvation of Lithium Ion in N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium Bis(trifluoromethanesulfonyl)-amide Using Raman and Multinuclear NMR Spectroscopy. Anal. Sci.,2008,24 (10):1291~1296
    [131]Siqueira J. A. L., Ribeiro M. C. C., Molecular Dynamics Simulation of the Ionic Liquid N-Ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium Bis(trifluoromethanesulfonyl)imide. J. Phys. Chem. B,2007,111 (40),11776~11785
    [132]Lee J. S., Quan N. D., Hwang J. M., et al., Ionic liquids containing an ester group as potential electrolytes. Electrochem. Commun.,2006,8 (3):460~464
    [133]Seki S., Kobayashi Y, Miyashiro H., et al., Reversibility of lithium secondary batteries using a room-temperature ionic liquid mixture and lithium metal. Electrochem. Solid-State Lett.,2005,8 (11): A 577-A 578
    [134]Zheng H., Jiang K., Abe T., et al., Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon,2006,44 (2):203~210
    [135]Taggougui M., Dlaw M., Carre B., et al. Solvents in salt electrolyte:Benefits and possible use as electrolyte for lithium-ion battery. Electrochem. Acta,2008,53 (17):5496~5502
    [136]Fernicola A., Croce F., Scrosati B., et al., LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J. Power Sources,2007,174 (1):342~348
    [137]Borgel V., Markevich E., Aurbach D., et al., On the application of ionic liquids for rechargeable Li batteries:High voltage systems. J. Power Sources,2009,189 (1):331~336
    [138]Appetecchi G. B., Monttanino M., Balducci A., et al., Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes I. electrochemical characterization of the electrolytes. J. Power Sources,2009,192 (2):599~605
    [139]Guerfi A., Dontigny M., Kobayashi Y., et al., Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems. J. Solid State Electrochem.,2009,13 (7):1003 ~1014
    [140]Lewandowski A., Swiderska-Mocek A., Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte. J. Power Sources,2007,171 (2):938~943
    [141]Nakagawa H., Fujino Y., Kozono S., et al., Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Sources,2007,174 (2):1021~1026
    [142]Tsunashima K. Sugiya M., Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun.,2007,9 (9):2353~2358
    [143]Vega J. A., Zhou J., Kohl P. A., Electrochemical comparison and deposition of lithium and potassium from phosphonium-and ammonium-TFSI ionic liquids. J. Electrochem. Soc.,2009,155 (4):A253~A259
    [144]Tsunashima K., Sugiya M., Electrochemical behavior of lithium in room-temperature phosphonium ionic liquids as lithium battery electrolytes. Electrochem. Solid-State Lett.,2008,11 (2):A17~A19
    [145]Tsunashima K., Yonekawa F., Sugiya M., Lithium sencondary batteries using a lithium nickelate-based cathode and phosphonium ionic liquid electrolytes. Electrochem. Solid-State Lett., 2009,12 (3):A54~A57
    [146]Yang L., Zhang Z., Guo X., et al., Asymmetric sulfonium-based molten salts with TFSI- or PF6-anion as novel electrolytes. J. Power. Sources,2006,162 (1):614~619
    [147]Fang S., Yang L., Wei C., et al., Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem. Commun.,2007,9 (11):2696~2702
    [148]Luo S., Zhang Z. X., Yang L., Lithium secondary batteries using an asymmetric sulfonium-based room temperature ionic liquid as a potential electrolyte. Chin. Sci. Bull.,2008,53 (9):1337~1342
    [149]Tobishima S.,Yamaki J., A consideration of lithium ion safety. J. Power Sources,1999,81-82:882-886
    [150]Kawamura T., Kimura A., Egashira M., et al., Thermal stability of alkylcarbonate mixed solvent electeolytes for lithium ion cells. J. Power Sources,2002,104 (2):260~264
    [151]Biensan P., et al., On safety of lithium-ion cells. J. Power Sources,1999,81-82:906~912
    [152]Aurbach D., Markovsky B., Weissman I., et al., On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta,1999,45 (1-2): 67~86
    [153]Aurbach D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources,2000,89 (2):206~218
    [154]Richard M. N., Dahn J. R., Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J. Electrochem. Soc.,1999,146 (6):2068~2077
    [155]Holzapfel M., Alloin F., Yazami R., Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures. Electrochim. Acta,2004,49 (4):581~589
    [156]Andersson A. M., Herstedt M., Bishop A. G, et al., The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes. Electrochim. Acta,2002,47 (12):1885 ~1898
    [157]Roth E. P., Doughty D. H., Franklin J., DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. J. Power Sources,2004, 134 (2):222~234
    [158]Jiang J. W., Dahn J. R., Effects of solvents and salts on the thermal stability of LiC6. Electrochim. Acta,2004,49 (26):4599~4604
    [159]De Pasquier A., Disma F., Bowmer T., et al., Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries. J. Electrochem. Soc.,1998,145 (2):472~477
    [160]Zhang Z., Fouchard D., Rea J. R., Differential scanning calorimetry material studies:implications for the safety of lithium-ion cells. J. Power Sources,1998,70 (1):16~20
    [161]Mabuchi A., Tokumitsu K., Fujimoto H., et al., Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures. J. Electrochem. Soc.,1995,142 (4):1041~1046
    [162]von Sacken., Nodwell E., Sundher A., et al., Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J. Power Sources,1995,54 (2): 240~245
    [163]Watanabe I., Yamaki J.-I., Thermalgravimetry-mass spectrometry studies on the thermal stability of graphite anodes with electrolyte in lithium-ion battery. J. Power Sources,2006,153 (2):402~404
    [164]Maleki H., Deng G, Anani A., et al., Thermal stability studies of Li-ion cells and components. J. Electrochem. Soc.,1999,146 (9):3224~3229
    [165]Dahn J. R., Fuller E. W., Obrovac M., et al., Thermal stability of LixCo02, LixNiO2 andλ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics,1994,69 (3-4):265~270
    [166]Veluchamy A., Doh C.-H., Kim D.,-H., et al., Thermal analysis of LixCo02 cathode material of lithium ion battery. J. Power Sources,2009,189 (1):855~858
    [167]Wang Q., Sun J., Chen X., et al., Effects of solvents and salt on the thermal stability of charged LiCoO2. Mater. Res. Bull,2009,44 (3):543~548
    [168]Cho J., Correlation between AIPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability. Electrochim. Acta,2003,48 (19):2807~2811
    [169]万新华,王博,连芳等.包埋镍酸锂的热稳定性和耐过充性.电池,2004,34(1):7-9
    [170]Jiang J., Dahn J. R., ARC studies of the reaction between LiFePO4 and LiPF6 or LiBOB EC/DEC electrolytes. Electrochem. Comm.,2004,6 (7):724~728
    [171]Rubino R. S., Gan H., Takeuchi E. D., A Study of Capacity Fade in Cylindrical and Prismatic Lithium-Ion Batteries. J. Electrochem. Soc.,2001,148 (9):A1029~A1033
    [172]Chen Z., Amine K., Capacity Fade of Li1+xMn2-xO4-Based Lithium-Ion Cells. J. Electrochem. Soc., 2006,153(2):A316~A320
    [173]Sasaki T., Nonaka T., Oka H., et al., Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries I. Analysis by Electrochemical and Spectroscopic Examination. J. Electrochem. Soc.,2009, 156(4):A289~A293
    [174]Wang X., Nakamura H., Yoshio M., Capacity fading mechanism for oxygen defect spinel as a 4 V cathode material in Li-ion batteries. J. Power Sources,2002,110 (1):19~26
    [175]Lu C.-H., Lin S.-W., Dissolution kinetics of spinel lithium manganate and its relation to capacity fading in lithium ion batteries. J. Mater. Res.,2002,17 (6):1476~1481
    [176]唐致远,阮艳莉.锂离子电池容量衰减机理的研究进展.化学进展,2005,17(1):1-7
    [177]Premanand R., Durairajan A., Haran B., et al., Studies on Capacity Fade of Spinel-Based Li-Ion Batteries. J. Electrochem. Soc.,2002,149 (1):A54~A60
    [178]Bruce P. G., Solid State Chemistry of Lithium Power Sources. Chem. Commun.,1997, (19):1817~ 1824
    [179]Ohzuku T., Ueda A., Nagayama M., Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells. J. Electrochem. Soc.,1993,140 (7):1862~1870
    [180]Aurbach D., Ein-Eli Y., Chusid O., et al., The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable "Rocking Chair" Type Batteries. J. Electrochem. Soc.,1994,141 (3):603~611
    [181]Peng Z., Freunberger S. A., Hardwick L. J., et al., Oxygen Reactions in a Non-Aqueous Li+ Electrolyte. Angew. Chem. Int. Ed.,2011,50 (28),6351~6355
    [182]Lu W., Lopez C. M., Liu N., et al., Overcharge Effect on Morphology and Structure of Carbon Electrodes for Lithium-Ion Batteries.J. Electrochem. Soc.,2012,159 (5):A566~A570
    [183]Aurbach D., Markovsky B., Weissman I., et al., On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta,1999,45 (1-2): 67~86
    [184]Fong R., Sachen U., Dahn J. R., Studies of Lithium Intercalation into Carbons Using Nonaqueous Elctrochemical Cells. J. Electrochem. Soc.,1990,137 (7):2009~2013
    [185]郑洪河.锂离子电池电解质(第一版).北京:化学工业出版社,2007.98-99
    [186]Paulsen J. M., Dahn J. R., Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M= Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange. Solid State Ionics,1999,126 (1-2):3~ 24
    [187]Gao Y., Dahn J. R., Correlation between the growth of the 3.3 V discharge plateau and capacity fading in Li1+xMn2-xO4 materials. Solid State Ionics,1996,84 (1-2):33~40
    [188]Gao Y., Dahn J. R., Synthesis and Characterization of Li1+xMn2-xO4 for Li-Ion Battery Applications. J. Electrochem. Soc.,1996,143 (1):100~114
    [189]Muto S., Sasano Y., Tatsumi K., et al., Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries Ⅱ. Diagnostic Analysis by Electron Microscopy and Spectroscopy. J. Electrochem. Soc., 2009,156(5):A371~A377
    [190]郑洪河.锂离子电池电解质(第一版).北京:化学工业出版社,2007.5
    [191]Pistoia G, Antonini A., Rosati R., et al., Storage characteristics of cathodes for Li-ion batteries. Electrochim. Acta,1996,41 (17):2683~2689
    [192]Darling R., Newman J., Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes. J. Electrochem. Soc.,1997,144 (12):4201~4208
    [193]Aurbach D., Electrode-solution interactions in Li-ion batteries:a short summary and new insights. J. Power Sources,2003,119-121:497~503
    [194]Aurbach D., Markovsky B., Schechter A., et al., A comparative study of sythetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc.,1996,143 (12):3809~3819
    [195]Aurbach D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources,2000,89 (2):206~218
    [196]Chen J.-S., Wang L.-F., Fang B.-J., et al., Rotating ring-disk electrode measurements on Mn dissolution and capacity losses of spinel electrodes in various organic electrolytes. J. Power Sources, 2006,157(1):515~521
    [197]Zhang D., Haran B. S., Durairajan A., et al., Studies on capacity fade of lithium-ion batteries. J. Power Sources,2000,91 (2):122~129
    [198]Ramadass P., Haran B., White R., et al., Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I. Cycling performance. J. Power Sources,2002,112 (2):606~613
    [1]Xue L., DesMarteau D. D., Pennington W. T., Perfectly Staggered and Twisted Difluoromethylene Groups in Perfluoroalkyl Chains:Structure of M[C4F9SO2NSO2C4F9] (M=Na, K). Angew. Chem. Int. Ed. Endl,1997,36 (12):1331~1333
    [2]Koppel, I. A., Taft R.W., Anvia F., et al., The Gas-Phase Acidities of very Strong Neutral Bronsred Acids. J. Am. Chem. Soc.,1994,116 (7):3047~3057
    [3]Mikami K., Mikami Y., Matsuzawa H., et al., Lanthanide catalysts with tris(perfluorooctanesulfonyl)methide and bis(perfluorooctanesulfonyl)amide ponytails:recyclable Lewis acid catalysts in fluorous phases or as solids. Tetrahedron,2002,58 (20):4015~4021
    [4]Mikami K., Kotera O., Motoyama Y., et al., Lanthanide bis(trifluoromethanesulfonyl)amides as a new type of asymmetric catalysts for hetero Diels-Alder reaction with Danishefsky's diene in the presence of water. Synlett.,1995,9:975~977
    [5]Yuan Y. B., Nie J., Wang S. J., et al., Aromatic nitration catalyzed by metal bis[(perfluoroalkyl)sulfonyl]imides. Chin. J. Org. Chem.,2005,25 (4):394~398
    [6]Hagiwara R., Tamaki K., Kubota K., et al., Thermal Properties of Mixed Alkali Bis(trifluoromethylsulfonyl)amides. J. Chem. Eng. Data,2008,53 (2):355~358
    [7]Watarai A., Kubota K., Yamagata M., et al., A rechargeable lithium metal battery operating at intermediate temperatures using molten alkali bis(trifluoromethylsulfonyl)amide mixture as an electrolyte. J. Power Sources,2008,183 (2):724~729
    [8]Kubota K., Tamaki K., Nohira T., et al., Electrochemical properties of alkali bis(trifluoromethylsulfonyl)amides and their eutectic mixtures. Electrochim. Acta,2010,55 (3):1113-1119
    [9]Kubota K., Nohira T., Hagiwara R., et al., Thermal Properties of Alkali Bis(pentafluoroethylsulfonyl)amides and Their Binary Mixtures. J. Chem. Eng. Data,2010,55 (7): 2546-2549
    [10]a) Kim S., Jung Y., Park S.-J., Effect of imidazolium cation on cycle life characteristics of secondary lithium-sulfur cells using liquid electrolytes. Electrochim. Acta,2007,52 (5):2116~2122; b) Zhang S., Sun N., He X., et al., Physical Properties of Ionic Liquids:Database and Evaluation. J. Phys. Chem. Ref. Data,2006,35 (4):1475~1517
    [11]a) Barlow C. G., Reaction of Water with Hexafluorophosphates and with Li Bis(perfluoroethylsulfonyl)imide Salt. Electrochem. Solid-State Lett.,1999,2 (8):362~364; b) Xu K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev.,2004, 104 (10):4303~4417
    [12]a) Sugimoto T., Atsumi Y., Kikuta M., et al., Ionic liquid electrolyte systems based on bis(fluorosulfonyl)imide for lithium-ion batteries. J. Power. Sources,2009,189 (1):802~805; b) Sugimoto T., Kikuta M., Ishiko E., et al., Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties. J. Power. Sources,2008,183 (1): 436-440
    [13]Kubota K., Nohira T., Goto T., et al., Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows:Binary mixtures of alkali bis(fluorosulfonyl)amides. Electrochem. Commun.,2008,10 (2):1886~1888
    [14]Abouimrane A., Ding J., Davidson I. J., Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt:Aluminum corrosion studies and lithium ion battery investigations. J. Power Sources,2009,189 (1):693~696
    [15]Vij A., Kirchmeier R. L., Shreeve J. M., et al., Some fluorine-containing nitrogen acids and their derivatives. Coord. Chem. Rev.,1997,158:413~432
    [16]Appel R., Becke-Goehring M., Eisenhauer G., et al., Imidobissulfonyl chloride. Chem. Ber.,1962,95: 625-626
    [17]Appel R., Eisenhauer G., The reaction of chlorosulfonylisocyanate with chlorosulionic acid. A new synthesis of the imidobis(sulfuryl chloride). Chem. Ber.,1962,95:1753~1755
    [18]Appel R., Rittersbacher H., Reaction of sulfuryl diisocyanate with halosulfuric acids. A simple method for the preparation of fluorosulfonyl isocyanate and imidobis(sulfuryl fluoride). Chem. Ber., 1964,97 (3):849~851
    [19]Beran M., Prihoda J., A New Method of the Preparation of Imido-bis(sulfuric acid) Dihalogenide, (F,C1), and the Potassium Salt of Imido-bis(sulfuric acid) Difluoride. Z. Anorg. Allg. Chem.,2005, 631(1):55~59
    [20]Ruff J. K., Lustig M., Imidodisulfuryl fluoride, cesium imidodisulfuryl fluoride, and fluoroimidodisulfuryl fluoride. Inorg. Synth.,1968,11:138~141
    [21]Krumm B., Vij A., Kirchmeier R. L., et al., Synthesis of Polyfluoroalkyl and the First Perfluoroalkyl N(SO2F)2 Derivatives:Improved Methods for the Preparation of XN(SO2F)2 (X=H, Cl) and Single-Crystal Diffraction Studies of HN(SO2Cl)2, HN(SO2F)2, and CF3CH2N(SO2F)2. Inorg. Chem., 1998,37 (24):6295~6303
    [22]Ruff J. K., Some Chemistry of Trichlorophosphazosulfuryl Chloride. Inorg. Chem.,1967,6 (11): 2108-2110
    [23]Beran M., Prihoda J., Zak Z., et al., A new route to the syntheses of alkali metal bis(fluorosulfuryl)imides:Crystal structure of LiN(SO2F)2. Polyhedron,2006,25 (6):1292~1298
    [24]Ruff J. K., The Inidodisulfuryl Fluoride Ion. Inorg. Chem.,1965,4 (10):1446~1449
    [25]Christophe M., Synthesis of anhydrous imides lithium salts containing fluorosulfonyl or fluorophosphoryl substituents.2007, CA 2527802 A1
    [26]Roesky H. W., Giere H. H., Sulfur-nitrogen compounds.33. Preparation of N-(trifluoromethylsulfonyl)sulfamoyl fluoride and some reactions. Inorg. Nucl. Chem. Letters,1971, 7(2):171~175
    [27]Xu K., Day N. D., Angell C. A., A new protonation chemistry of phosphazenes and the formation of bis(sulfonyl)imides. Inorg. Chem. Commun.,1999,2 (6):261~264
    [28]Howells R., Lamanna W., Fanta A. D., et al., Preparation of Bis(fluoroalkylenesulfonyl) Imide and (Fluoroalkylsulfonyl)(Fluorosulfonyl) Imides.1997, WO9723448
    [29]Beran M., Prihoda J., Taraba J., A new route to the syntheses of N-(fluorosulfuryl)sulfonamide salts: Crystal structure of Ph4P+[CF3SO2NSO2F]-. Polyhedron,2010,29 (3):991~994
    [30]程能林.溶剂手册.(第二版).北京:化学工业出版社,1994
    [31]Zhu S., Chen Q., Condensation reaction of N-sulfinylperfluoroalkanesulfonamides. J. Chem. Soc., Chem. Commun.,1991,10:732~733
    [32]Quek S. K., Lyapkalo I. M., Huynh H. V., Synthesis and properties of N,NO-dialkylimidazolium bis(nonafluorobutane-1-sulfonyl)imides:a new subfamily of ionic liquids. Tetrahedron,2006,62 (13):3137-3145
    [33]周公度,段连运.结构化学基础.(第3版).北京:北京大学出版社,2002.324-328
    [34]Luo H., Huang J. F., Dai S., Studies on Thermal Properties of Selected Aprotic and Protic Ionic Liquids. Sep. Sci. Technol.,2008,43 (9-10):2473~2488
    [1]Armand M., Endres F., MacFarane D. R., et al., ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater.,2009,8:621~629
    [2]Ohno H., Electrochemical Aspects of Ionic Liquids, Wiley, New Jersey,2005
    [3]Ue M., Takeda M., Takahashi T., et al., Ionic liquids with low melting points and their application to double-layer capacitor. Electrochem. Solid-State Lett.,2002,5 (6):A119~A121
    [4]Ue M., Takeda M., Toriumi A., et al., Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J. Electrochem. Soc.,2003,150 (4):A499~502
    [5]Sato T., Masuda G., Takagi K., Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta,2004,49 (21):3603~3611
    [6]Kim Y. J., Matsuzawa Y., Ozaki S., et al., High energy-density capacitor based on ammonium salt type ionic liquids and their mixing effect by propylene carbonate. J. Electrochem. Soc.,2005,152 (4): A710-A715
    [7]Handa N., Sugimoto T., Yamagata M., et al., A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor. J. Power Sources,2008,185 (2):1585~1588
    [8]Bonhote P., Dias A.-P., Armand M., et al., Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem.,1996,35 (5):1168~1178
    [9]Papageorgiou N., Athanassov Y., Armand M., et al., The performance and stability of ambient temperature molten salts for solar cell applications. J. Electrochem. Soc.,1996,143 (10):3099~ 3108
    [10]Matsumoto H., Matsuda T., Tsuda T., et al., The application of room temperature molten salt with low viscosity to the electrolyte for dye-sensitized solar cell. Chem. Lett.,2001,30 (1):26~27
    [11]Bai Y., Cao Y., Zhang J., et al., High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat. Mater.,2008,7 (8):626~630
    [12]Walden P., Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci.,1914,405~422
    [13]Hurley F. H., Wier T. P. J., Electrodeposition of aluminum from nonaqueous solutions at room temperature. J. Electrochem. Soc.,1951,98:207~212
    [14]Osteryoung R. A., Miller L. L., Organic electrochemistry in aluminum chloride melts. US. NTIS, AD Rep.,1976, AD~A031082
    [15]Hapiot P., Lagrost C., Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chem. Rev., 2008,108 (7):2238~2264
    [16]Welton T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev.,1999, 99 (8):2071~2083
    [17]Wilkes J. S., Zaworotko M. J., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem. Commun.,1992, (13):965~957
    [18]Matsumoto H., Sakaebe H., Tatsumi K., Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J. Power sources,2005,146 (1-2):45~50
    [19]Harris K. R., Kanakubo M., Woolf L. A., Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Hexyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data,2007,52 (3): 1080-1085
    [20]Tsunashima K. Sugiya M., Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun.,2007,9 (9):2353~2358
    [21]a) Matsumoto H., Matsuda T., Miyazaki Y., Room Temperature Molten Salts Based on Trialkylsulfonium Cations and Bis(trifluoromethylsulfonyl)imide. Chem. Lett.,2000,12:1430~ 1431; b) Gerhard D., Alpaslan S. C., Gores H. J., et al., Trialkylsulfonium dicyanamides-a new family of ionic liquids with very low viscosities. Chem. Commun.,2005,40:5080~5082; c) Zhang Q., Liu S., Li Z., et al., Novel Cyclic Sulfonium-Based Ionic Liquids:Synthesis, Characterization, and Physicochemical Properties. Chem. Eur. J.,2009,15 (3),765~778
    [22]a) Yang L., Zhang Z. X., Guo X. H., et al., Asymmetric sulfonium-based molten salts with TFSI- or PF6- anion as novel electrolytes. J. Power. Sources,2006,162 (1):614~619; b) Fang S., Yang L., Wei C., et al., Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem. Commun.,2007,9 (11):2696~2702
    [23]Zhao L., Yamaki J., Egashira M., Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries. J. Power. Sources,2007,174 (2):352~358
    [24]Egashira M., Tanaka-Nakagawa M., Watanabe I., et al., Charge-discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J. Power. Sources,2006,160 (2):1387~1390
    [25]Egashira M., Okada S., Yamaki J., et al., The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J. Power. Sources,2004, 138 (1-2):240~244
    [26]Egashira M., Nakagawa M., Watanabe I., et al., Cyano-containing quaternary ammonium-based ionic liquid as a 'co-solvent' for lithium battery electrolyte. J. Power. Sources,2005,146 (1-2):685~688
    [27]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: 1-Alkyl(AlkylEther)-3-methylimidazolium Perfluoroalkyltrifluoroborate. Chem. Eur. J.,2004,10 (24):6581~6591
    [28]Zhou Z. B., Matsumoto H., Tatsumi K., Cyclic Quaternary Ammonium Ionic Liquidswith Perfluoroalkyltrifluoroborates:Synthesis, Characterization, and Properties. Chem. Eur. J.,2006,12 (8):2196~2212
    [29]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: Aliphatic Quaternary Ammonium Salts with Perfluoroalkyltrifluoroborates. Chem. Eur. J.,2005,11 (2):752~766
    [30]Seki S., Ohno Y, Miyashiro H., et al., Quaternary Ammonium Room-Temperature Ionic Liquid/Lithium Salt Binary Electrolytes:Electrochemical Study. J. Electrochem. Soc.,2008,155 (6): A421-A427
    [31]Lee L. S., Quan N. D., Hwang J. M., et al., Ionic liquids containing an ester group as potential electrolytes. Electrochem. Commun.,2006,8 (3):460~464
    [32]a) Sugimoto T., Atsumi Y., Kikuta M., et al., Ionic liquid electrolyte systems based on bis(fluorosulfonyl)imide for lithium-ion batteries. J. Power. Sources,2009,189 (1):802~805; b) Sugimoto T., Kikuta M., Ishiko E., et al., Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties. J. Power. Sources,2008,183 (1): 436-440
    [33]a)王树江,柳翱,石秀敏.乙硫醚制取的实验.吉林工学院学报,1998,19(2):46-48;b)Doering W. von E., Schreiber K. C., d-Orbital Resonance. Ⅱ. Comparative Reactivity of Vinyldimethylsulfonium and Vinyltrimethylammonium Ions. J. Am. Chem. Soc.,1955,77 (3):514~ 520; c) Zaidlewicz M., Kanth J. V. B., Brown H. C., Molecular Addition Compounds.17. Borane and Chloroborane Adducts with Organic Sulfides for Hydroboration. J. Org. Chem.,2000,65 (20):6697-6702
    [34](日)松本正一,(日)角田市良著,王殿福,孙红军译.液晶的最新技术—物性·材料·应用.北京:化学工业出版社,1991.5-6
    [35]何向明,蒲薇华,王莉等.锂离子塑性晶体常温固体电解质.化学进展,2006,18(1):24-29
    [36]MacFarlane D. R., Forsyth M., Plastic Crystal Electrolyte Materials:New Perspectives on Solid State Ionics. Adv. Mater.,2001,13 (12-13):957~966
    [37]Tinunermans J., Plastic Crystals:A Historical Review. J. Phys. Chem. Solids,1961,18:1~8
    [38]MacFarlane D. R., Meakin P., Sun J., et al., Pyrrolidinium Imides:A New Family of Molten Salts and Conductive Plastic Crystal Phases. J. Phys. Chem. B,1999,103 (20):4164~4170
    [39]MacFarlane D. R., Meakin P., Amini N., et al., Structural studies of ambient temperature plastic crystal ion conductors. J. Phys:condens. Matter.,2001,13 (36):8257~8267.
    [40]金日光,华幼卿.高分子物理(第二版).北京:化学工业出版社,2000,103-104
    [41]金日光,华幼卿.高分子物理(第二版).北京:化学工业出版社,2000,105-108
    [42]颜秀茹,杨宏孝,凌芝.无机化学与化学分析.(第一版).天津:天津大学出版社,2004,150-151
    [43]Matsumoto H., Sakaebe H., Tatsumi K., et al., Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]-.J.Power. Sources,2006,160 (2):1308~1313
    [44]Ue M., Fujii T., Zhou Z. B., et al., Electrochemical properties of Li[CnF2n+1BF3] as electrolyte salts for lithium-ion cells. Solid State Ionics,2006,177 (3-4):323~331
    [45]Ue M., Murakami A., Nakamura S., Anodic Stability of Several Anions Examined by Ab Initio Molecular Orbital and Density Functional Theories. J. Electrochem. Soc.,2002,149 (12):A1572~ A1577
    [46]郑洪河.锂离子电池电解质(第一版).北京:化学工业出版社,2007.29-30
    [47]Lin H., Duan Y. Y., Surface Tension of Difluoromethane (R-32)+1,1,2,3,3, 3-Hepta-fluorop-ropane (R-227ea)+from (253 to 333) K. J. Chem. Eng. Data,2005,50 (1):182~ 186
    [48]Zhou Z. B., Matsumoto H., Tatsumi K., Structure and Properties of New Ionic Liquids Based on Alkyl-and Alkenyltrifluoroborates. ChemPhysChem,2005,6 (7):1324~1332
    [49]纪俊荣.离子液体表面/界面性能的研究[硕士论文].河北:河北科技大学图书馆,2006
    [50]Garcia B., Lavallee S., Perron G, et al., Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta.,2004,49 (26):4583~4588
    [1]Hammami A., Raymond N., Armand M., Lithium-ion batteries:Runaway risk of forming toxic compounds. Nature,2003,424 (6949):635~636
    [2]Roth E. P., Doughty D. H., Thermal abuse performance of high-power 18650 Li-ion cells. J. Power Sources,2004,128 (2):308~318
    [3]a) Xu K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev., 2004,104 (10):4303~4417; b) Zhang S. S., A review on electrolyte additives for lithium-ion batteries. J. Power Sources,2006,162 (2):1379~1394
    [4]Aurbach D., Talyosef Y., Markovsky B., et al., Design of electrolyte solutions for Li and Li-ion batteries:A review. Electrochim. Acta,2004,50 (2-3):247~254
    [5]Chang C. C., Chen T. K., et al., Tris(pentafluorophenyl)borane as an Electrolyte Additive to Improve the High Temperature Cycling Performance of LiFePO4 Cathode. J. Electrochem, Soc.,2009,156 (11):A828~A832
    [6]Xu M., Li W., Lucht B. L., Effect of propane sulfone on elevated temperature performance of anode and cathode materials in lithium-ion batteries. J. Power Sources,2009,193 (2):804~809
    [7]Xiao A., Yang L., Lucht B. L., Thermal reactions of LiPF6 with added LiBOB Electrolyte stabilization and generation of LiF4OP. Electrochem. Solid-State Lett.,2007,10 (11):A241~A244
    [8]Qin Y., Chen Z., Liu J., et al., Lithium Tetrafluoro Oxalato Phosphate as Electrolyte Additive for Lithium-Ion Cells. Electrochem. Solid-State Lett.,2010,13 (2):A11~A14
    [9]L.F. Li, H.S. Lee, H. Li, et al. A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries. Electrochem. Commun.,2009,11 (12):2296~2299
    [10]Ishikawa M., Kamohara H., Morita M., et al., Li(CF3SO2)2N as an electrolytic salt for rechargeable lithium batteries with graphitized mesocarbon microbeads anodes. J. Power Sources,1996,62 (2): 229~232
    [11]Yoshimoto N., Okamoto A., Morita M., Design of polyacene-based negative electrode for polymeric gel electrolytes. J. Power Sources,2005,146 (1-2):195~198
    [12]Schmidt M., Heider U., Kuehner A., et al., Lithium fluoroalkylphosphates:a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J. Power Sources,2001,97-98:557~560
    [13]Gnanaraj J. S., Levi M. D., Gofer Y., et al., LiPF3(CF2CF3)3:A Salt for Rechargeable Lithium Ion Batteries. J. Electrochem. Soc.,2003,150 (4):A445~A454
    [14]Gnanaraj J. S., Zinigrad E., Asraf L., et al., On the use of LiPF3(CF2CF3)3 (LiFAP) solutions for Li-ion batteries. Electrochemical and thermal studies. Electrochem. Commun.,2003,5 (11):946~ 951
    [15]Qin Y., Chen Z. H., Liu J., et al., Lithium Tetrafluoro Oxalato Phosphate as Electrolyte Additive for Lithium-Ion Cells. Electrochem. Solid-State Lett.,2010,13 (2):A11~A14
    [16]Xu M. Q., Xiao A., Li W., et al., Investigation of Lithium Tetrafluorooxalatophosphate as a Lithium-Ion Battery Electrolyte. Electrochem. Solid-State Lett.,2009,12 (8):A155~A158
    [17]Xu M. Q., Xiao A., Li W., et al., Investigation of Lithium Tetrafluorooxalatophosphate [LiPF4(C2O4)] as a Lithium-Ion Battery Electrolyte for Elevated Temperature Performance. J. Electrochem. Soc., 2010,157(1):A115~A120
    [18]Xu K., Zhang S. S., Jow T. R., et al., Li[bis(oxalato)borate] as salt for lithium-ion batteries a possible solution for high temperature operation. Electrochem. Solid-State Lett.,2002,5 (1):A26~A29
    [19]Hayamizu K., Matsuo A., Arai J., A Divalent Lithium Salt Li2B12F12 Dissolved in Propylene Carbonate Studied by NMR Methods. J. Electrochem. Soc.,2009,156 (9):A744~A750
    [20]Zhang S. S., LiBF3C1 as an alternative salt for the electrolyte of Li-ion batteries. J. Power Sources, 2008,180(1):586~590
    [21]Ue M., Fujii T., Zhou Z. B., et al., Electrochemical properties of Li[CnF2n+1BF3] as electrolyte salts for lithium-ion cells. Solid State Ionics,2006,177 (3-4):323~331
    [22]Zhou Z. B., Takeda M., Fujii T., et al., Li[C2F5BF3] as an Electrolyte Salt for 4 V Class Lithium-Ion Cells. J. Electrochem. Soc.,2005,152 (2):A351~A356
    [23]Niedzicki L., Zukowska G. Z., Bukowska M., et al., New type of imidazole based salts designed specifically for lithium ion batteries. Electrochim. Acta,2009,55 (4):1450~1454
    [24]Niedzicki L., Kasprzyk M., Kuziak K., et al., Liquid electrolytes based on new lithium conductive imidazole salts.J. Power Sources,2011,196 (3):1386~1391
    [25]Krause L. J., Lamanna W., Summerfield J., et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources,1997,68 (2):320~325
    [26]Gnanaraj J. S., Levi M. D., Gofer Y., et al., LiPF3(CF2CF3)3:A Salt for Rechargeable Lithium Ion Batteries. J. Electrochem. Soc.,2003,150 (4):A445~A454
    [27]Xu K., Zhang S. S., Lee U., et al., LiBOB:Is it an alternative salt for lithium ion chemistry?. J. Power Sources,2005,146 (1-2):79~85
    [28]Conte L., Gambaretto G, Caporiccio G, et al., Perfluoroalkanesulfonylimides and their lithium salts: synthesis and characterisation of intermediates and target compounds. J. Fluorine Chem.,2004,125 (2):243~252
    [29]Ue M., Murakami A., Nakamura S., Anodic Stability of Several Anions Examined by Ab Initio Molecular Orbital and Density Functional Theories. J. Electrochem. Soc.,2002,149 (12):A1572~ A1577
    [30]Ue M., Ionic Radius of (CF3SO2)3C- and Applicability of Stokes Law to Its Propylene Carbonate Solution. J. Electrochem. Soc.,1996,143 (11):L270~L272
    [31]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: 1-Alkyl(AlkylEther)-3-methylimidazolium Perfluoroalkyltrifluoroborate. Chem. Eur. J.,2004,10 (24):6581~6591
    [32]Zhou Z. B., Matsumoto H., Tatsumi K., Cyclic Quaternary Ammonium Ionic Liquidswith Perfluoroalkyltrifluoroborates:Synthesis, Characterization, and Properties. Chem. Eur. J.,2006,12 (8):2196~2212
    [33]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: Aliphatic Quaternary Ammonium Salts with Perfluoroalkyltrifluoroborates. Chem. Eur. J.,2005,11 (2):752~766
    [34]Tsunekawa H., Narumi A., Sano M., et al., Solvation and Ion Association Studies of LiBF4-Propylenecarbonate and LiBF4-Propylenecarbonate-Trimethyl Phosphate Solutions. J. Phys. Chem. B,2003,107 (39):10962~10966
    [35]Takeuchi M., Kameda Y., Umebayashi Y., et al., Ion-ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions. J. Mol. Liq.,2009,148 (2-3):99~108
    [36]杨军,解晶莹,王久林等.化学电源测试原理与技术.(第一版).北京:化学工业出版社,2006.73-74
    [37]Cohen M. H., Turnbull D., Molecular transport in liquids and glasses. J. Chem. Phys.,1959,31:1164 ~1169
    [38]Kanamura K., Anodic oxidation of nonaqueous electrolytes on cathode materials and current collectors for rechargeable lithium batteries. J. Power Sources,1999,81-82:123~129
    [39]Krause L. J., Lamanna W., Summerfield J., et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources,1997,68 (2):320~325
    [40]Kanamura K., Umegaki T., Shiraishi S., et al., Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N. J. Electrochem. Soc.,2002,149 (2):A185~A194
    [41]Nakajima T., Mori M., Gupta V., et al., Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sci.,2002,4 (11-12):1385~1394
    [42]Song S.-W., Richardson T. J., Zhuang G V., et al., Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using the EQCM. Electrochim. Acta,2004,49 (9-10):1483~ 1490
    [43]Wang X., Yasukawa E., Mori S., Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochim. Acta,2000,45 (17):2677~2684
    [44]Morita M., Shibata T., Yoshimoto N., et al., Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions. J. Power Sources,2003,119-121:784~788
    [45]Zhang X, Devine T. M., Factors That Influence Formation of A1F3 Passive Film on Aluminum in Li-Ion Battery Electrolytes with LiPF6. J. Electrochem. Soc.,2006,153 (9):B375~B383
    [46]Garcia B., Armand M., Aluminium corrosion in room temperature molten salt J. Power Sources, 2004,132 (1-2):206~208
    [47]Peng C., Yang L., Zhang Z., et al., Anodic behavior of Al current collector in 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide ionic liquid electrolytes. J. Power Sources,2007,173 (1):510~517
    [48]郑洪河.锂离子电池电解质.(第一版).北京:化学工业出版社,2007.49-50
    [49]Chagnes A., Carre B., Willmann P., et al., Ion transport theory of nonaqueous electrolytes. LiC1O4 in y-butyrolactone:the quasi lattice approach. Electrochim. Acta,2001,46 (12):1783~1791
    [50]Doucey L., Revault M., Lautie A., et al., A study of the Li/Li+couple in DMC and PC solvents Part 1: characterization of LiAsF6/DMC and LiAsF6/PC solutions. Electrochim. Acta,1999,44 (14):2371~ 2377
    [51]Li L. F., Zhou S. S., Han H. B., et al., Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents. J. Electrochem. Soc., 2011,158(2):A74~A82
    [52]Casteel J. F., Amis E. S., Specific conductance of concentrated solutions of magnesium salts in water-ethanol system. J. Chem. Eng. Data,1972,17(1):55~59
    [53]徐旻PFG-NMR测量自扩散系数的应用.[硕士论文].上海:华东师范大学图书馆,2004
    [54]Kondo K., Sano M., Hiwara A., et al., Conductivity and Solvation of Li+ Ions of LiPF6 in Propylene Carbonate Solutions. J. Phys. Chem. B,2000,104 (20):5040~5044
    [55]Tabata S., Hirakimoto T., Tokuda H., et al., Effects of Novel Boric Acid Esters on Ion Transport Properties of Lithium Salts in Nonaqueous Electrolyte Solutions and Polymer Electrolytes. J. Phys. Chem. B,2004,108 (50):19518~19526
    [56]Shobukawa H., Tokuda H., Susan M., et al., Ion transport properties of lithium ionic liquids and their ion gels. Electrochim. Acta,2005,50 (19):3872~3877
    [57]赵吉诗,王莉,何向明等.锂离子电池非水电解质中的Li+迁移特性.化学进展,2007,19(10):1467-1474
    [58]Gu G. Y., Bouvier S., Wu C., et al.,2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. Electrochim. Acta,2000,45 (19):3127~3139
    [1]Michot C., Armand M., Sanchez J. Y., et al., Anticorrosive ionically conducting materials, their manufacture, and their use as electrolyte in lithium batteries and supercapacitors, for p-or n-type doping of electronically conductive polymers, and in electrochromic devices.1999, US 5916475
    [2]Zaghib K., Charest P., Guerfi A., et al., Safe Li-ion polymer batteries for HEV applications. J. Power Sources,2004,134 (1):124~129
    [3]Zaghib K., Charest P., Guerfi A., et al., LiFePO4 safe Li-ion polymer batteries for clean environment. J. Power Sources,2005,146 (1-2):380~385
    [4]Ishikawa M., Sugimoto T., Kikuta M., et al., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources,2006, 162(1):658~662
    [5]Sugimoto T., Atsumi Y., Kikuta M., et al., Ionic liquid electrolyte systems based on bis(fluorosulfonyl)imide for lithium-ion batteries. J. Power Sources,2009,189 (1):802~805
    [6]Sugimoto T., Kikuta M., Ishiko E., et al., Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties. J. Power Sources,2008,183 (1): 436~440
    [7]Guerfi A., Duchesne S., Kobayashi Y., et al., LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)- for Li-ion batteries. J. Power Sources,2008,175 (5):866~873
    [8]Guerfi A., Dontigny M., Kobayashi Y., et al., Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems. J. Solid State Electrochem.,2009,13 (7):1003 ~1014
    [9]Abouimrane A., Ding J., Davidson I. J., Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt:Aluminum corrosion studies and lithium ion battery investigations. J. Power Sources,2009,189 (1):693~696
    [10]Li L. F., Zhou S. S., Han H. B., et al., Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents. J. Electrochem. Soc., 2011,158(2):A74~A82
    [11]Schmidt M., Heider U., Kuehner A., et al., Lithium fluoroalkylphosphates:a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J. Power Sources,2001,97-98:557~560
    [12]郑洪河.锂离子电池电解质.(第一版).北京:化学工业出版社,2007.43-44
    [13]Beran M., Prihoda J., Zak Z., et al., A new route to the syntheses of alkali metal bis(fluorosulfuryl)imides:Crystal structure of LiN(SO2F)2. Polyhedron,2006,25 (6):1292~1298
    [14]a) Yang H., Zhuang G. V., Ross P. N., Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources,2006,161 (1):573~579; b) Tasaki K., Kanda K., Nakamura S., et al., Decomposition of LiPF6 and Stability of PF5 in Li-Ion Battery Electrolytes. J. Electrochem. Soc.,2003,150(12):A1628~A1636
    [15]Plakhotnyk A. V., Ernst L., Schmutzler R., Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O. J. Fluorine Chem.,2005,126 (1):27~31
    [16]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: 1-Alkyl(AlkylEther)-3-methylimidazolium Perfluoroalkyltrifluoroborate. Chem. Eur. J.,2004,10 (24):6581~6591
    [17]Zhou Z. B., Matsumoto H., Tatsumi K., Cyclic Quaternary Ammonium Ionic Liquidswith Perfluoroalkyltrifluoroborates:Synthesis, Characterization, and Properties. Chem. Eur. J.,2006,12 (8):2196~2212
    [18]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: Aliphatic Quaternary Ammonium Salts with Perfluoroalkyltrifluoroborates. Chem. Eur. J.,2005,11 (2):752~766
    [19]Tsunekawa H., Narumi A., Sano M., et al., Solvation and Ion Association Studies of LiBF4-Propylenecarbonate and LiBF4-Propylenecarbonate-Trimethyl Phosphate Solutions. J. Phys. Chem. B,2003,107 (39):10962~10966
    [20]Takeuchi M., Kameda Y., Umebayashi Y., et al., Ion-ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions. J. Mol. Liq.,2009,148 (2-3):99~108
    [21]Canongia L. J. N., Shimizu K., Padua A. A. H., et al., Potential Energy Landscape of Bis(fluorosulfonyl)amide. J. Phys. Chem. B,2008,112 (31):9449~9455
    [22]Ue M., Fujii T., Zhou Z. B., et al., Electrochemical properties of Li[CnF2n+1BF3] as electrolyte salts for lithium-ion cells. Solid State Ionics,2006,177 (3-4):323-331
    [23]Ding M. S., Electrolytic Conductivity and Glass Transition Temperatures as Functions of Salt Content, Solvent Composition, or Temperature for LiBF4 in Propylene Carbonate+Diethyl Carbonate. J. Chem. Eng. Data,2004,49 (4):1102~1109
    [24]Adam G., Gibbs J. H., The temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys.,1965,43 (1):139~146
    [25]Stallworth P. E., Fontanella J. J., Wintersgill M. C., et al., NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J. Power Sources,1999,81-82:739~747
    [26]Kanamura K., Anodic oxidation of nonaqueous electrolytes on cathode materials and current collectors for rechargeable lithium batteries. J. Power Sources,1999,81-82:123~129
    [27]Krause L. J., Lamanna W., Summerfield J., et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources,1997,68 (2):320~325
    [28]Kanamura K., Umegaki T., Shiraishi S., et al., Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N. J. Electrochem. Soc.,2002,149 (2):A185~A194
    [29]Zhang X, Winget B., Doeff M., et al., Corrosion of Aluminum Current Collectors in Lithium-Ion Batteries with Electrolytes Containing LiPF6. J. Electrochem. Soc.,2005,152 (11):B448~B454
    [30]Peng C., Yang L., Zhang Z., et al., Anodic behavior of Al current collector in 1-alky1-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide ionic liquid electrolytes. J. Power Sources,2007,173 (1):510~517
    [31]杜荣归,刘玉,林昌键.氯离子对钢筋腐蚀机理的影响及其研究进展.材料保护,2006,39(6):45-50
    [32]汪鹰,史苑芗,魏宝明等.用XPS研究钢筋钝化膜和C1-对钝化膜的影响.中国腐蚀与防护学报,1998,18(2):107-112
    [33]庄全超,武山,刘文元.锂离子电池电解液杂质的影响及去除技术.电池工业,2006,11(1):48-52
    [34]Gummow R. J., Thackeray M. M., An investigation of spinel-related and orthorhombic LiMnO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc.,1994,141 (5):1178~1182
    [35]Aurbach D., Markovsky B., Schechter A., et al., A comparative study of sythetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc.,1996,143 (12):3809~3819
    [36]Heider U., Oesten R., Jungnitz M., Chanllenge in manufacturing electrolyte solution for lithiun and lithium batteries quality control and minimizing contamination level. J. Power Sources,1999,81-82: 119~122
    [37]Aurbach D., Zinigrad E., Cohen Y., et al., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solution. Solid State Ionics,2002,148 (3-4):405~416
    [38]Aurbach D., Weissman I., Zaban A., et al., On the role of water contamination in rechargeable Li batteries. Electrochim. Acta,1999,45 (7):1135~1140
    [39]Aurbach D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources,2000,89 (2):206~218
    [40]Chen Z., Amine K., Capacity Fade of Li1+xMn2-xO4-Based Lithium-Ion Cells. J. Electrochem. Soc., 2006,153(2):A316~A320
    [41]Aurbach D., Ein-Eli Y., Chusid O., et al., The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable "Rocking Chair" Type Batteries. J. Electrochem. Soc.,1994,141 (3):603~611
    [42]Komaba S., Kumagai N., Kataoka Y, Influence of manganese(Ⅱ), cobalt(Ⅱ), and nickel(Ⅱ) additives in electrolyte on performance of graphite anode for lithium-ion batteries. Electrochim. Acta,2002,47 (8):1229~1239
    [43]Komaba S., Itabashi T., Kaplan B., et al., Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive. Electrochem. Commun.,2003,5 (11):962~966
    [44]黄文煌,严玉顺,万春荣.Na+对Li/改性石墨电池循环性能的影响研究.电化学,2000,6(2):212-217
    [45]Komaba S., Itabashi T., Kimura T., et al., Opposite influences of K+ versus Na+ ions as electrolyte additives on graphite electrode performance. J. Power Sources,2005,146 (1-2):166~170
    [1]Aravindan V., Gnanaraj J., Madhavi S., et al., Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries. Chem. Eur. J.,2011,17 (51):14326~14346
    [2]Kanamura K., Umegaki T., Shiraishi S., et al., Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N. J. Electrochem. Soc.,2002,149 (2):A185~A194
    [3]Conte L., Gambaretto G., Caporiccio G., et al., Perfluoroalkanesulfonylimides and their lithium salts: synthesis and characterisation of intermediates and target compounds. J. Fluorine Chem.,2004,125 (2):243~252
    [4]Li L. F., Lee H. S., Li H., et al., New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors. J. Power Sources,2008,184 (2):517~521
    [5]Yang H., Zhuang G. V., Ross P. N., Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources,2006,161 (1):573~579
    [6]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: 1-Alkyl(AlkylEther)-3-methylimidazolium Perfluoroalkyltrifluoroborate. Chem. Eur. J.,2004,10 (24):6581~6591
    [7]Zhou Z. B., Matsumoto H., Tatsumi K., Cyclic Quaternary Ammonium Ionic Liquidswith Perfluoroalkyltrifluoroborates:Synthesis, Characterization, and Properties. Chem. Eur. J.,2006,12 (8):2196~2212
    [8]Zhou Z. B., Matsumoto H., Tatsumi K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: Aliphatic Quaternary Ammonium Salts with Perfluoroalkyltrifluoroborates. Chem. Eur. J.,2005,11 (2):752~766
    [9]Tsunekawa H., Narumi A., Sano M., et al., Solvation and Ion Association Studies of LiBF4-Propylenecarbonate and LiBF4-Propylenecarbonate-Trimethyl Phosphate Solutions. J. Phys. Chem. B,2003,107 (39):10962~10966
    [10]郑洪河.锂离子电池电解质.(第一版).北京:化学工业出版社,2007.55-56
    [11]Krause L. J., Lamanna W., Summerfield J., et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources,1997,68 (2):320~325
    [12]Song S. W., Richardson T. J., Zhuang G. V, et al., Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using the EQCM. Electrochim. Acta,2004,49 (9-10):1483~ 1490
    [13]Wang X., Yasukawa E., Mori S., Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochim. Acta,2000,45 (17):2677~2684
    [14]Nakajima T, Mori M., Gupta V., et al., Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sci.,2002,4 (11-12):1385~1394
    [15]Behl W. K., Plichta E. J., Stability of aluminum substrates in lithium-ion battery electrolytes. J. Power Sources,1998,72 (2):132~135
    [16]Gachot G., Grugeon S., Armand M., et al., Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J. Power Sources,2008,178 (1):409~421
    [17]Campion C. L., Li W., Lucht B. L., Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries. J. Electrochem. Soc.,2005,152 (12):A2327~A2334
    [18]Ravdel B., Abraham K. M., Gitzendanner R., et al., Thermal stability of lithium-ion battery electrolytes. J. Power Sources,2003,119-121:805~810
    [19]Choi N. S., Profatilova I. A., Kim S. S., Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte. Thermochim. Acta,2008,480 (1-2):10~14
    [20]Tasaki K., Kanda K., Nakamura S., et al., Decomposition of LiPF6 and Stability of PF5 in Li-Ion Battery Electrolytes. J. Electrochem. Soc.,2003,150 (12):A1628~A1636
    [21]Aurbach D., Zaban A., Gofer Y., et al., Recent studies of the lithium-liquid electrolyte interface. Electrochemical, morphological and spectral studies of a few important systems. J. Power Sources, 1995,54(1):76~84
    [22]Aurbach D., Markovsky B., Weissman I., et al., On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta,1999,45 (1-2): 67-86
    [23]Aurbach D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources,2000,89 (2):206~218
    [24]Richard M. N., Dahn J. R., Accelerating rate calorimetrv study on thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J. Electrochem. Soc.,1999,146 (6):2068~2077
    [25]Andersson A. M., Herstedt M., Bishop A. G., et al., The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes. Electrochim. Acta,2002,47 (12):1885 ~1898
    [26]Profatilova I. A., Kim S.-S., Choi N.-S., Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate. Electrochim. Acta, 2009,54 (19):4445~4450
    [27]Li M. Q., Qu M. Z., He X. Y., et al., Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries. Electrochim. Acta,2009,54 (19):4506~4513
    [28]Huang C., Huang K., Liu S., et al., Storage behavior of LiNi1/3Co1/3Mn1/3O2/artificial graphite Li-ion cells. Electrochim. Acta,2009,54 (21):4783~4788
    [29]Leroy S., Martinez H., Dedryvere R., et al., Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries:An XPS study. Appl. Surf. Sci.,2007,253 (11): 4895~4905
    [30]Dedryvere R., Martinez H., Leroy S., et al., Surface film formation on electrodes in a LiCoO2/graphite cell:A step by step XPS study. J. Power Sources,2007,174 (2):462~468
    [31]Sugimoto T., Kikuta M., Ishiko E., et al., Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties. J. Power Sources,2008,183 (1): 436~440
    [32]Kang S.-H., Abraham D. P., Xiao A., et al., Investigating the solid electrolyte interphase using binder-free graphite electrodes. J. Power Sources,2008,175 (1):526~532
    [33]Amatucci G. G., Tarascon J. M., Klien L. C., et al., Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics,1996,83 (1-2):167~173
    [34]Peled E., Golodnitsky D., Ardel G., et al., The SEI model-application to lithium-polymer electrolyte batteries. Electrochim. Acta,1995,40 (13-14):2197~2204
    [35]Roth E. P., Doughty D. H., Thermal abuse performance of high-power 18650 Li-ion cells. J. Power Sources,2004,128 (2):308~318
    [36]Aurbach D., Zinigard E., Cohen Y., et al., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics,2002,148 (3-4):405~ 416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700