含有全氟烷基磺酰亚胺基侧链聚苯乙烯的合成﹑表征及其催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通的磺酸树脂作为一种多功能高分子已获得广泛的应用,在催化领域由于其热稳定性较差,使用温度仅限120℃以下,在140-150℃会失去磺酸基团而失活; 同时由于其酸强度偏低(H0 = -3),在一些反应的应用上受到了限制,因此开发新型、耐高温的强Br?nsted 酸高分子一直是人们关注的课题。但是,目前开发的主要还是全氟化的或部分氟化的磺酸树脂。近年来,全氟磺酰亚胺类阴离子作为一类重要的弱配位有机阴离子,受到广泛关注并开展了深入的研究。然而,有关新型含氟氮超酸树脂用于催化方面还未见报道。
    本文以交联的聚苯乙烯为高分子载体,通过一定的手段将全氟磺酰亚胺基团悬挂到高分子载体上,形成一种氮超酸式的离域结构而显示出很强的酸性,成为了一种新的强酸高分子(PPFSI); 同时,本文还就一些Lewis 酸在PPFSI 上的负载形式和方法进行了一些探索。
    为了评价PPFSI 的物性和结构,用热重分析和可变温红外测试了热稳定性、用环境扫描电镜分析了氟化高分子孔洞结构的变化、用Hammett 指示剂蒸汽吸附法测量了酸强度。结果表明,这种悬有全氟磺酰亚胺基团的聚苯乙烯(PPFSI)是一种能耐170℃高温的强酸高分子。同时,我们以酯化为模型反应,在10 mol% PPFSI 用量下考察了各种羧酸和醇的酯化反应。在120~125℃高温条件下,循环催化5 次未发现PPFSI催化活性的降低,表明PPFSI 是一种有效的、能耐较高温度的Br(?)nsted 酸催化剂。
    由于氟化高分子相对于磺化高分子的特殊性(热稳定性﹑疏水性和强酸性),本文也在水相体系中考察了PPFSI 的催化活性。并延长碳氟链,增加疏水性,探讨了在水相催化体系中碳氟链长的变化﹑疏水性﹑反应比例以及温度等对催化活性的影响。初步证实了反应物和催化剂形成的疏水环境推动反应平衡进行的原理,这为后面设计更为有效的水相体系的催化剂提供了理论指导。
    另外,本文也在PPFSI 上进行了一些Lewis 酸负载的探索和尝试,但我们发现反应体系﹑溶涨试剂﹑反应温度以及与金属阳离子成键的阴离子位阻都与负载量和负载牢固的程度有着很大的关系,这就为后面开展Lewis 酸负载的工作打下了很好的基础。
The general sulfonated polymer has been widely applied as a kind multifunctional polymer in industry. It can not be employed in some reactions in catalysis domain because of its poor chemical stability and low acid strength (H0 = -3), which only use safely below 120℃and lose sulfonic group above 140~150℃. So it’s necessary to develop novel strong Br?nsted acid polymer that can tolerate high temperature. But most of the researches were mainly focused on the investigation of perfluorinated sulfonated polmer or partly fluorinated sulfonated polmer in passed two decades.
    As a kind of outstanding weakly coordinating anions, perfluoroalkylsulfonylimide anions have been receiving continuous interests and extensively studied in recent years. However, there is no report on the polymer containing side perfluorosulfonylimide groups in catalysis domain.
    In this paper, crosslinked polystyrene was used as polymer support. The SO_2-NH-SO_2 units were introduced to the polymer and expected to show ‘super’acidities due to the powerful electron-withdrawing effect of perfluoroalkylsulfonyl group (-SO_2CF_3, -SO_2CF_2CF_2CF_2CF_3). On the other hand, some of Lewis acids were immobilized onto the novel strongly acid polymer (PPFSI) and the preparation methods and property of the catalysts were investigated, too.
    In order to evaluate the physical properties and hole structure of the PPFSI, the thermal stability of the PPFSI was investigated by the thermogravimetric analysis and variable temperature infrared spectrum. The hole structure variety of the polymer via fluorination was analysed by SEM and the acid strength of the PPFSI was characterized by the Hammett indicator method. Results showed that the PPFSI was a kind strongly acid polymer that was tolerant of 170℃temperature. The direct esterification of carboxylic acids and alcohols was chosen to be a model reaction in 10 mol% amount of the PPFSI. The PPFSI could be reused more than five times successively at 120-125℃without any loss of its activity and showed to be higher catalytic activity compared with other solid-state acids, which also improved recycling stability and strong Br?nsted acidity in
    experiments. Due to the special characteristic (thermal stability,hydrophobic property and strong acidity) of the PPFSI compared with sulfonated polymer, its catalytic activity was investigated in aqueous media, too. We also increased carbon-fluorine chain length to strengthen the hydrophobic nature of the PPFSI, and discussed the reaction conditions, hydrophobic property and the chain-length effect on the catalytic activity in aqueous media. The results paved a way to the further study. In addition, the PPFSI was used as the support polymer, on which Lewis acid was immobilized in this paper. It was found that the reaction system, swelling reagent, reaction temperature and the configuration block played an important role in the load amount and support extent of the Lewis catalysts.
引文
[1] G. A. Olah, P. S. lyer, G. K. S. Prakasn, Perfluorinated resinsulfonic acid(Nafion-H) catalysis in synthesis , Synthesis, 1986, 513~531
    [2] A. Heidekum, M. A. Harmer, W. F. Hoelderich, Addition of carboxylic acids to cyclic olefins catalyzed by strong acidic ion-exchange resins, Journal of Catalysis, 1999, 181(2): 217~222
    [3] J. Tejero, E. Creus, M. Iborra, et al. Comparative study of IPTBE synthesis on HZS-5 and ion-exchange resin catalysts, Catalysis Today, 2001, 65(2-4): 381~389
    [4] M. A. Harmer, Q. Sun, A. J. Vega, et al, Nafion resin-silica nanocomposite solid acid catalysts. Microstructure-processing-property correlations, Green Chem., 2000, 2: 7~14
    [5] A. Mitsutani, Future possibilities of recently commercialized acid/base-catalyzed chemical processes, Catalysis Today., 2002, 73:57~63
    [6] M. A. Harmer; Q. Sun, Solid acid catalysis using ion-exchange resins, Applied Catalysis A: General, 2001, 221, 45~62
    [7] M. A. Harmer, W. E. Farneth, Q. Sun, High Surface Area Nafion Resin/Silica Nanocomposites: A New Class of Solid Acid Catalyst, J. Am. Chem. Soc., 1996, 118: 7708~7715
    [8] I. A. Kopp, R. W. Taft, F. Anvia, et al, The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids. J. Am. Chem. Soc., 1994, 116:3047~3057
    [9] W. Beck, K. Sunkel, Metal Complexes of Weakly Coordinating Anions. Precursors of Strong Cationic Organometallic Lewis Acids, Chem. Rev., 1998, 88:1405~1421
    [10] S. H. Strauss, The Search for Large and More Weakly Coordinating Anions, Chem. Rev., 1993, 93: 927~942
    [11] K. Seppelt, “Non-Coordinating”Anions II, Angew. Chem. Int. Ed. Engl., 1993, 32(7): 1025~1027
    [12] M. R. Rosenthal, Myth of the noncoordinating anions, J. Chem. Educ., 1973, 50: 331~333
    [13] Manfred Bochmann, “Non-Coordinating”Anions: Underestimated Ligands, Angew. Chem. Int. Ed. Engl., 1992, 31(9): 1181~1182
    [14] T. Imamoto, M. Nishiura, Y. Yamanoi, et al, Single Crystal X-Ray Analyses of a Series of Hexamethylphosphoramide-Coordinated Complexes of Rare Triflates: Existence of Tetrad Effects in the Coordinate Bonds, Chemistry Letters, 1996, 875~876
    [15] K. Mikami, O. Kotera, Y. Motoyama. et al, Synthesis, structure and high catalytic activity in the Diels-Alder reaction of yetterbium ( Ⅲ) and yttrium( Ⅲ) Bis(trifluoromethanesulfonyl)amide complexes, Inorg. Chem. Commun., 1998, 1:10~11
    [16] J. Fawcett, A. W. G. Platt, Structures and catalytic properties of complexes of bis(diphenylphino)methane dioxide with scandium and lanthanide trifluoromethane sulfonates, Polyhedron, 2003, 22: 967~973
    [17] J. Jr. Foropoulos, D. D. Desmareau, Synthesis, Properties, and Reaction of Bis(trifluoromethanesulfonyl)amide., Inorg. Chem, 1984, 27: 3720~3723
    [18] L. Twrowsky, Tri((Trifluoromethyl)Sulfonyl)Methane, Inorg. Chem, 1988, 27: 2135~2137
    [19] Jin Nie, Polyfluorinated Weakly Coordinating Organic Anions. Synthesis of Polyfluorinated Nitrogen Acids and Specialties of their Metal Salts[D]. Doctoral dissertation, Kyushu University, 1995
    [20] S. Kobayashi, M. Sugiura, H. Kitagawa, et al, Rare-Earth Metal Triflates in Organic Synthesis, Chem. Rev., 2002, 102: 2227~2302
    [21] 袁余斌(Yuan Y B), 聂进(Nie J). 全氟烷基配合物及其催化应用,有机化学,2004,24(8):857~863
    [22] F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th ed. Wiley: New York, 1998, 973
    [23] H. Kobayashi, Jin Nie, T. Sonoda, Metal Bis((Perfluoroaldy)Sulforyl)amide as Novel Lewis Acid Catalysts in Diels-Alder Reaction, Chem. Lett. 1995, 307~308
    [24] K. Mikami, O. Kotera, Y. Motoyama, et al, Bis(trifluoromethylsulfonyl)amides as highly Efficient Lewis Acid Catalysts for Acylation Reactions, Synlett, 1996,171~172
    [25] K. Ishihara, M. Kubora, H. Yamamoto, A New Scandium Complex as an Extremetry Active Acylation Catalyst, Synlett, 1996, 265~266
    [26] K. Ishihara, S. Ohara, H. Yamamoto, Direct Condensation of Carboxylic Acids with Alcohols Catalyzed by Hafnium(Ⅳ) Salts, Science, 2000, 10(290): 1140~1142
    [27] K. Ishihara, M. Nakayama, S. Ohara, et al, Direct ester condensation from a 1:1 mixture of carboxylic acids and alcohols catalyzed by hafnium(Ⅳ) or zirconium(Ⅳ) salts, Tetrahedron, 2002, 58: 8179~8188
    [28] Hao. X. H, A. Yoshida, J. Nishikido, Recyclable and selective Lewis acid catalysts for transesterification and direct esterification in a fluorous biphase system: tin(Ⅳ) and hafnium(Ⅳ) bis(perfluorooctanesulfonyl)amide complexes, Tetrahedron Letters, 2004, 45: 781~785
    [29] 袁余斌,聂进,王烁今,张正波, 全氟烷基磺酰亚胺盐催化芳香化合物硝化反应的研究, 有机化学,2005, 25(4): 394~398
    [30] 郑晓来,蒋景阳,王兵,金子林,均想催化-均想催化多相化新进展,化学进展,1997,9(2):111~122
    [31] D. J. Cole-Hamilton, Homogeneous Catalysis-New Approaches to Catalyst Separation, Recovery, and Recycling, Science, 2003,299(14): 1702~1706
    [32] 肖杰展,张正波,聂进,全氟烷基磺酸盐和全氟烷基磺酰亚胺盐的多相化催化研究,化学进展,2005,17(1):138~142
    [33] S. Kobayashi, S. Nagayama, A Polymer-Supported Scandium Catalyst, J. Org. Chem., 1996, 61: 2256~2257
    [34] S. Kobayashi, S. Nagayama, A New Methodology for Combinatorial Synthesis. Preparation of Diverse Quinoline Derivatives Using a Novel Polymer-Supported Scandium Catalyst. J. Am .Chem. Soc., 1996, 118: 8977~8978
    [35] S. Nagayama, S. Kobayashi, A Novel Polymer-Supported Scandium Catalyst Which Shows High Activity in Water, Angew. Chem. Int. Ed., 2000, 39(3): 567~569
    [36] Libing Yu, Depu Chen, Jun Li, et al., Preparation, Characterization, and Synthetic Uses of Lanthanide(Ⅲ) Catalysts Supported on Ion Exchange Resins. J.Org.Chem., 1997, 62: 3575~3581
    [37] M. T. Reetz, D. Giebel, Cross-Linked Scandium-Containing Dendrimers: A New Class of Heterogeneous Catalysts, Angew. Chew. Int. Ed., 2000, 39(14): 2498~2500
    [38] Nie J, H. Kobayashi, T. Sonoda. Copper(II) bis((trifluoromethyl)sulfonyl)amide. A novel Lewis acid catalyst in Diels-Alder reactions of cyclopentadiene with methyl vinyl ketone, Catalysis Today., 1997, 36: 81~84
    [39] Nie J, Xu J, Zhou G Y. Lanthanide Bis(trifluoromethylsulfonyl)amides as Effective Reusable Catalysts for Catalytic Friedel-Crafts acylation, J. Chem. Res(s)., 1999, 446~447
    [40] Nie J, Zhao Z J, Xu J, et al. Lanthanide Bis[bis (1,1,1,3,3,3-hexafluoro-2-propoxy) sulfonyl]amide as a Novel Effective Acylation Catalyst, J. Chem. Res.(s)., 1999, 160~161
    [41] F. Duris, D. Baudry, A. Domond, et al. Lanthanide bis (trifluoromethylsulfonyl) amides vs trifluoromethylsulfonates as catalysts for Friedel-Crafts acylation , J. Mol. Cat. A:Chem., 2002, 188: 97~104
    [42] B Baudry, A. Domond, F. Duris, et al. Lanthanide bis (trifluoromethanesulfonyl) amides, synthesis, characterization and catalytic activity, J. Fluo. Chem., 2003, 121:233~238
    [43] Li X Y, Nie J, Density Functional Theory Study on Bis (trifluoromethylsulfonyl) imides: Electronic Structures, Energies, Catalysis, and Predictions, J. Phys. Chem. A., 2003, 121: 6007~6013
    [44] 王丽琼,聂进,李小永,张正波,尹飞,高氯酸锂促进的固体酸催化酯化反应,有机化学,2004, 24(7):778~782
    [45] 龚艳伟,聂进,张正波,吴晗, 高分子液晶态与超分子有序态研究进展,周其风主编,武汉:华中科技大学出版社,2002,381~384
    [46] J. Nishikido, M. Nanbo, A. Yoshida, et al. Metallo-Enzyme Model in pure water. Cyclodextrin-Lanthanide Tris (perfluoroalkanesulfonyl) methide and Bis (perfluoroalkanesulfonyl) amide Complexes, Synlett., 2002, 10: 1613~1616
    [47] G. A. Olah, G. K. S. Prakash, J. Sommer, Perfluorinated resinsulfonic acid (Nafion-H) Science, 1979, 13, 206~208
    [48] I. Palinko, B. Torok, G. K S. Prakash, et al. Dehydration-rehydration characteristics of Nafion-H, Nafion-H supported on silica and Nafion-H silica nanocomposites catalysts studied by Infrared Microscopy, Journal of Molecular Structure, 1999, 482-483, 29~32
    [49] J. Shim, H. Y. Ha, S.-A. Hong, et al. Nafion ionomer-impregnated composite membrane, Journal of Power Sources, 2002, 109(2): 412~417
    [50] A. V. Anantaraman, C. L. Garder, Studies on ion-exchange membranes. Part 1 Effect of humidity on the conductivity of Nafion, Journal of electroanalytical chemistry, 1996, 414(2): 115~120
    [51] C. L. Randall, S. Koetsawasdi, K. Moxon, Electrochemical recordings of monoamines using a novel ceramic-based multi-site electrode, Bioengineering Conference, 2002. Proceedings of the IEEE 28th Annual Northeast 2002, 20-21: 207 - 208
    [52] R. S. Yeo, D. E. Chin, Bending curvature and generated force by Nafion actuator, J. Electrochem. Soc, 1980, 127: 549~555
    [53] A. J. Seen, Nafion: an excellent support for metal-complex catalysts, Journal of Molecular Catalysis A: Chemical, 2001, 177: 105~112
    [54] Y. Z.-Y., W. Lin, N.E. Drysdale, et al. A Simple Transformation of polyethylenes to Environmentally Benign Acid Catalysts and Lithium Conductive Polymeric Electrolytes, Macromolecules, 2003, 36(22): 8206~8207
    [55] Guan. C.-J, Chen. L, Deng. C.-H, et al. Synthesis and characterization of perfluoro[1-(2-fluorosulfonyl)ethoxy]ethyl end-capped styrene oligomers, Journal of Fluorine Chemistry, 2003, 119, 97~100
    [56] Guan. C.-J, Zhang. J, Feng. X. L, et al. Synthesis and Characterization of P2[Perfluoro212(22fluorosul2fonylethoxy)]ethylated Polystyrene, Chinese Journal of Chemistry, 2003, 21, 477~480
    [57] K. Ishihara, A. Hasegawa, H. Yamamoto, Polystyrene-Bound Tetrafluorophenylbis (triflyl)methane as an Organic-Solvent-Swellable and Strong Bronsted Acid Catalyst, Angew. Chem. Int. Ed. 2001, 40(21): 4077~4079
    [58] B. H. Thomas, G. Shafer, J. J. Ma, et al. Synthesis of 3,6-dioxa-4-trifluoromethyl perfluorooctyl trifluoromethyl sulfonimide: bis[(perfluoroalkyl)sulfonyl] superacid monomer and polymer, Journal of Fluorine Chemistry, 2004, 125: 1231~1240
    [59] M. A. Hofmann, C. M. Ambler, A. E. Maher, et al. Synthesis of Polyphosphazenes with Sulfonimide Side Groups, Macromolecules, 2002, 35, 6490~6493
    [60] S. P. Godfrey, E. J. Kinmond, J. P. S. Badyal, Plasmachemical Functionalization of Porous Polystyrene Beads, Chem. Mater, 2001, 13, 513~518
    [61] D. D. 佩林著,时雨译,实验室化学药品的提纯方法[M], 化学工业出版社,1987,第二版
    [62] 何坚,孙宝国, 香料化学与工艺学[M]. 北京。化学工业出版社,1995,220~223
    [63] J. Foropoulos, D. D. DesMarteau, Synthesis,Properties, and Reactions of Bis ((trifluoromethyl) sulfonyl)Imide, (CF3SO2)2NH , Inorg. Chem. 1984, 23: 3720~3723
    [64] L. Q. Hu, D. D. DesMarteau, Synthesis of Perhaloalkanesulfonyl Halides and Their Sulfonimide Derivatives, Inorg. Chem. 1993, 32: 5007~5010
    [65] 谢国梅,周小虹,班景昭,章纪荣,分析化学实验,1998, 11: 119
    [66] I. Rabia, J. Zerouk, M. Kerkouche, et al. Chemical and textual characteristics of porous styrene-divinylbenzene copolymers as a function of chlorosulfonation reaction parameters, Reactive & Functional Polymers. 1996, 28: 279~285
    [67] Y. X. Jiang, X. M. Chen, Y. F. Mo, et al. Preparation and properties of Al-PILC supported SO42?/TiO2 superacid catalyst , J. Mol. Catal. A: Chem. 2004, 213: 231~234
    [68] K. Kamahori, S. Tada, K. Ito, et al. Synthesis of Polymer-Supported Chiral N-Sulfonylamino acids and their use in asymmetric Diels-Alder reaction of cyclopentadiene with methacrolein , Tetrahedron: Asymmetry, 2002, 6(10): 2547~2555
    [69] D. W. Emerson, R. R. Emerson, S. C. Joshi, et al. Polymer-Bound Sulfonylhydrazine Functionality. Preparation, Characterization and Reactions of Copoly(Styrene-divinylbenzenesulfonylhydrazine), J. Org. Chem, 1979, 44(25) 4634~4640
    [70] A. E. Feiring, E. R. Wonchoba, Aromatic monomers with pendant fluoroalkylsulfonate and sulfonimide groups, Journal of fluorine Chemistry, 2000,105, 129~135
    [71] M. Hart, G. Fuller, D.R. Brown, et al. Sulfonated poly (styrene-co-divinylbenzene) ion-exchange resins, Journal of Molecular Catalysis A: Chemical , 2002, 181~183, 439~445
    [72] D. L. Vien, N. B. Colthup, W. G. Fateley, et al. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Materials, Academic Press: London, 1991
    [73] P. Chattopadhyay, C. Sinha, D.K. Pal, Preparation and properties of a new chelating resin containing imidazolyl azo groups, J. Anal. Chem. 357 (1997) 368~370
    [74] T. Okuhara, Water-Tolerant Solid acid catalyst, Chem. Rev. 102 (2002) 3641-3666
    [75] 田部浩三,固体酸碱及其催化性质,化学工业出版社,1979 年5 月第1 版
    [76] K. Manabe, S. limura, Sun. X.-M, et al. Dehydration reaction in water. Br?nsted Acid-Surfactant-Combined Catalyst for Ester, Ether, Thioether, and Dithioacetal Formation in water, J. Am. Chem. Soc, 2002, 124, 11971~11978
    [77] K. Manabe, S. Kobayashi, Dehydrative Esterification of Carboxylic Acids with Alcohols Catalyzed by Polymer-Supported Sulfonic Acids in water, Adv. Synth. Catal. 2002, 344, 270~273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700