全氟壬烯氟两相体系及其在酯化和硝化反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全氟壬烯作为一种新型的绿色溶剂,具有氟溶剂的一般特点。全氟壬烯可与正己烷、环己烷、正庚烷、乙醚、四氯化碳、四氢呋喃、甲苯和乙酸乙酯等形成二元氟两相体系;可与正己烷/丙酮、正己烷/氯仿、环己烷/丙酮、正庚烷/丙酮、正庚烷/氯仿等形成三元氟两相体系。且互溶温度和相组成,随着全氟壬烯和有机溶剂配比的不同而变化。
     在全氟壬烯中,硫酸催化等物质量的羧酸(甲酸、乙酸、丙酸、丁酸或辛酸)与醇(甲醇、乙醇、正丙醇、正丁醇、正戊醇或2-乙基己醇)的酯化反应,在不同时蒸馏分离生成物酯或水的条件下,羧酸转化率达到或接近100%;与不加氟溶剂相比,酯收率提高10%~89%。苯甲酸和乙醇或丙醇在全氟壬烯和甲苯混合溶剂中类似地反应,收率分别提高15.5%和36.0%,且全氟壬烯和硫酸回收套用简便。
     在全氟壬烯中,甲苯硝化反应的最佳条件为:n(甲苯):n(95%硝酸):n(98%硫酸):n(全氟壬烯)=1:1:0.5:0.06,D.V.S.值为2.23,反应时间为5h,反应温度为50℃,收率可达81.5%,对位和邻位硝基甲苯之比(p/o值)为0.65,全氟壬烯的回收率均在97%以上。
Perfluorous nonene is a new green solvent and possesses general characters of perfluorous solvent. Perfluorous nonene formed binary fluorous biphase systems with hexane, cyclohexane, heptane, ethyl ether, tetrachloromethane, tetrahydrofuran, toluene, ethyl acetate; formed ternary fluorous biphase systems with hexane / acetone, hexane / chloroform, cyclohexane / acetone, heptane / acetone, heptane / chloroform. The critical mutual soluble temperatures and components of each phase depended on the changing of the proportion of perfluorous nonene and organic solvents.The equimolar esterifications of formic acid, acetic acid, propionic acid, buteric acid or caprylic acid with methanol, ethanol, n-propanol, n-butanol, n-pentanol or 2-ethyl hexanol were studied respectively. Perfluorous nonene in reaction system made the esterification equilibrium move rightly and the yields of esterification increase 10 % - 89 %. The esterification yields of phenylformic acid with ethanol or n-propanol increased 15.5 % and 36.0 % respectively in presence of perfluorous nonene and toluene. Perfluorous nonen and H_2SO_4 were recovered and reused easily.The optimal conditions for toluene nitration in perfluorous nonene were: n ( toluene ) : n ( 95% nitric acid ) : n ( 98% sulfuric acid ) : n ( perfluorous nonene ) = 1 : 1 : 0.5: 0.06, D.V.S = 2.23, t = 5h, T = 50℃. The yield could reach 81.5 %, p / o = 0.65. The perfluorous nonene were recycled several times with little loss.
引文
[1] 沈玉龙,魏利滨,曹文华,等.绿色化学[M].北京:中国环境科学出版社,2004:1-41,68-95.
    [2] 贡长生,张克立.绿色化学化工实用技术[M].北京:化学工业出版社,2002:1-22,35-36.
    [3] 段林海,张晓彤,唐克,等.超临界流体的应用与研究进展[J].化工时刊,2005,19(2):43-48.
    [4] 超临界流体技术[J].中国纺织,2005,6:145-47.
    [5] 曾宏,曾美风.超临界流体技术与环境应用[J].能源与环境,2005,3:20-23.
    [6] 陈小兵,邓淑华,黄慧民,等.超临界流体技术在化学反应中的应用[J].广州工业大学化学学报,2004,21(1):67-73.
    [7] Jackson M A, King J W. Lipase-catalyzed glycerolysis of soybean oil in supercritical carbon dioxide[J]. ibid, 1997, 74: 103-106.
    [8] 李国平,江焕峰,李金恒.超(近)临界流体中的催化加氢反应[J].化学进展,2001,13(6):455-461.
    [9] 李颖华.超临界二氧化碳在有机合成中的应用[J].化学世界,2002,9:490-495
    [10] 王丽君,韩文爱.超临界流体在有机合成中的应用[J].石家庄师范专科学校学报,2004,6(3):31-34.
    [11] 陈立军,张心亚,黄洪,等.超临界流体应用技术[J].中国皮革,2005,34(11):8-11.
    [12] 陈立军,张心亚,黄洪,等.超临界流体应用技术(续)[J].中国皮革,2005,34(13):15-17
    [13] Meyer A, Kleib W. Determination ofpentacholorophenol in leather using supericritical fluid extraction with in situderivatization[J]. Journal of Chromatography A, 1995, 178: 131-139.
    [14] Marsal A, Celma PJ, Cot J, et al. Superitical CO_2 extraction as a clean degreasing process in the leather industry[J]. Journal of Supercritical Fluids, 2000, 16: 217-223.
    [15] 张丽莉,陈丽,赵雪峰,等.超临界水的特性及应用[J].化学工业与工程,2003, 21(2):33-38.
    [16] 梁红玉,宫红,姜恒.离子液体——未来化学工业中的绿色溶剂[J].当代化工,2003,31(1):60-62.
    [17] 闵江马,付时雨.离子液体的合成与功能化设计[J].广州化学,2005,30(3):39-45.1
    [18] 李汝雄,王建基.离子液体的合成与应用[J].化学试剂,2001,23(4):211-215.
    [19] Earle MJ, Cormac P B, Seddon KR. Diels-Alder reactions in ionic liquids[J]. Green Chem, 1999, 1(1): 23-25.
    [20] 王寿武,冯莉,陈双平.离子液体及其在有机合成中的应用[J].日用化学工业,2005,35(2):102-106.
    [21] 马海兵,杨丽斌,任慧平,等.离子液体及其在化学中的应用[J].山东师范大学学报(自然科学版),2005,20(3):45-47.
    [22] 邹汉波,董新法,林维明.离子液体及其在绿色有机合成中的应用[J].化学世界,2004,2:107-110.
    [23] 肖小华,刘淑娟,刘霞,等.离子液体及其在分离分析中的应用进展[J].分析化学,2005,33(4):569-574.
    [24] 袁华堂,焦丽芳,曹建胜,等.离子液体在电池中的应用进展[J].电池,2005,35(2):144-145.
    [25] 孙茜,刘元兰,陆嘉星.离子液体在电化学中的应用[J].化学通报,2003,2:112-114.
    [26] 赵喜芝,李晓霞.水——有机化学中的绿色介质[J].化学工程师,2004,(2):37~38
    [27] 张姝,陈景,史达清,等.水溶剂中羰基与活性亚甲基化合物的缩合反应[J].徐州师范大学学报,2003,21(2):42-45
    [28] Yorimitsu H, Nakamura T, Shinokubo H, et al. Powerful solvent effect of water in radical reaction: triethylborane-induced atom-transfer radical cyclization in water[J]. J Am Chem Soc, 2000, 122(45): 11041-11047.
    [29] Darryl C. Rideout, Ronald Breslow. Hydrophobic acceleration of Diels-Alder reactions[J]. J Am Chem Soc, 1980, 102(26): 7816-7817.
    [30] Paul A, Grieco, Philip G, et al. "Micellar" catalysis in the aqueous intermolecular diels-alder reaction: rate acceleration and enhanced selectivity[J]. Tetrahedron L ett, 1983, 24(18): 1897-1900.
    [31] Otto S, Bertoncin F, Engberts J B F N. Lewis acid catalysis of a Diels-Alder reaction in water[J]. J Am Chem Soc, 1996, 118(33): 7702-7707.
    [32] Horvath T H, Rabai J. Facile catalyst separation without water: fluorous biphase hydyoformylation of olefins[J]. Science, 1994, 266(1): 72-75.
    [33] 中国科学技术协会.绿色高新精细化工技术[M].北京:化学工业出版社,2004.98-112.
    [34] 鲁福身,晁建平,杨春育.均相催化多相化新进展——氟两相体系[J].化学进展 2001,13(3):192-98
    [35] 廖永卫,陈卫平,氟两相催化反应的进展[J].有机化学,2001,21(3):181-90.
    [36] 朱小慧译,曹伟.全氟碳流体[J].有机氟工业,1998,2:44-58.
    [37] 曾毓华.氟碳表面活性剂[M].北京:化学工业出版社,2001:30-57.
    [38] D Lines, Sutcliffe H. The electrochemical fluorination of octanoyl fluoride with electrolyte circulation[J]. J Fluorine Chem, 1981, 17(5): 423-439.
    [39] Sartori P, Ignat'ev N. The actual state of our knowledge about mechanism of electrochemical fluorination in anhydrous hydrogen fluoride(Simons process)[J]. J Fluorine Chem, 1998, 87(2): 157-162.
    [40] 方红云,廖联安,蔡丽娟.氟相技术的应用[J].化工科技,2000,8(6):53-56.
    [41] 刘朋军.氟两相体系研究进展[J].现代化工,2001,21(3):14-18.
    [42] Horvath I T, Rabai J. Metal-fluorinated and metal -perfluorinated complexes as catalysts and extractants for multiphase systems[J]. Adv Organomet Chem., 1998, 571: 201-204.
    [43] Horvath I T. Fluorous biphase chemistry[J]. Acc Chem Res, 1998, 31(10): 641-650.
    [44] 刘朋军.氟两相体系在催化中的应用[J].海南师范学院学报(自然科学版),2001,14(4):60-67.
    [45] Huhges R P, Trujillo H A. Selective solubility of organometallic complexes in saturated fluorocarbons:synthesis of cyclopentadienyl ligands with fluorinated ponytails[J]. Organometallics, 1996, 15(1): 286-294.
    [46] Horvath I T, Rabai J. Facile catalyst separarion without water: fluorous biphase hydyoformylation of olefins[J]. Angew Chem Int Ed Engl, 1994, 266(7): 72-75.
    [47] Horvath I T, Rabai J. Facile catalyst separation without water: fluorous biphase hydroformylation of olefins [J]. Science, 1994, 266 (5182): 72- 75.
    [48] Herrera V, Derege P J F, Horvath I T, et al. Tuning the fluorous partition coefficients of organometallic complexes[J] . Inorg Chem Commun, 1998, 1 (6): 197-199.
    [49] Pozzi G, Montanari F, Quici S. Tetraarylporphyrin-catalysed epoxidation of alkens by dioxygen and 2-methylpropanal under fluorous biphase conditions. Chem Commun, 1997, (1): 69-70.
    [50] Klement I., Lutjens H., Knochel P. Transition metal catalyzed oxidations in perfluorinated solvents[J]. Angew Chem Int Ed Engl, 1997, 36:1454-1457.
    [51] Betzemeier B, Cavazzini M, Quici S, et al. Copper - catalyzed aerobic oxidation of alcohols under fluorous biphase conditions[ J ]. Tetrahedron Lett., 2000, 41 (22): 4343-4346.
    [52] Ravikumar K S, Barbier F, Begue J P. Manganese (III) Acetate Dihydrate Catalyzed Aerobic Epoxidation of Unfunctionalized Olefis in Fluorous Solvents [J]. Tetrahedron, 1998, 54(37): 7454-7462.
    
    [53] Klement I, Lutjens H, Knochel P. Transition Metal catalyzed oxidations in perfluorinated solvents [J]. Angew Chem Int Ed Engl, 1997, 36 (13/14): 1454-1456.
    [54] Juliette J. J.J., Rutherford D, Horvath I T, et al. Transition metal catalysis in fluorous media: practical application of a new immobilization principle to rhodium-catalyzed hydroborations of alkenes and alkynes[J]. J Am Chem Soc, 1999, 121(12):2969-2704.
    [55] Juliette J.J. J., Horvath I T, Gladysz J. A. Transition metal catalysis in fluorous media: practical application of a new immobilization principle to rhodium-catalyzed hydroboration[J]. Angew Chem Int Ed Engl, 1997, 36(15): 1610-1612.
    [56] Fish R H. Fluorous biphase catalysis: a new paradigm for separation of homogeneous catalysis from their reaction substrates and products[J]. Chem Eur J, 1999,5(6): 1677-1680.
    [57] Wang Y L, Wu X W, Cheng F, et al. Thermoregulated phase-separable phosphine ruthenium complex for hydrogenation catalysis [J]. Journal of Molecular Catalysis, 2003, 195(1-2): 133-137.
    
    [58] Bergbreiter D E, Franchina J G, Case B L. Fluoroacrylate-bound fluorous-phase soluble hydrogenation catalysts [J]. Org Lett, 2002,2(3):393-395.
    [59] Vinson S, Gagne M. Can a fluorous biphase solvent system improve a polymer immobilized heterogeneous hydrogenation catalyst[J]. Chem Commun, 2001, 12: 1130-1132.
    [60] Xiang J, Otera A, Otera J. Fluorous biphasic esterification gives high reaction efficiency[J]. Angew Chem Int Ed, 2002, 41: 4117-4119.
    [61] 易文斌,蔡春.全氟辛基磺酸稀土金属盐催化氟两相酯化反应[J].有机化学,2005,25(11):1434-1436.
    [62] Otera J, Orita A. A practical and green chemical process: fluoroalkyldistannoxane catalyzed biphasic transesterification[J]. Angew Chem Int Ed, 2001, 40: 3670-3672.
    [63] Shi Min, Cui Shi cong. Electrophlic aromaticnitration using perfluorinated rare earth metal saltsin fluorous phase[J]. Chem Commun, 2002, 9: 994-995.
    [64] 易文斌,蔡春.甲苯的氟两相硝化反应研究[J].含能材料,2005,13(1):52-55.
    [65] 易文斌,蔡春.卤代苯的氟两相硝化反应研究[J].火炸药学报,2005,28(3):45-48.
    [66] Michael R, Crampton, Emma L, et al. The nitration of arenas in perfluorocarbon solvents[J]. Green Chemistry, 2002, 4: 275-278.
    [67] Nakamura Y, Takeuchi S, Okumura K, et al. Recyclable fluorous chiral ligands and catalysts: asymmetric addition of diethylzinc to aromatic aldehydes catalyzed by fluorous BINOL-Ti complexes[J]. Tetrahedron, 2002, 8(20): 963-3969.
    [68] De Wolf E, Van Koten G, Deelman B J. Fluorous phase separation techniques in catalysis[J]. Chem Soc Rev,1999, 28: 37-41.
    [69] Kleijin H, Jastrzebski J B H, Gossage R A. Ortho-bis(arnino)arylnickel(Ⅱ) halide complexes containing perfluoroalkyl chains as model catalyst precursors for use in fluorous biphase systems[J]. Tetrahedron, 1998, 54(7): 1145-1152.
    [70] 史鸿鑫.氟两相体系及其在有机合成中的应用[J].云南化工,2005,32(5):1-8.
    [71] Kitazume T. Green Chemistry Developmemt in Fluorine Science[J]. J Fluorine Chemistry, 2000, 105(2): 265-278.
    [72] 易文斌,蔡春.全氟辛基磺酸稀土金属盐催化氟两相Friedel-Crafts酰化反应[J].应用化学,2005,22(11):1187-1191.
    [73] Nakano H, Kitazume T. Friedel-Crafts reaction in fluorous fluids[J]. Green Chemistry, 1999, 11: 179-181.
    [74] Shi Min, Cui Shi cong. Friedel-crafts reaction catalyzed by perfluorinated rare earth metal[J]. J Flourine Chem, 2002, 116(2): 143-147.
    
    [75] Kling R, Sinou D, Pozzi G, et al. Palladium(0)-catalyzed substitution of allylic substrates in perfluorinated solvents[J]. Tetrahedron Lett, 1998, 39(51): 9439-9442.
    
    [76] Rocaboy C, Gladysz J A. Syntheses, oxidations, and palladium complexes of fluorous dialkyl sulfides: new precursors to highly active catalysts for the Suzuki coupling[J]. Tetrahedron, 2002, 58(20): 4007-4014.
    [77] Moineau J, Pozzi G, Quici S, et al. Palladium-catalyzed Heck reaction in perfluorinatedsolvents[J]. Tetrahedron Lett, 1999, 40(43): 7683-7686.
    [78] Yin Y Y, Zhao G, Qian Z S, et al. 6,6'-bisperfluoroalkylated BINOLs promoted asymmetric ally-lation of aldehydes[J]. Journal of Fluorine, 2003, 120(2): 117-120.
    [79] Andreas Endres, Gerhard Maas.A fluorous phase approach to rhodium catalyzed carbenoid reactions with Diazoacetates[J]. Tetrahedmn Letters 1999,40 (35):6365-6368.
    [80] Dinh L V, Gladysz J A. Transition metal catalysis in fluorous media: extension of a new immobilization principle to biphasic and monophasic rhodium-catalyzed hydrosilylations of ketones and enones[J]. Tetrahedron Lett, 1999,40 (51): 8995-8998.
    [81] Nakamura Y, Takeuchi S, Ohgo Y, et al. Asymmetric alkylation of aromatic aldehydes with diethylzinc catalyzed by a fluorous BINOL-Ti complex in an organic and fluorous biphase system[J]. Tetrahedron Lett .2000, 41(1): 57-60.
    [82] Wen Bin Yi,Chun Cai, Aldol condensations of aldehydes and ketones catalyzed by rare earth(III) perfluorooctane sulfonates in fluorous solvents, J. Fluorine chemistry, 2005, 126:1553-1558.
    [83] Takeuchi S, Nakanmura Y, Ohgo Y, et al. Catalytic enantioselective protonation of asamarium enolate with fluorous chiral and achiral proton sources in fluorous biphasic systems[J]. Tetrahedron Lett, 1998, 39(47):8691-8694.
    [84] Haddleton D M, Jackson S G, Bon S A F. Copper( I )-mediated living radical polymerization under fluorous biphase conditions [J]. J Am Chem Soc, 2000, 122(7):1542-1543.
    [85] Curran D P, Hadida S. Tris(2-(perfluorohexyl)ethyl) tin hydride: a new fluorous reagent for use in traditional organic synthesis and liquid phase combinatorial synthesis. J Am Chem Soc, 1996, 118(10):2531-2532.
    [86] Curran D P, Hadida S, Kim S Y, et al. Fluorous tin hydrides: a new family of reagents for use and reuse in radical reactions[J]. J Am Chem Soc, 1999, 121(28): 6607-6615.
    [87] Ryu I, Niguma T, Minakata S, et al. Hydroxymethylation oforganic halides: evaluation of a catalytic system involving a fluorous tin hydride reagent for radical carbonylation[J]. Tetrahedron Lett, 1997, 38(45): 7883-7886.
    [88] Spitzer A R, Lipsky C L. Partial liquid ventilation with perflubron in premature infants with severe repiratory distress syndrome[J].Clin Pediatr Phila, 1997,36 (3): 181-182.
    [89] Houmes R J, Hartog A,V erbrugge S J, et al. Combining partial liquid ventilation with nitric oxide to improve gas exchange in acute lung injury[J]. Intensive Care Med, 1997,23(2): 163-169.
    [90] Zobel G, U rlesberger B, Dacar D. Partial liquid ventilation combined with inhaled nitric oxide in acute respiratory failure with pulmonary hypertension in piglets[J]. Pediatr Res, 1997,41(2): 172-177.
    [91] Parent A C, Overbeck M C, Hirschl R B. Oxygen dynamics during partial liquid ventilation in a sheep model of severe respiratory failure[J]. Surgery, 1997, 121(3): 320-327.
    [92] Pranikoff T, Gauger P G, Hirschl R B. Partial liquid ventilation in new born patients with congenital diaphragmatic hernia[J]. J Pediatr Surg, 1996, 31(5):613-618.
    [93] Briceno J C, Runge T M , Mc Ginity J W , et al. Changes in brain pH, PO_2, PCO_2, cerebral blood flow, and blood gases induced by a hypero smolar oxyreplete hemosubstitute during cardiopulmonary bypass[J]. ASAIOJ, 1997,43(1): 13-18
    
    [94] Manning J E, Batson D N , Payne F B, et al. Selective aortic arch perfusion during cardiac arrest[J]. Ann Emerg Med, 1997,29(5):580-587.
    [95] Scheule A M , Bohl A, Heinemann M K, et al. Post ischemic synthesis of high energy phas-phates in isolated porcine hearts during reperfusion with 11 o r 25 degrees C hypo therm in PFC emulsion FC43[J]. Eur J Cardiothorac Surg, 1997, 11(4):746-750.
    [96] Bekyarova G, Yankova T, Kozarev I. Suppressive effect of FC-43 PFC emulsion on enhanced oxidative haemolysis in the early postburn phase[J]. Burns, 1997, 23(2):117-121.
    [97] Riess J G, Krafft M P. Advanced fluorocarbon-based systems for oxygen and drug delivery, and diagnosis[J]. Art Cells, Blood Subs, and Immob Biotech, 1997, 25(1/2): 43-52.
    [98] Brown A D, Kirkby G R. Removal of subretinal gas using PFC liquid[J]. Retina, 1997, 17(1): 70-71.
    [99] 杨锦宗.工业有机合成基础[M].北京:中国石化出版社,1998:138-142.
    [100] Scott R L. The anomalous behavior of fluorocarbon solutions[J]. J Phys. Chem. 1958, 62: 136-145.
    [101] Kiss L E, Kovesdi I, Rabai J. An improved design of fluorophilic molecules: prediction of the In P fluorous partition coefficient, fluorophilicity, using 3D QSAR descriptors and neural networks[J]. J Fluorine Chem. 2001, 108(1): 95-109.
    [102] 王春彦.无全氟溶剂氟碳相硼酸酯的合成、应用及氟碳相醇和羧酸的合成[D].上海:东华大学,2004.
    [103] Wolf E D, Ruelle P, Broeke J V D, et al. Prediction of partition coefficients of fluorous and nonfluorous solutes in fluorous biphasic solvent systems by mobile order and diaorder theory[J]. J. Phys. Chem. B., 2004, 108, 1458-1466.
    [104] 程能林,胡声闻,溶剂手册(上册)[M].北京:化学工业出版社,1986,84,91,118,382,188,141,414.
    [105] 程能林,胡声闻,溶剂手册(下册)[M].北京:化学工业出版社,1986,14.
    [106] 姚蒙正,程侣柏,王家儒.精细化工产品合成原理(第二版)[M].北京:中国石化出版社,2000:575-588.
    [107] 刘晓庚.提高酯化反应效率的研究[J].实验室研究与探索,2000,1:53-54.
    [108] 张荷丽,冯光瑛,魏天俊.酯化反应新进展和动力学研究[J].河南化工,1995,2:5-8.
    [109] 杜迎春,吴彩金.固体酸催化剂上酯化反应研究进展[J].工业催化,2003,11(5):30-33.
    [110] 周志高,蒋鹏举.有机化学实验[M].北京:化学工业出版社,2005:131-137.
    [111] 王兴涌,尹文萱,高宏峰.有机化学实验[M].北京:科学出版社,2004:113-115.
    [112] 张毓儿,曹玉蓉,冯霄,等.有机化学实验[M].天津:南开大学出版社,2003:144-145
    [114] 杨锦宗.工业有机合成基础[M].北京:中国石化出版社,1998:452-454.
    [115] 樊能廷.有机合成事典[M].北京:北京理工大学出版社,1992:353-354.
    [116] 岳金彩,吕海霞,谭心舜,等.邻苯二甲酸二丁酯连续化生产工艺的研究[J].石油化工,2002,31(7):562-565.
    [117] 俞善信,文瑞明,龙立平.邻苯二甲酸二丁酯合成的研究进展[J].应用化工,2001,30(2):7-9.
    [118] 姚蒙正,程侣柏,王家儒.精细化工产品合成原理(第二版)[M].北京:中国石化出版社,2000:253-272.
    [119] 孙灵,沈永嘉.甲苯对位选择硝化的研究进展[J].染料工业,1997,34(3):16-19.
    [120] 高滋,杨晓波,高光晔.固体酸催化剂上的甲苯硝化反应[J].催化学报,1994,15(6):474-478.
    [121] 杨锦宗.工业有机合成基础[M].北京:中国石化出版社,1998:610-611.
    [122] 樊能廷.有机合成事典[M].北京:北京理工大学出版社,1992:176-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700