马传染性贫血病毒弱毒疫苗致弱过程病毒基因的进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪70年代,哈尔滨兽医研究所研制成功的马传染性贫血病毒(Equine Infectious Anemia Virus, EIAV)弱毒疫苗为控制马传染性贫血(Equine InfectiousAnemia,EIA)在我国的流行做出了重要的贡献。该研究成果荣获1982年国家发明一等奖。该疫苗克服了慢病毒疫苗的开发难点,能在被免疫动物体内产生坚强的保护性免疫,是迄今为止唯一广泛应用并证明确实有效的慢病毒疫苗。马传染性贫血弱毒疫苗的成功,其中必定蕴藏着慢病毒致弱或诱导保护性免疫的机制,在HIV疫苗开发屡受挫折的背景下,系统阐明EIAV疫苗的减毒和保护机理,为HIV等慢病毒疫苗的研究提供参考。
     EIAV弱毒疫苗是由自然野毒株经马体、驴体和体外培养的驴外周血白细胞及驴胎皮肤细胞长期传代培养而成。本文通过PCR和RT-PCR的方法分别扩增EIAV弱毒疫苗制备过程中不同代次病毒株的前病毒基因组序列、EIAV驴白细胞弱毒疫苗(EIAVDLV121)及其亲本毒株EIAVLN40感染马匹后5个月内病毒S2/gp90序列,并进行序列分析比较。研究结果表明:(1)EIAV在体外传代致弱过程中LTR、env和S2等区域是主要的变异区域:随着病毒在体外传代培养次数的增加,各病毒株与亲本毒株的遗传距离逐渐增加;伴随着病毒毒力的逐渐减弱,在基因组的各个区域出现了一系列稳定变异位点,包括Gag的100A/T、103T/S和484D/N的替换;Pol的16K/E、598K/R和619N/D的替换;gp90的46A/E、98G/R、103H/Y、189K/E、190E/K、193S/N、236D/-、237N/K、247E/K和321K/E的替换;Tat的7R/H的替换;S2的41T/I、51T/I和55Q/K的替换;Rev的74V/I的替换;LTR负调节区的细胞因子AP-1结合位点、增强子区E box基序、R区的转录起始位点和TAR的起始位点的变异。(2)EIAVLN40在体内进化过程中病毒分为两个大的分支,感染早期和无症状阶段的病毒处在同一分支,发病阶段的病毒和EIAVLN40处在进化树的另一分支;gp90的变异主要分布在8个变异区,V3、V4和V5区的糖基化位点的变化通常与发病状态有关,EIAVLN40和多数发病后的序列在这三个区域都具有糖基化位点191NSSN194、237NNTW240和280NDTS283;病毒进化过程中,S2有12%以上的氨基酸出现稳定的替换,这些变异的出现与疾病发展相关。(3)EIAVDLV121在体内进化过程中病毒gp90分成三个大的分支,各时间点分离的病毒gp90与EIAVLN40的平均差异在0.91%-6.49%之间,与EIAVDLV121的差异在3.88%-6.73%之间;病毒S2基因进化过程中分为两个分支,各时间点分离的病毒S2与EIAVLN40的平均差异在0.79%-8.83%之间,与EIAVDLV121的差异在.3.08%-8.14%之间。
     研究证实:在EIAV弱毒疫苗制备过程中,随着病毒毒力减弱在基因组的各个区域都出现了一系列稳定的变异:EIAVLN40在体内进化过程中gp90和S2的变异与疾病进程的发展相关;EIAVDLV121在体内低水平复制过程中,病毒基因会继续进化,特别是主要的抗原基因gp90的多样性得到进一步丰富,其中包括与强毒株相似的抗原成分。
An attenuated equine infectious anemia virus (EIAV) vaccine was developed by scientists led by Rongxian Shen of Harbin Veterinary Research Institute in the 1970s. The pandemic of equine infectious anemia (EIA) in China, which caused the death of millions horses, was successfully controlled by the country-wide application of this vaccine from 1980-1990. A First-Class National Invention Prize was awarded for the development of this novel lentiviral vaccine in 1982. This vaccine is the first lentiviral vaccine, which elicits broad and effective immunity against the infection of pathogenic strains. The efficacy of this EIAV vaccine implicates a hidden mechanism that covers the attenuation of virulence and induction of protective immunity of lentiviruses. The development of vaccines for AIDS is still a global challenge. Due to the similarity between EIAV and HIV, decoding the mechanism of EIAV vaccine on inducing protective immunity will provide insight to the development of other lentiviral vaccines, such as HIV vaccine.
     The attenuated EIAV vaccine was developed through successive passages of a wild-type virulent strain firstly in horses and donkeys to enhance the virulence and immunogenicity. A consistently passaging of this virus in donkey peripheral blood mononuclear cells (PBMC) and in fetal donkey dermal (FDD) cell derived fibroblasts in vitro was performed thereafter to attenuate the virulence of the virus. To better understand the changes in characterizations of this vaccine during the above developing process, genomic evolution of the vaccine strain was examined in this study.
     Proviral genomes were prepared from the parental virulent strain (EIAVLN40), the fetal donkey dermal cell-adapted vaccine strain (EIAVFDDV13) and strains of representative intermediate attenuating steps, and were amplified by PCR. In addition, S2 and gp90 gene fragments were amplified from EIAVLN40 and EIAVDLV121 isolated from horses infected up to five months by RT-PCR. All these amplified fragments were sequenced and compared for sequence alterations.
     Results of sequence analysis demonstrated that:(1) Mutations generated during attenuation were mostly identified in LTR, env and S2. The genetic distances of these cell-adapted EIAV strains to the parental virulent strain were gradually enlarged with the increase of passages. There were multiple stable mutations in multiple genes during EIAV attenuation process in vitro, including substitutions of 100A/T,103T/S and 484D/N in Gag, 16K/E,598K/R and 619N/D in Pol,46A/E,98G/R,103H/Y,189K/E,190E/K 193S/N, 236D/-,237N/K,247E/K and 321K/E in gp90,7R/H in Tat,41T/I,51T/I and 55Q/K in S2, 74V/1 in Rev and change of transcription-factor AP-1 binding motif in the negative regulating element (NRE), transcription factor binding motif E-box within the enhancer, the transcription start position and the first residue of trans-activation responsive (TAR) element of LTR. (2) Phylogenetic analysis showed that the sequences of viruses isolated from EIAVLN40-infected horses were obviously split into two major branches. Viruses isolated in the early stage and in the asymptomatic stage of infection in all EIAVLN4o-infected horses clustered in to a branche different from EIAVLN40. Viruses isolated after disease onset remained in the same branch as EIAVLN40.The variations of gp90 were mostly concentrated in eight highly variable regions V1-V8. Changes in the glycosylation sites within V3, V4 and V5 regions were usually associated with the disease status. Specifically, glycosylation sites 191NSSN194.237NNTW240, and 280NDTS283 within these three regions were present in EIAVLN40 and most of the quasispecies isolated after, but not before. disease onset. During the evolution of EIAVLN40, over 12% substitutions of amino acid residues presented in S2. which associated with the disease status. (3) Phylogenetic analysis showed that the gp90 sequences of viruses isolated from EIAVDLV121-infected horses were obviously split into three major branches. The divergences of gp90 sequences isolated from EIAVDLV121-inoculated horses were 3.88%-6.73% compared with EIAVLN40, and were 0.91%-6.49% when compared with EIAVDLV121. The S2 sequences of viruses isolated from EIAVDLV121-infected horses were obviously split into two branches, the average differences between the S2 sequences from EIAVDLV121-inoculated horses and EIAVLN40 were from0.79%-8.83%, and were 3.08%-8.14% when compared with EIAVDLV121.
     Conclusion:A series of consensus substitutions in multiple genes of the attenuated EIAV vaccine strain were generated during attenuation process. The mutations in gp90 and S2 were associated with the disease status. The vaccine strain replicates in a relatively low level in inoculated horses, which enabled to the vaccine quasispecies to evolve continuous and to increase diversity of gp90.
引文
1 Letvin, N.L. Progress and obstacles in the development of an AIDS vaccine[J]. Nat Rev Immunol,2006,6(12):930-9
    2 Duerr, A., J.N. Wasserheit, and L. Corey. HIV vaccines:new frontiers in vaccine development [J]. Clin Infect Dis,2006,43(4):500-11
    3 McMichael, A. J. and T. Hanke. HIV vaccines 1983-2003 [J]. Nat Med,2003,9(7):874-80
    4 Peters, B.S., W. Jaoko, E. Vardas, et al. Studies of a prophylactic HIV-1 vaccine candidate based on modified vaccinia virus Ankara (MVA) with and without DNA priming:effects of dosage and route on safety and immunogenicity[J]. Vaccine, 2007,25 (11):2120-7
    5 McMichael, A.J. HIV vaccines [J]. Annu Rev Immunol,2006,24:227-55
    6 Ondondo, B.O., H. Yang, T. Dong, et al. Immunisation with recombinant modified vaccinia virus Ankara expressing HIV-1 gag in HIV-1-infected subjects stimulates broad functional CD4+ T cell responses[J]. Eur J Immunol,2006,36 (10):2585-94
    7 Im, E. J., J. P. Nkolola. K. di Gleria, et al. Induction of long-lasting multi-specific CD8+ T cells by a four-component DNA-MVA/HIVA-RENTA candidate HIV-1 vaccine in rhesus macaques [J]. Eur J Immunol,2006,36(10):2574-84
    8 Goonetilleke, N., S. Moore, L. Dally, et al. Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes[J]. J Virol,2006,80(10):4717-28
    9 Sekaly, R.P. The failed HIV Merck vaccine study:a step back or a launching point for future vaccine development?[J]. J Exp Med,2008,205(1):7-12
    10 于力和张秀芳.慢病毒和相关疾病[M].1996,北京:中国农业科技出版社
    11 Payne, S. L. and F. J. Fuller. Virulence determinants of equine infectious anemia virus[J]. Curr HIV Res,2010,8(1):66-72
    12 Pahar, B., A. A. Lackner, M. Piatak, Jr., et al. Control of viremia and maintenance of intestinal CD4 (+) memory T cells in SHIV(162P3) infected macaques after pathogenic SIV(MAC251) challenge [J]. Virology,2009,387(2):273-84
    13 Zhu, T., H. Mo, N. Wang, et al. Genotypic and phenotypic characterization of HIV-1 patients with primary infect ion[J]. Science,1993,261(5125):1179-81
    14 Zhang, L.Q., P. MacKenzie, A. Cleland, et al. Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection[J]. J Virol,1993,67 (6):3345-56
    15 Yamamoto, J. K., M. P. Sanou, J.R. Abbott, et al. Feline immunodeficiency virus model for designing HIV/AIDS vaccines[J]. Curr HIV Res,2010,8(1):14-25
    16 Elder, J.H., Y. C. Lin, E. Fink, et al. Feline immunodeficiency virus (FIV) as a model for study of lentivirus infections:parallels with HIV [J]. Curr HIV Res,2010, 8(1):73-80
    17 Zhu, Y. X., C. Liu, X. L. Liu, et al. Construction and characterization of chimeric BHIV (BIV/HIV-1) viruses carrying the bovine immunodeficiency virus gag gene[J]. World J Gastroenterol,2005,11 (17):2609-15
    18 Thormar, H. Maedi-visna virus and its relationship to human immunodeficiency virus[J]. AIDS Rev,2005,7(4):233-45
    19 Salvatori, D., S. Vincenzetti, G. Maury, et al. Maedi-visna virus, a model for in vitro testing of potential anti-HIV drugs [J]. Comp Immunol Microbiol Infect Dis, 2001,24(2):113-22
    20 Li, F., J.K. Craigo, L. Howe, et al. A live attenuated equine infectious anemia virus proviral vaccine with a modified S2 gene provides protection from detectable infection by intravenous virulent virus challenge of experimentally inoculated horses[J]. J Virol,2003.77 (13):7244-53
    21 Tesoro-Cruz, E., R. Hernandez-Gonzalez, R. Kretschmer-Schmid, et al. Cross-reactivity between caprine arthritis-encephalitis virus and type 1 human immunodeficiency virus [J]. Arch Med Res,2003,34(5):362-6
    22 Craigo, J. K., B. Zhang, S. Barnes, et al. Envelope variation as a primary determinant of lentiviral vaccine efficacy[J]. Proc Natl Acad Sci U S A,2007,104(38):15105-10
    23 Issel, C.J., W.V. Adams, Jr., L. Meek, et al. Transmission of equine infectious anemia virus from horses without clinical signs of disease[J]. J Am Vet Med Assoc, 1982,180(3):272-5
    24 Craigo, J.K., C. Leroux, L. Howe, et al. Transient immune suppression of inapparent carriers infected with a principal neutralizing domain-deficient equine infectious anaemia virus induces neutralizing antibodies and lowers steady-state virus replication[J]. J Gen Virol,2002,83 (Pt 6):1353-9
    25 Carpenter, S. and D. Dobbs. Molecular and biological characterization of equine infectious anemia virus Rev[J]. Curr HIV Res,2010,8(1):87-93
    26 沈荣显.马传染性贫血病驴白细胞弱毒疫苗[J].农业科技通讯,1984(10):23-23
    27 沈荣显,徐振东,何云生,等.马传染性贫血病免疫的研究[J].中国农业科学, 1979(04):1-15
    28 沈荣显和童光志.介绍美国马传贫研究讨论会[J].中国兽医科技,1985(08):60-61
    29 中国农科院哈尔滨兽医研究所.马传染性贫血弱毒疫苗[J]. 中国农业工程,1993(11):12-12
    30 沈荣显和相文华.马传染性贫血病驴白细胞弱毒株的致弱及免疫机理的研究[J].中国兽医学报,2003,23(5):505-215
    31 Leroux, C., J.L. Cadore, and R. C. Montelaro. Equine Infectious Anemia Virus (EIAV): what has HIV's country cousin got to tell us?[J]. Vet Res,2004,35 (4):485-512
    32 Charman, H.P., S. Bladen, R. V. Cilden, et al. Equine infectious anemia virus: evidence favoring classification as a retravirus[J]. J Virol,1976,19(3):1073-9
    33 Chiu, I.M., A. Yaniv, J. E. Dahlberg, et al. Nucleotide sequence evidence for relationship of AIDS retrovirus to lentiviruses [J]. Nature,1985,317(6035):366-8
    34 McGuire, T. C., T. B. Crawford, and J. B. Henson. Immunofluorescent localization of equine infectious anemia virus in tissue[J]. Am J Pathol,1971,62(2):283-94
    35 Rice, N.R., A.S. Lequarre, J. W. Casey, et al. Viral DNA in horses infected with equine infectious anemia virus[J]. J Virol,1989,63(12):5194-200
    36 Sellon, D.C., F. J. Fuller, and T. C. McGuire. The immunopa thogenesis of equine infectious anemia virus[J]. Virus Res,1994,32(2):111-38
    37 Maury, W. Monocyte maturation controls expression of equine infectious anemia virus[J]. J Virol,1994,68 (10):6270-9
    38 Sellon, D. C., K.M. Walker, K. E. Russell, et al. Equine infectious anemia virus replication is upregulated during differentiation of blood monocytes from acutely infected horses [J]. J Virol,1996.70(1):590-4
    39 Orrego, A., C. J. Issel, R. C. Montelaro, et al. Virulence and in vitro growth of a cell-adapted strain of equine infectious anemia virus after serial passage in ponies[J]. Am J Vet Res,1982,43(9):1556-60
    40 Malmquist, W. A., D. Barnett, and C. S. Becvar. Production of equine infectious anemia antigen in a persistently infected cell line[J].Arch Gesamte Virusforsch, 1973,42(4):361-70
    41 Carpenter, S., L. H. Evans, M. Sevoian, et al. Role of the host immune response in selection of equine infectious anemia virus variants[J]. J Virol,1987, 61 (12):3783-9
    42 Zhang, B., S. Jin, J. Jin, et al. A tumor necrosis factor receptor family protein serves as a cellular receptor for the macrophage-tropic equine lentivirus [J]. Proc Natl Acad Sci U S A,2005,102 (28):9918-23
    43 Jin, S., B. Zhang,O. A. Weisz, et al. Receptor-mediated entry by equine infectious anemia virus utilizes a pH-dependent endocytic pathway[J]. J Virol,2005, 79(23):14489-97
    44 Cook, S.J., R.F. Cook, R.C. Montelaro, et al. Differential responses of Equus caballus and Equus asinus to infection with two pathogenic strains of equine infectious anemia virus[J]. Vet Microbiol,2001,79(2):93-109
    45 Craigo, J.K. and R. C. Montelaro. EIAV Envelope Diversity:Shaping Viral Persistence and Encumbering Vaccine Efficacy[J]. Curr HIV Res,2010,8(1):81-6
    46 Leroux, C., C. J. Issel, and R. C. Montelaro. Novel and dynamic evolution of equine infectious anemia virus genomic quasispecies associated with sequential disease cycles in an experimentally infected pony[J]. J Virol,1997,71 (12):9627-39
    47 Pedersen, F.S. (2001) Retroviral Replication. DOI:10.1038/npg. els.0004239.
    48 Beisel, C.E., J. F. Edwards, L. L. Dunn, et al. Analysis of multiple mRNAs from pathogenic equine infectious anemia virus (EIAV) in an acutely infected horse reveals a novel protein, Ttm, derived from the carboxy terminus of the EIAV transmembrane protein[J]. J Virol,1993,67(2):832-42
    49 Noiman, S., A. Yaniv, L. Sherman, et al. Pattern of transcription of the genome of equine infectious anemia virus[J]. J Virol,1990,64(4):1839-43
    50 Lee, J.H., G. Culver, S. Carpenter, et al. Analysis of the EIAV Rev-responsive element (RRE) reveals a conserved RNA motif required for high affinity Rev binding in both HIV-1 and EIAV[J]. PLoS ONE,2008,3(6):e2272
    51 张萍.马传染性贫血病毒衣壳蛋白单克隆抗体的制备[D].2008,哈尔滨,东北农业大学
    52 Hussain, K.A., C. J. Issel, P.M. Rwambo, et al. Identification of gag precursor of equine infectious anaemia virus with monoclonal antibodies to the major viral core protein, p26[J]. J Gen Virol,1988,69 (Pt 7):1719-24
    53 Stephens, R. M., J.W. Casey, and N. R. Rice. Equine infectious anemia virus gag and pol genes:relatedness to visna and AIDS virus[J]. Science,1986,231 (4738):589-94
    54 Freed, E.O. HIV-1 gag proteins:diverse functions in the virus life cycle[J]. Virology,1998,251(1):1-15
    55 Hatanaka, H.,O. Iourin, Z. Rao, et al. Structure of equine infectious anemia virus matrix protein[J]. J Virol,2002,76 (4):1876-83
    56 Gottlinger, H.G., J.G. Sodroski, and W.A. Haseltine. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1[J]. Proc Natl Acad Sci U S A,1989,86(15):5781-5
    57 Ehrlich, L.S., B. E. Agresta, and C. A. Carter. Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro[J]. J Virol,1992, 66(8):4874-83
    58 Rose, S., P. Hensley, D. J. O'Shannessy, et al. Characterization of HIV-1 p24 self-association using analytical affinity chromatography[J]. Proteins,1992, 13(2):112-9
    59 Grund, C. H., E.R. Lechman, C. J. Issel, et al. Lentivirus cross-reactive determinants present in the capsid protein of equine infectious anaemia virus[J]. J Gen Virol,1994,75 (Pt 3):657-62
    60 Amodeo, P., M. A. Castiglione Morelli, A. Ostuni, et al. Structural features in EIAV NCpll:a lentivirus nucleocapsid protein with a short linker [J]. Biochemistry, 2006,45 (17):5517-26
    61 Kafaie, J., R. Song, L. Abrahamyan, et al. Mapping of nucleocapsid residues important for HIV-1 genomic RNA dimerization and packaging[J]. Virology,2008, 375(2):592-610
    62 Puffer, B. A., L. J. Parent, J. W. Wills, et al. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein[J]. J Virol,1997,71(9):6541-6
    63 Freed, E.O. Viral late domains[J]. J Virol,2002,76(10):4679-87
    64 Li, F., C. Chen, B. A. Puffer, et al. Functional replacement and positional dependence of homologous and heterologous L domains in equine infectious anemia virus replication [J]. J Virol,2002,76(4):1569-77
    65 Puffer, B. A., S. C. Watkins, and R. C. Montelaro. Equine infectious anemia virus Gag polyprotein late domain specifically recruits cellular AP-2 adapter protein complexes during virion assembly [J]. J Virol,1998,72(12):10218-21
    66 Jin, S., C. Chen, and R. C. Montelaro. Equine infectious anemia virus Gag p9 function in early steps of virus infection and provirus production[J]. J Virol,2005, 79(14):8793-801
    67 Chen, C., F. Li, and R. C. Montelaro. Functional roles of equine infectious anemia virus Gag p9 in viral budding and infection [J]. J Virol,2001,75(20):9762-70
    68 Noiman, S., A. Gazit,0. Tori, et al. Identification of sequences encoding the equine infectious anemia virus tat gene[J]. Virology,1990,176(1):280-8
    69 Chen, C. and R. C. Montelaro. Characterization of RNA elements that regulate gag-pol ribosomal frameshifting in equine infectious anemia virus[J]. J Virol,2003, 77(19):10280-7
    70 Gustchina, A., J. Kervinen, D. J. Powell, et al. Structure of equine infectious anemia virus proteinase complexed with an inhibitor [J]. Protein Sci,1996, 5(8):1453-65
    71 Weber, I.T., J. Tozser, J. Wu, et al. Molecular model of equine infectious anemia virus proteinase and kinetic measurements for peptide substrates with single amino acid substitutions[J]. Biochemistry,1993,32(13):3354-62
    72 Bagossi, P., T. Sperka, A. Feher, et al. Amino acid preferences for a critical substrate binding subsite of retroviral proteases in type 1 cleavage sites [J]. J Virol,2005,79(7):4213-8
    73 Bakhanashvili. M. and A. Hizi. Fidelity of DNA synthesis exhibited in vitro by the reverse transcriptase of the lentivirus equine infectious anemia virus[J]. Biochemistry,1993,32 (29):7559-67
    74 Le Grice, S. F., M. Panin, R. C. Kalayjian, et al. Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase [J]. J Virol, 1991,65(12):7004-7
    75 DeVico, A., R. C. Montelaro, R.C. Gallo, et al. Purification and partial characterization of equine infectious anemia virus reverse transcriptase[J]. Virology,1991,185(1):387-94
    76 Covaleda, L., B.T. Gno, F.J. Fuller, et al. Identification of cellular proteins interacting with equine infectious anemia virus S2 protein[J]. Virus Res.2010
    77 Giroir, L. E. and W. A. Deutsch. Drosophila deoxyuridine triphosphatase. Purification and characterization[J]. J Biol Chem,1987,262(1):130-4
    78 Hokari, S. and Y. Sakagishi. Purification and characterization of deoxyuridine triphosphate nucleotidohydrolase from anemic rat spleen:a trimer composition of the enzyme protein[J]. Arch Biochem Biophys,1987,253(2):350-6
    79 Bertani, L. E., A. Haeggmark, and P. Reichard. Enzymatic Synthesis of Deoxyribonucleotides. Ii. Formation and Interconversion of Deoxyuridine Phosphates[J]. J Biol Chem,1963,238:3407-13
    80 Greenberg, G. R. and R. L. Somerville. Deoxyuridylate kinase activity and deoxyuridinetriphosphatase in Escherichia coli [J]. Proc Natl Acad Sci U S A,1962. 48:247-57
    81 Terai, C. and D. A. Carson. Pyrimidine nucleotide and nucleic acid synthesis in human monocytes and macrophages[J]. Exp Cel] Res,1991,193(2):375-81
    82 Palmen, L. G. and J.0. Kvassman. Differential inhibition of homotrimeric dUTPases by the 3'-azido derivative of dideoxy-UTP[J]. J Enzyme Inhib Med Chem,2010, 25(1):146-50
    83 Lichtenstein, D. L., K.E. Rushlow, R. F. Cook, et al. Replication in vitro and in vivo of an equine infectious anemia virus mutant deficient in dUTPase activity[J]. J Virol,1995,69(5):2881-8
    84 Steagall, W.K., M. D. Robek, S. T. Perry, et al. Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages[J]. Virology,1995, 210(2):302-13
    85 Threadgill, D.S., W. K. Steagall, M. T. Flaherty, et al. Characterization of equine infectious anemia virus dUTPase:growth properties of a dUTPase-deficient mutant [J]. J Virol,1993,67 (5):2592-600
    86 Pu, W. T. and K. Struhl. Uracil interference, a rapid and general method for defining protein-DNA interactions involving the 5-methyl group of thymines:the GCN4-DNA complex [J]. Nucleic Acids Res,1992,20(4):771-5
    87 Edmonson, P., M. Murphey-Corb, L. N. Martin, et al. Evolution of a simian immunodeficiency virus pathogen[J]. J Virol,1998,72(1):405-14
    88 Konsavagejr, W., M. Sudol, N. Lee, et al. Retroviral integrases that are improved for processing but impaired for joining[J]. Virus Research,2007,125(2):198-210
    89 Engelman, A. Biochemical characterization of recombinant equine infectious anemia virus integrase[J]. Protein Expr Purif,1996,8(3):299-304
    90 Wang, X., S. Wang, Y. Lin, et al. Unique evolution characteristics of the envelope protein of EIAVLN40, a virulent strain of equine infectious anemia virus [J]. Virus Genes,2011
    91 Zheng, Y.H., H. Sentsui, T. Nakaya, et al. In vivo dynamics of equine infectious anemia viruses emerging during febrile episodes:insertions/duplications at the principal neutralizing domain[J]. J Virol,1997,71 (7):5031-9
    92 Qi, X., X. Wang, S. Wang, et al. Genomic analysis of an effective lentiviral vaccine-attenuated equine infectious anemia virus vaccine EIAV FDDV13[J]. Virus Genes,2010,41(1):86-98
    93 Tagmyer, T. L., J.K. Craigo, S. J. Cook, et al. Envelope determinants of equine infectious anemia virus vaccine protection and the effects of sequence variation on immune recognition[J]. J Virol,2008,82 (8):4052-63
    94 Ball, J.M., K. E. Rushlow, C. J. Issel, et al. Detailed mapping of the antigenicity of the surface unit glycoprotein of equine infectious anemia virus by using synthetic peptide strategies[J]. J Virol,1992,66(2):732-42
    95 Tagmyer, T.L., J.K. Craigo, S. J. Cook, et al. Envelope-specific T-helper and cytotoxic T-lymphocyte responses associated with protective immunity to equine infectious anemia virus[J]. J Gen Virol,2007,88 (Pt 4):1324-36
    96 Leroux, C., J.K. Craigo, C. J. Issel, et al. Equine infectious anemia virus genomic evolution in progressor and nonprogressor ponies [J]. J Virol,2001,75(10):4570-83
    97 Howe, L., C. Leroux, C. J. Issel, et al. Equine infectious anemia virus envelope evolution in vivo during persistent infection progressively increases resistance to in vitro serum antibody neutralization as a dominant phenotype [J]. J Virol,2002, 76(21):10588-97
    98 Leonard, C.K., M. W. Spellman, L. Riddle, et al. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells [J]. J Biol Chem,1990,265(18):10373-82
    99 Cook, R. F., C. Leroux, S. J. Cook, et al. Development and characterization of an in vivo pathogenic molecular clone of equine infectious anemia virus [J]. J Virol, 1998,72(2):1383-93
    100 Wang, X., S. Wang, Y. Lin, et al. Genomic comparison between attenuated Chinese equine infectious anemia virus vaccine strains and their parental virulent strains[J]. Archives of Virology.2010,156(2):353-357
    101 JI A, B. Role of the Cytoplasmic Tail of Equine Infectious Anemia Virus Transmembrane Glycoprotein in Acute Disease Induction[D].2004, Raleigh,North Carolina State University
    102 Hunter, E. and R. Swanstrom. Retrovirus envelope glycoproteins [J]. Curr Top Microbiol Immunol,1990,157:187-253
    103 Miller, M. A., R. F. Garry, J. M. Jaynes. et al. A structural correlation between lentivirus transmembrane proteins and natural cytolytic peptides[J]. AIDS Res Hum Retroviruses,1991,7(6):511-9
    104 Pancino, G., H. Ellerbrok, M. Sitbon, et al. Conserved framework of envelope glycoproteins among lentiviruses[J]. Curr Top Microbiol Immunol,1994,188:77-105
    105 Rice, N. R., L. E. Henderson, R.C. Sowder, et al. Synthesis and processing of the transmembrane envelope protein of equine infectious anemia virus [J]. J Virol,1990, 64(8):3770-8
    106 Chong, Y. H., J.M. Ball, C. J. Issel, et al. Analysis of equine humoral immune responses to the transmembrane envelope glycoprotein (gp45) of equine infectious anemia virus [J]. J Virol,1991,65(2):1013-8
    107 Noiman, S., A. Yaniv, T. Tsach, et al. The Tat protein of equine infectious anemia virus is encoded by at least three types of transcripts [J]. Virology,1991, 184(2):521-30
    108 Schiltz, R.L., D.S. Shih, S. Rasty, et al. Equine infectious anemia virus gene expression:characterization of the RNA splicing pattern and the protein products encoded by open reading frames S1 and S2 [J]. J Virol,1992,66(6):3455-65
    109 Sticht, H., D. Willbold, P. Bayer, et al. Equine infectious anemia virus Tat is a predominantly helical protein[J]. Eur J Biochem,1993,218(3):973-6
    110 Dorn, P., L. DaSilva, L. Martarano, et al. Equine infectious anemia virus tat: insights into the structure, function, and evolution of lentivirus trans-activator proteins[J]. J Virol,1990,64(4):1616-24
    111 Derse, D. and S. H. Newbold. Mutagenesis of EIAV TAT reveals structural features essential for transcriptional activation and TAR element recognition[J]. Virology, 1993,194(2):530-6
    112 Carroll. R., B.M. Peterlin, and D. Derse. Inhibition of human immunodeficiency virus type 1 Tat activity by coexpression of heterologous trans activators [J]. J Virol,1992,66(41:2000-7
    113 Rosin-Arbesfeld, R., D. Willbold. A. Yaniv, et al. The Tat protein of equine infectious anemia virus (EIAV) activates cellular gene expression by read-through transcription[J]. Gene,1998,219(1-2):25-35
    114 Covaleda, L., F. J. Fuller, and S. L. Payne. EIAV S2 enhances pro-inflammatory cytokine and chemokine response in infected macrophages[J]. Virology,2010, 397(1):217-23
    115 Yoon, S., S. M. Kingsman, A. J. Kingsman, et al. Characterization of the equine infectious anaemia virus S2 protein[J]. J Gen Virol,2000,81 (Pt 9):2189-94
    116 Gupta, S., F. Syed, R. K. Murthy, et al. Sinonasal lymphoma masquerading as persistent blepharoconjunctivitis[J]. Orbit,2009,28(1):34-6
    117 Li, F., B. A. Puffer, and R. C. Montelaro. The S2 gene of equine infectious anemia virus is dispensable for viral replication in vitro[J]. J Virol,1998, 72(10):8344-8
    118 Fagerness, A. J., M.T. Flaherty, S.T. Perry, et al. The S2 accessory gene of equine infectious anemia virus is essential for expression of disease in ponies[J]. Virology,2006,349(1):22-30
    119 Martin-Serrano, J., A. Yarovoy, D. Perez-Caballero, et al. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins[J]. Proc Natl Acad Sci U S A,2003,100(21):12414-9
    120 Belshan, M., M.E. Harris, A.E. Shoemaker, et al. Biological characterization of Rev variation in equine infectious anemia virus[J]. J Virol,1998,72(5):4421-6
    121 Chung, H. and D. Derse. Binding sites for Rev and ASF/SF2 map to a 55-nucleotide purine-rich exonic element in equine infectious anemia virus RNA [J]. J Biol Chem, 2001,276(22):18960-7
    122 Baccam, P., R. J. Thompson, Y. Li, et al. Subpopulations of equine infectious anemia virus Rev coexist in vivo and differ in phenotype[J]. J Virol,2003,77 (22):12122-31
    123 Maury, W. Regulation of equine infectious anemia virus expression[J]. J Biomed Sci, 1998,5(1):11-23
    124 Maury, W., S. Bradley, B. Wright, et al. Cell specificity of the transcription-factor repertoire used by a lentivirus:motifs important for expression of equine infectious anemia virus in nonmonocytic cells[J]. Virology. 2000,267(2):267-78
    125 Maury, W., R. J. Thompson, Q. Jones, et al. Evolution of the equine infectious anemia virus long terminal repeat during the alteration of cell tropism[J]. J Virol,2005, 79(9):5653-64
    126 王雪峰,杨斌,韩秀娥,等.马传染性贫血病毒驴白细胞弱毒疫苗株致弱过程中不同代次病毒L TR的进化分析[J].中国预防兽医学报,2010,32(12):915-919
    127 Payne, S.L., X.M. Qi, H. Shao, et al. Disease induction by virus derived from molecular clones of equine infectious anemia virus[J]. J Virol,1998,72(1):483-7
    128 魏丽丽,王晓钧,王盈,等.马传染性贫血病毒LTR的研究进展[J].中国预防兽医学报,2004,26(05):391-393
    129 Zheng, Y. H., H. Sentsui, M. Sugita, et al. Replication ability in vitro and in vivo of equine infectious anemia virus avirulent Japanese strain[J]. Virology,2000, 266(1):129-39
    130 Zheng, Y. H., H. Sentsui, Y. Kono, et al. Mutat ions occurring during serial passage of Japanese equine infectious anemia virus in primary horse macrophages [J]. Virus Res,2000,68(1):93-8
    131 Zheng, Y. H., T. Nakaya, H. Sentsui, et al. Insertions, duplications and substitutions in restricted gp90 regions of equine infectious anaemia virus during febrile episodes in an experimentally infected horse[J]. J Gen Virol,1997,78 (Pt 4):807-20
    132 Wei, L., X. Fan, X. Lu, et al. Genetic variation in the long terminal repeat associated with the transition of Chinese equine infectious anemia virus from virulence to avirulence[J]. Virus Genes,2009,38 (2):285-8
    133 Cao, X. Z., Y. Z. Lin, L. Li, et al. [Study of the correlation between the plasma viral load and protective immunity induced by the equine infectious anemia attenuated vaccine and its parental virulent strain] [J]. Bing Du Xue Bao,2010, 26(2):128-33
    134 Gao, X., C. G. Jiang, X.E. Han, et al. [Construction and in vitro evaluation of an infectious clone of the equine infectious anemia virus vaccine strain EIAV(FDDV) with four reverse-mutated vaccine-specific sites in the S2 gene] [J]. Bing Du Xue Bao,2009,25(4):309-15
    135 Liang, H., X. He, R. X. Shen, et al. Combined amino acid mutations occurring in the envelope closely correlate with pathogenicity of EIAV[J]. Arch Virol,2006, 151(7):1387-403
    136 Ma, J., C. Jiang, Y. Lin, et al. In vivo evolution of the gp90 gene and consistently low plasma viral load during transient immune suppression demonstrate the safety of an attenuated equine infectious anemia virus (EIAV) vaccine[J]. Arch Virol, 2009,154(5):867-73
    137 Shen, T., H. Liang, X. Tong, et al. Amino acid mutations of the infectious clone from Chinese EIAV attenuated vaccine resulted in reversion of virulence[J]. Vaccine,2006,24 (6):738-49
    138 Tu, Y. B., T. Zhou, X. F. Yuan, et al. Long terminal repeats are not the sole determinants of virulence for equine infectious anemia virus [J]. Arch Virol,2007, 152(1):209-18
    139 Wang, X. F., C.G. Jiang, W. Guo, et al. [Comparison of proviral genomes between the Chinese EIAV donkey leukocyte-attenuated vaccine and its parental virulent strain] [J]. Bing Du Xue Bao,2008,24 (6):443-50
    140 Craigo. J. K., S. Barnes, B. Zhang, et al. An EIAV field isolate reveals much higher levels of subtype variability than currently reported for the equine lentivirus family [J]. Retrovirology,2009,6:95
    141 Whetter, L., D. Archambaul t, S. Perry, et al. Equine infectious anemia virus derived from a molecular clone persistently infects horses[J]. J Virol,1990,64 (12):5750-6
    142 Perry, S.T., M. T. Flaherty, M. J. Kelley, et al. The surface envelope protein gene region of equine infectious anemia virus is not an important determinant of tropism in vitro[J]. J Virol,1992,66 (7):4085-97
    143 O'Rourke, K., L.E. Perryman, and T. C. McGuire. Antiviral, anti-glycoprotein and neutralizing antibodies in foals with equine infectious anaemia virus[J]. J Gen Virol,1988,69 (Pt 3):667-74
    144 Rwambo, P.M., C. J. Issel, K. A. Hussain, et al. In vitro isolation of a neutralization escape mutant of equine infectious anemia virus (EIAV)[J]. Arch Virol,1990,111 (3-4):275-80
    145 Craigo, J. K., T. J. Sturgeon, S. J. Cook, et al. Apparent elimination of EIAV ancestral species in a long-term inapparent carrier [J]. Virology,2006, 344(2):340-53
    146 Payne, S. L., J. Rausch, K. Rushlow, et al. Characterization of infectious molecular clones of equine infectious anaemia virus[J]. J Gen Virol,1994,75 (Pt 2):425-9
    147 Payne, S. L., X.F. Pei, B. Jia, et al. Influence of long terminal repeat and env on the virulence phenotype of equine infectious anemia virus [J]. J Virol,2004, 78 (5):2478-85
    148 Cook, R.F., S. J. Cook, S. L. Berger, et al. Enhancement of equine infectious anemia virus virulence by identification and removal of suboptimal nucleotides [J]. Virology,2003,313(2):588-603
    149 Craigo, J.K., S. Durkin, T. J. Sturgeon, et al. Immune suppression of challenged vaccinates as a rigorous assessment of sterile protection by lentiviral vaccines[J]. Vaccine,2007,25(5):834-45
    150 Li, F., C. Leroux, J. K. Craigo, et al. The S2 gene of equine infectious anemia virus is a highly conserved determinant of viral replication and virulence properties in experimentally infected ponies[J]. J Virol,2000,74(1):573-9
    151 McBurney, S. P. and T.M. Ross. Viral sequence diversity:challenges for AIDS vaccine designs[J]. Expert Rev Vaccines,2008,7(9):1405-17
    152 Gaschen, B., J. Taylor, K. Yusim, et al. Diversity considerations in HIV-1 vaccine selection[J]. Science,2002,296(5577):2354-60
    153 Craigo, J.K., F. Li, J. D. Steckbeck, et al. Discerning an effective balance between equine infect ious anemia virus attenuation and vaccine efficacy[J]. J Virol,2005, 79(5):2666-77
    154 Carpenter, S. and B. Chesebro. Change in hosr cell tropism associated with in vitro replication of equine infectious anemia virus[J]. J Virol,1989,63(6):2492-6
    155 Carpenter, S., S. Alexandersen, M. J. Long, et al. Identification of a hypervariable region in the long terminal repeat of equine infectious anemia virus[J]. J Virol, 1991,65(3):1605-10
    156 王振漪,彭达春,董君平,等.马传贫弱毒继代细胞疫苗的研究[J].中国畜禽传染病,1989,46(3):72-76
    157 董君平,王振漪,彭达春.等.马传贫弱毒继代细胞疫苗的研究[J].中国畜禽传染病,1993,52(5):15-16
    158 王柳,杨志彪,王玫,et al. Proviral genomic sequence analysis of Chinese donkey leukocyte attenuated equine infectious anemia virus vaccine and its parental virus strain Liaoning[J]. Science in China(Series C:Life Sciences),2002,45(01):57-67
    159 王柳,童光志,仇华吉,等.马传染性贫血病毒弱毒疫苗株感染性分子克隆的构建[J].中国农业科学,2003,36(12):1560-1565
    160 王柳,童光志,刘红全,等.马传染性贫血病毒驴白细胞弱毒疫苗株及其亲本强毒株前病毒核苷酸序列比较分析[J].中国科学(?)辑:生命科学),2001,31(06):513-522
    161 王雪峰,姜成刚,郭巍,等.马传染性贫血病毒白细胞弱毒疫苗株及其亲本毒驴强毒株前病毒基因组比较分析[J].病毒学报,2008(06):443-449
    162 薛飞,朱远茂,杨建德,等.马传贫驴白细胞弱毒疫苗株酸性蛋白p9基因的克隆与表达[J].中国生物工程杂志,2003,23(05):86-90
    163 薛飞,朱远茂,王晓钧,等.马传贫驴白细胞弱毒疫苗株基质蛋白基因的克隆与表达[J].中国预防兽医学报,2003,25(01):1-4
    164 阎玉河,邵一鸣,潘品良.等.马传染性贫血病毒强、弱毒株dUTPase结构与酶活性比较[J].病毒学报,2004,20(02):148-15 3
    165 袁秀芳,涂亚斌,周涛,等.感染性分子克隆衍生的马传染性贫血病毒的免疫学特性[J].中国兽医科技,2005,35(03):163-168
    166 王晓钧,魏丽丽,相文华,等.中国马传染性贫血病毒驴强毒株感染性分子克隆的构建[J].中国农业科学,2005,38(09):1898-1904
    167 何翔,邵一鸣,薛飞,等.感染性马传染性贫血病毒嵌合克隆的构建[J].病毒学报,2003,19(02):128-132
    168 韩秀娥,张萍,王雪峰,等.马传染性贫血病毒囊膜基因gp90V3区糖化回复突变感染性克隆的构建[J].畜牧兽医学报,2008,39(12):1731-1736
    169 Zhou, T., X. F. Yuan, S. H. Hou, et al. Long terminal repeat sequences from virulent and attenuated equine infectious anemia virus demonstrate distinct promoter activities[J]. Virus Res,2007,128 (1-2):58-64
    170 Shen, D. T., T. B. Crawford, J. R. Gorham, et al. Inactivation of equine infectious anemia virus by chemical disinfectants[J]. Am J Vet Res,1977,38(8):1217-9
    171 全滟平.中国马传染性贫血病毒LTR启动子活性及EIAVFDDV弱毒株生物学特性的研究[D].2007,北京,中国农业科学院研究生院
    172 赵薇薇,王雪峰,马建,等.EIAV驴白细胞弱毒疫苗株减毒过程第61代毒前病毒全基因组DNA的克隆与分析[J].中国预防兽医学报,2008,30(09):705-710
    173 李强.马传染性贫血病毒部分致弱毒株体外和体内进化分析[D].2009,哈尔滨,黑龙江大学
    174 Ball, J.M., C. L. Swaggerty, X. Pei, et al. SU proteins from virulent and avirulent EIAV demonstrate distinct biological properties[J]. Virology,2005,333(1):132-44
    175 Chung, C., R. H. Mealey, and T.C. McGuire. Evaluation of high functional avidity CTL to Gag epitope clusters in EIAV carrier horses[J]. Virology,2005, 342 (2):228-39
    176 Howe, L., J. K. Craigo, C. J. Issel, et al. Specificity of serum neutralizing antibodies induced by transient immune suppression of inapparent carrier ponies infected with a neutralization-resistant equine infectious anemia virus envelope strain[J]. J Gen Virol,2005,86(Pt 1):139-49
    177 Zhang, W., S. M. Lonning, and T. C. McGuire. Gag protein epitopes recognized by ELA-A-restricted cytotoxic T lymphocytes from horses with long-term equine infectious anemia virus infection[J]. J Virol,1998,72(12):9612-20
    178 Soutullo, A., V. Verwimp, M. Riveros, et al. Design and validation of an ELISA for equine infectious anemia (EIA) diagnosis using synthetic peptides[J]. Vet Microbiol,2001,79(2):111-21
    179 Payne, S. L., K. La Celle, X. F. Pei, et al. Long terminal repeat sequences of equine infectious anaemia virus are a major determinant of cell tropism[J]. J Gen Virol, 1999,80 (Pt 3):755-9
    180 Terme, J.M., S. Calvignac, M. Duc Dodon. et al. E box motifs as mediators of proviral latency of human retroviruses[J]. Retrovirology,2009,6:81
    181 Miyazawa, T., K. Tomonaga, Y. Kawaguchi, et al. Effects of insertion of multiple AP-1 binding sites into the U3 region of the long terminal repeat of feline immunodeficiency virus [J]. Arch Virol.1994,139(1-2):37-48
    182 Bigornia, L., K. M. Lockridge, and E. E. Sparger. Construction and in vitro characterization of attenuated feline immunodeficiency virus long terminal repeat mutant viruses[J]. J Virol,2001,75 (2):1054-60
    183 Sellon, D. C., S.T. Perry, L. Coggins, et al. Wild-type equine infectious anemia virus replicates in vivo predominantly in tissue macrophages, not in peripheral blood monocytes[J]. J Virol,1992,66(10):5906-13
    184 吴秀丽和李扬秋.转录因子GATA-1在造血系统中的作用[J].暨南大学学报,2002,23(6):21-25
    185 薛志科和金洁.PU.1与造血系统发育和造血系统疾病的关系[J].中华血液学杂志,2006,27(6):424-425
    186 Hines, R., B. R. Sorensen, M.A. Shea, et al. PU.1 binding to ets motifs within the equine infectious anemia virus long terminal repeat (LTR) enhancer:regulation of LTR activity and virus replication in macrophages[J]. J Virol,2004,78(7):3407-18
    187 Kwong, P. D., R. Wyatt, J. Robinson, et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody[J]. Nature,1998,393 (6686):648-59
    188 Chen, S. S., S. F. Lee, and C.T. Wang. Cellular membrane-binding ability of the C-terminal cytoplasmic domain of human immunodeficiency virus type 1 envelope transmembrane protein gp41[J]. J Virol,2001,75 (20):9925-38
    189 Luciw, P.A., C. P. Mandell, S. Himathongkham, et al. Fatal immunopathogenesis by SIV/HIV-1 (SHIV) containing a variant form of the HIV-1SF33 env gene in juvenile and newborn rhesus macaques [J]. Virology,1999,263 (1):112-27
    190 Zielonka, J., I.G. Bravo, D. Marino, et al. Restriction of equine infectious anemia virus by equine APOBEC3 cytidine deaminases[J]. J Virol,2009,83(15):7547-59
    191 Lonning, S. M., W. Zhang, and T. C. McGuire. Gag protein epitopes recognized by CD4 (+) T-helper lymphocytes from equine infectious anemia virus-infected carrier horses[J]. J Virol,1999,73(5):4257-65
    192 Fraser, D.G., J. L. Oaks, W. C. Brown, et al. Identification of broadly recognized, Thelper 1 lymphocyte epitopes in an equine lentivirus[J]. Immunology,2002, 105(3):295-305
    193 McGuire, T.C., D. B. Tumas, K.M. Byrne, et al. Major histocompatibility complex-restricted CD8+ cytotoxic T lymphocytes from horses with equine infectious anemia virus recognize Env and Gag/PR proteins[J]. J Virol,1994,68(3):1459-67
    194 Carvalho, M. and D. Derse. Mutational analysis of the equine infectious anemia virus Tat-responsive element[J]. J Virol,1991,65 (7):3468-74
    195 Hoffman, D. W. and S. W. White. NMR analysis of the trans-activation response (TAR) RNA element of equine infectious anemia virus[J]. Nucleic Acids Res,1995, 23(20):4058-65
    196 Hoffman, D. W., R.A. Colvin, M. A. Garcia-Blanco, et al. Structural features of the trans-activation response RNA element of equine infectious anemia virus[J]. Biochemistry,1993,32(4):1096-104
    197 Martarano, L., R. Stephens, N. Rice, et al. Equine infectious anemia virus-trans-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing [J]. J Virol,1994,68(5):3102-11
    198 Oldstone, M. B. Viral persistence[J]. Cell,1989,56(4):517-20
    199 Belshan, M., P. Baccam, J. L. Oaks, et al. Genetic and biological variation in equine infectious anemia virus Rev correlates with variable stages of clinical disease in an experimentally infected pony[J]. Virology,2001,279(1):185-200
    200 曹学智,林跃智,李利,等.马传染性贫血病毒弱毒疫苗株与亲本强毒株的体内病毒载量与诱导保护性免疫关系的研究[J].病毒学报,2010,26(02):128-133
    201 Suarez, D. L. and C.A. Whetstone. Identification of hypervariable and conserved regions in the surface envelope gene in the bovine lentivirus [J]. Virology,1995, 212(2):728-33
    202 Sponseller, B. A., W.O. Sparks, Y. Wannemuehler, et al. Immune selection of equine infectious anemia virus env variants during the long-term inapparent stage of disease[J]. Virology,2007,363 (1):156-65
    203 Kuiken, C.L., J.J. de Jong, E. Baan, et al. Evolution of the V3 envelope domain in proviral sequences and isolates of human immunodeficiency virus type 1 during transition of the viral biological phenotype[J]. J Virol,1992,66(7):4622-7
    204 Adler, S.S., S. Afanasiev, C. Aidala, et al. Suppressed pi (0) production at large transverse momentum in central Au+Au collisions at sqrt[s(NN)]=200 GeV[J]. Phys Rev Lett,2003,91 (7):072301
    205 高旭.S2基因变异在中国马传染性贫血病毒弱毒疫苗致弱中作用的研究[D].2009,北京,中国农业科学院研究生院
    206 Carl, S., A. J. Iafrate, S. M. Lang, et al. The acidic region and conserved putative protein kinase C phosphorylation site in Nef are important for SIV replication in rhesus macaques [J]. Virology,1999,257 (1):138-55
    207 Walker, P.R., M. Ketunuti, I. A. Choge, et al. Polymorphisms in Nef associated with different clinical outcomes in HIV type 1 subtype C-infected children [J]. AIDS Res Hum Retroviruses,2007,23(2):204-15
    208 Bimber, B. N., P. Chugh, E. E. Giorgi, et al. Nef gene evolution from a single transmitted strain in acute SIV infection[J]. Retrovirology,2009,6:57
    209 Orandle, M.S., K. C. Williams, A. G. MacLean, et al. Macaques with Rapid Disease Progression and Simian Immunodeficiency Virus Encephalitis Have a Unique Cytokine Profile in Peripheral Lymphoid Tissues[J]. Journal of Virology,2001, 75(9):4448-4452
    210 Dean, G. A. and N. C. Pedersen. Cytokine response in multiple lymphoid tissues during the primary phase of feline immunodeficiency virus infection [J]. J Virol,1998, 72(12):9436-40
    211 Kedzierska, K., S. M. Crowe, S. Turville, et al. The influence of cytokines, chemokines and their receptors on HIV-1 replication in monocytes and macrophages[J]. Rev Med Virol,2003,13(1):39-56
    212 Tornquist, S.J., J. L. Oaks, and T. B. Crawford. Elevation of cytokines associated with the thrombocytopenia of equine infectious anaemia[J]. J Gen Virol,1997,78 (Pt 10):2541-8
    213 Koff, W. C., P. R. Johnson, D.I. Watkins. et al. HIV vaccine design:insights from live attenuated SIV vaccines[J]. Nat Immunol,2006,7(1):19-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700