中国非湿润地区植被与流域水循环相互作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非湿润地区植被与流域水循环的相互作用机理,是流域生态水文学的研究热点之一。在缺水环境下植被的生长主要由可利用水分的多少决定;而植被在生长过程中通过冠层截留及蒸腾等影响流域的水文循环。近几十年来,由于森林砍伐、过度耕作和不合理的水资源开发等,导致了我国北方非湿润地区的严重生态和环境问题。因此,研究植被与流域水循环的相互作用机理,是解决非湿润地区生态环境问题的迫切需要。论文以我国内陆河流域、黄河流域和海河流域为研究区域,基于相关分析、水热耦合平衡原理、生态水文模型、分布式水文模型等不同方法,探讨了植被与流域水循环的相互作用机理。
     论文利用气象、水文、土壤水分及植被等数据,采用相关分析方法,研究了植被覆盖率与水循环要素的关系。分析结果表明,在相对湿润的流域中,植被覆盖度越高,蒸散发越大,并伴随着蒸发效率越高但蒸发系数越低,地下径流占总径流的比例越高,平均土壤水分越大。根据水热耦合平衡原理,分析了植被在Budyko曲线上的分布,并将植被覆盖度引入流域水热耦合平衡模型,改善了流域蒸散发的模拟结果,阐释了气候和植被覆盖度对流域水量平衡的影响。基于Eagleson的生态水文模型,从植被生长季节平均的流域水量平衡关系入手,分析并揭示了流域长期平均的植被覆盖度和土壤水含量的区域分布特性以及年际变化特性,建立了植被覆盖度与土壤含水量之间的定量关系。将水热耦合平衡原理和生态水文模型耦合,提出了可用于预测气候和植被变化下流域水循环响应的方法。基于分布式水文模型(GBHM)与流域水热耦合平衡模型的模拟分析,揭示了实际蒸散发与潜在蒸散发之间在流域和年尺度上呈非线性互补关系,但在山坡和小时时间尺度上呈线性正比关系;并发现土壤水分和植被参数化对流域水循环模拟结果的影响,随着时间尺度变小表现得越来越显著。
     论文对植被和流域水循环相互作用机理的研究,为理解我国非湿润地区植被变化与水循环之间的关系,以及预测气候变化下的流域生态水文响应提供了参考;并为评价我国北方地区的水土保持工程对流域水循环和水资源的影响提供了理论基础。
Analysis on the spatial and temporal relationships between vegetation dynamics and hydrologic cycle is one of the hot spots in ecohydrology. The growth of vegetation is controled by water availability, while vegetation growth also feeds back to influence regional water balance. A better understanding of the relationship between vegetation state and water balance would help explain the complicated interactions among climate, vegetation and the catchment hydrological cycle. In the present study, the non-humid regions in China are selected as the study area, including the Loess Plateau and the Tibetan Plateau in the Yellow River basin, some Inland River basins, and the Hai River basin. Based on the correlation analysis, the coupled water-energy balance principle, the ecohydrological model and the distributed hydrological model, this research is aimed to explore the mechanism of interaction between the vegetation and catchment hydrological cycle.
     Firstly, the correlation between vegetation and components of the catchment hydrological cycle is analyzed based on long-term climate, hydrological and vegetation data. The results indicate the vegetation coverage is higher in the relatively wetter environment, associated with a higher evapotranspiration. In the catchment with higher precipitation, the inter-annual variation of regional NDVI is lower. An increment of the vegetation coverage comes with an increase of the evaporation efficiency but a decrease of evaporation ratio. Higher vegetation coverage, ratio of the base flow to the total flow is higher. Soil moisture and the regional vegetation coverage show a positive correlation.
     Then based on the coupled water-energy balance principle, the impact of vegetation on catchment water balance is analyzed. The distribution of vegetation coverage on the Budyko curve helps to explain why the wetter environment has higher vegetation coverage associated with higher evapotranspiration efficiency. It is also suggested the regional long-term water balance should not vary along a single Budyko curve; instead it should form a group of Budyko curve owing to the interaction between vegetation, climate, and hydrological cycle. Vegetation coverage is successfully incorporated into an empirical equation for estimating the catchment landscape parameter in the coupled water-energy balance equation in order to improve the spatial and inter-annual simulation of the actual evapotranspiration.
     Based on the catchment ecohydrological model developed by Eagleson, from the water balance analysis for the vegetation growing season, the allocation of evpotranspiration flux among canopy transpiration, surface interception, and bare soil evaporation is analyzed. The quantitative relationship between the vegetation coverage and soil moisture is derived, which would be useful for predicting the change of vegetation coverage due to climate change and human activity. Coupling water-energy balance model and the ecohydrological model, a new model is developed for predicting the impact of climate and vegetation changes on the catchment water balance.
     The vegetation parameterization scheme in the catchment hydrological simulation is discussed. A distributed physically-based hydrological model (GBHM) and the water-energy balance model are used to predict actual evapotranspiration in the Luan River basin. From the analysis at different time scales through comparison of these two models, it is shown that catchment annual evapotranspiration is controlled mainly by the annual precipitation and potential evaporation, variability of soil water and vegetation become more important at a smaller time scale. It is also known that the relationship between potential and actual evapotranspiration shows a highly nonlinear relationship at the annual and catchment scale, but can be simplified to a linear relationship at hourly temporal and hillslope scales.
     This research is potentially useful for assessing the long-term effect of vegetation changes on catchment hydrology, and hence has implications to the water resources management in the non-humid regions of China.
引文
[1]陈玲飞,王红亚.中国小流域径流对气候变化的敏感性分析.资源科学, 2004, 26(6):62-68.
    [2]程国栋,赵传燕.西北干旱区生态需水研究.地球科学进展, 2006, 21(11):1101-1108.
    [3]仇亚琴,王水生,贾仰文,等.汾河流域水土保持措施水文水资源效应初析.自然资源学报, 2004, 21(1):24-30.
    [4]范广洲,吕世华,程国栋.气候变化对滦河流域水资源影响的水文模式模拟(Ⅱ):模拟结果分析.高原气象, 2001, 20(3):302-310.
    [5]傅抱璞.论陆面蒸发的计算.大气科学, 1981, 5(1):23-31.
    [6]盖美,耿雅冬,张鑫.海河流域地下水生态水位研究.地域研究与开发, 2005, 24(1):119-124.
    [7]高国栋,陆渝蓉.中国物理气候图集.北京:农业出版社, 1985.
    [8]高前兆,王润, Ernst Giese.气候变化对塔里木河来自天山的地表径流影响.冰川冻土, 2008, 30(1):1-11.
    [9]高学杰,赵宗慈,丁一汇.温室效应引起的中国区域气候变化的数值模拟Ⅱ:中国区域气候的可能变化.气象学报, 2003, 61(1):29-38.
    [10]高以信,李明森.青藏高原土壤规划.山地研究, 1995, 13(4):203-211.
    [11]郭江勇,林纾,马鹏里.气温变化对西峰黄土高原地温与梨树发育期的影响.干旱区地理, 2007, 30(6):852-857.
    [12]郭生练,朱英浩.互补相关蒸散发理论与应用研究.地理研究, 1993, 12(4): 32-38.
    [13]郭生练.气候变化与水面蒸发计算.武汉水利电力大学学报, 1994, 27(1):99-106.
    [14]郭元裕.农田水利学(第三版).北京:中国水利水电出版社, 1998.
    [15]何炎红.乌兰布和沙漠植被与水资源互相影响的研究[博士学位论文].内蒙古农业大学, 2006.
    [16]贾仰文,王浩,仇亚琴,等.基于流域水循环模型的广义水资源评价(I).水利学报, 2006, 37(6):1051-1055.
    [17]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践.北京:中国水利水电出版社, 2005.
    [18]江志红,陈威霖,宋洁,等. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估.大气科学, 2009,已接受.
    [19]姜大膀,王会军,郎咸梅.全球变暖背景下东亚气候变化的最新情景预测.地球物理学报, 2004, 4:43-49.
    [20]康绍忠,刘小明,熊运章.土壤-植被-大气连续体水分传输理论及其应用.北京:中国水利电力出版社, 1994.
    [21]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社, 1988.
    [22]李昌哲,郭卫东.森林植被的水文效应.生态学杂志, 1986a, 5(5):17-21.
    [23]李昌哲,郭卫东.森林植被水源涵养效益的研究.林业科学, 1986b, 22(1):86-93.
    [24]李双成.植物响应气候变化模型模拟研究进展.地理科学进展, 2001, 20( 3):217-226.
    [25]李维洲,边浩林.疏勒河双塔灌区地下水动态变化研究及开发建议.地下水, 2004, 26(1):50-52.
    [26]李玉山.黄土高原森林植被对陆地水循环影响的研究.自然资源学报, 2001, 16(5):427-432.
    [27]刘昌明,孙睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展.水科学进展, 1999, 10(3):251-258.
    [28]刘昌明,曾燕.植被变化对产水量影响的研究.中国水利, 2002, 10:112-117.
    [29]刘昌明,张学成.黄河干流实际来水量不断减少的成因分析.地理学报, 2004, 59(3):323-330.
    [30]刘昌明,钟骏襄.黄土高原森林对年径流影响的初步研究.地理学报, 1978, 33(2):112-126.
    [31]刘德义,傅宁,范锦龙.近20年天津地区植被变化及其对气候变化的响应.生态环境, 2008, 17(2):798-801.
    [32]刘纪远,刘明亮,庄大方,等.中国近期土地利用变化的空间格局分析.中国科学(D辑), 2002, 32(12):1031-1040.
    [33]刘京涛.岷江上游植被蒸散时空格局及其模拟研究[博士学位论文].中国林业科学研究院, 2006.
    [34]刘苏峡,夏军,莫兴国.无资料流域水文预报(PUB计划)研究进展.水利水电技术, 2005, 36(2):9-12.
    [35]刘晓英,林而达.气候变化对华北地区主要作物需水量的影响.水利学报, 2004, 2:77-83.
    [36]刘玉平.荒漠化评价的理论框架.干旱区资源与环境, 1998, 12(3):74-82.
    [37]刘钰, Pereira L S, Teixeira J L.参照腾发量的新定义及计算方法对比.水利学报, 1997, 6:27-33.
    [38]刘卓颖.黄土高原地区分布式水文模型的研究与应用[博士学位论文].北京:清华大学水利水电工程系, 2005.
    [39]雒文生.森林对降水和蒸发的影响.水文, 1989, 6:32-36.
    [40]马雪华.森林水文学.北京:中国林业出版社, 1993.
    [41]莫兴国,郭瑞萍,林忠辉.无定河区域1981~2001年植被生产力和水量平衡对气候变化的响应.气候与环境研究, 2006, 11(4):477-486.
    [42]莫兴国,刘苏峡,林忠辉,等.黄土高原无定河流域水量平衡变化与植被恢复的关系模拟.全国水土保持生态修复研讨会论文汇编, 2004:175-181.
    [43]潘家铮,张泽祯.中国可持续发展水资源战略研究报告集(第8卷):中国北方地区水资源的合理配置和南水北调问题.北京:中国水利水电出版社, 2001.
    [44]庞治国,付俊娥,李纪人,肖乾广.基于能量平衡的蒸散发遥感反演模型研究.水科学进展, 2004, 15(3):364-369.
    [45]气候变化国家评估报告编写委员会.气候变化国家评估报告.北京:科学出版社, 2007.
    [46]秦大河,丁一汇,苏纪兰,等.中国气候与环境演变(下卷).北京:科学出版社, 2005.
    [47]秦大河.中国西部环境演变评估(综合卷):中国西部环境演变评估综合报告.北京:科学出版社, 2002.
    [48]任立良,束龙仓.人与自然和谐的水需求——生态水文学新途径.北京:中国水利水电出版社, 2006.
    [49]任立良,张炜,李春红,等.中国北方地区人类活动对地表水资源的影响研究.河海大学学报:自然科学版, 2001, 29(4):13-18.
    [50]芮孝芳.水文学原理.北京:中国水利水电出版社, 2004.
    [51]石培礼,李文华.森林植被变化对水文过程和径流的影响效应.自然资源学报, 2001, 16(5):481-487.
    [52]苏凤阁,谢正辉.气候变化对径流影响的评估模型研究.自然科学进展, 2003, 13(5):502-507.
    [53]孙福宝,杨大文,刘志雨,等.基于Budyko假设的黄河流域水热耦合平衡规律研究.水利学报, 2007, 38(4):409-416.
    [54]孙福宝.基于Budyko水热耦合平衡假设的流域蒸散发研究[博士学位论文].北京:清华大学水利水电工程系, 2007.
    [55]孙慧南.近20年来关于森林作用研究的进展.自然资源学报, 2001, 16(5):407-412.
    [56]孙颖,丁一汇.未来百年东亚夏季降水和季风的预测研究.中国科学, 2009,已接收.
    [57]汪恕诚.资源水利——人与自然和谐相处.北京:中国水利水电出版社, 2005.
    [58]王栋,潘少明,吴吉春,等.黄河水沙特征及调水调沙下的入海水沙通量变化.地理学报, 2006, 44:55-65.
    [59]王根绪,沈永平,钱鞠等.高寒草地植被覆盖变化对土壤水分循环影响研究.冰川冻土,2003, 25(6):653-659.
    [60]王国梁,刘国彬,常欣,等.黄土丘陵区小流域植被建设的土壤水文效应.自然资源学报, 2002, 3:339-345.
    [61]王浩,贾仰文,王建华,等.人类活动影响下的黄河流域水资源演化规律初探,自然资源学报, 2005, 20(2):157-162.
    [62]王浩,秦大庸,陈晓军,等.水资源评价准则及其计算口径.水利水电技术, 2004, 35(2):1-4.
    [63]王红闪,黄明斌,张橹.黄土高原植被重建对小流域水循环的影响.自然资源学报, 2005, 19(3):344-350.
    [64]王焕榜.正确认识自然规律科学评价森林对降水的影响.海河水利, 1984, 1:69-71.
    [65]王俊英,吴晋青.北三河中下游河道现状行洪能力分析.水利水电工程设计, 2000, 19(2):30-31.
    [66]王清华,李怀恩,卢科锋,等.森林植被变化对径流及洪水的影响分析.水资源与水工程学报, 2004, 15(2):21-24.
    [67]王昭,陈德华.疏勒河流域水资源开发及其对生态环境的影响.地球科学, 2002, 23(增刊):14-17.
    [68]吴吉春,刘培民,王建基,等.莱州湾地区的海水入侵.江苏地质, 1993, 17(1):27-33.
    [69]吴绍洪,尹云鹤,郑度,等.近30年中国陆地表层干湿状况研究.中国科学(D辑), 2005, 35(3):276~283.
    [70]夏军,刘孟雨,贾绍凤,等.华北地区水资源及水安全问题的思考与研究.自然资源学报, 2004, 19(5):550-560.
    [71]夏军,左其亭.国际水文科学研究的新进展.地球科学进展, 2006, 21(3):256-261.
    [72]谢平,朱勇,陈广才,等.考虑土地利用/覆被变化的集总式流域水文模型及应用.山地学报, 2007, 25(3):257-264.
    [73]徐宪立,马克明,傅伯杰,等.植被与水土流失关系研究进展.生态学报, 2006, 26(9):3137-3143.
    [74]许继军.分布式水文模型在长江流域的应用研究[博士学位论文].北京:清华大学水利水电工程系, 2007.
    [75]许吟隆,张勇,林一骅,等.利用PRECIS分析SRES B2情景下中国区域的气候变化响应.科学通报, 2006, 17:2068-2074.
    [76]薛禹群,张云,叶淑君,等.我国地面沉降若干问题研究.高校地质学报, 2006, 12(2):153-160.
    [77]杨大文,李翀,倪广恒,等.分布式水文模型在黄河流域的应用.地理学报, 2004, 59(1):143-154.
    [78]杨大文,楠田哲也.水资源综合评价模型及其在黄河流域的应用——水科学前沿学术丛书.北京:水利水电出版社, 2005.
    [79]杨汉波,杨大文,雷志栋,等.任意时间尺度上的流域水热耦合平衡方程的推导及验证.水利学报, 2008a, 39(5):610-617.
    [80]杨汉波,杨大文,雷志栋,等.蒸发互补关系的区域变异性.清华大学学报(自然科学版), 2008b, 48(9):1413-1416.
    [81]叶柏生,陈克恭,施雅风.冰川及其径流对气候变化响应过程的模拟模型——以乌鲁木齐河源1号冰川为例.地理科学, 1997, 17(1):32-40.
    [82]尹林克,王雷涛.荒漠内陆河地区人工植被重建中的植物物种选择与实践——以塔里木河下游为例.干旱区资源与环境, 2005, 19(3):162-165.
    [83]游珍,李占斌,蒋庆丰.坡面植被分布对降雨侵蚀的影响研究.泥沙研究, 2005, 6:40-43.
    [84]于静洁,刘昌明.森林水文学研究综述.地理研究, 1989, 89(1):88-98.
    [85]余卫东,闵庆文,李湘阁.黄土高原地区降水资源特征及其对植被分布的可能影响.资源科学, 2002, 24(6):55-56.
    [86]袁嘉祖,朱劲伟.森林降水效应评述.北京林业学院学报, 1983, 4:46-51.
    [87]袁婧薇,倪健.中国气候变化的植物信号和生态证据.干旱区地理, 2007, 30(4):465-473.
    [88]张定全,王毅荣.中国黄土高原地区春季气温时空特征分析.高原气象, 2005, 24(6):898-904.
    [89]张杰,杨兴国,李耀辉,等.应用EOS/MODIS卫星资料反演与估算西北雨养农业区地表能量和蒸散量.地球物理学报, 2005, 48(6):1261-1269.
    [90]张书兵,王俊,姜卉芳,等.干旱内陆河灌区灌溉条件下土壤水盐运移规律分析.水土保持研究, 2008, 15(2):151-153.
    [91]张卓文,廖纯燕,邓先珍,等.森林水文学研究现状及发展趋势.湖北林业科技, 2004, 129:34-37.
    [92]赵人俊.流域水文模拟.北京:水利电力出版社, 1984.
    [93]赵宗慈,丁一汇,徐影,等.人类活动对20世纪中国西北地区气候变化影响检测和21世纪预测.气候与环境研究, 2003, 8(1):26-34.
    [94]周睿,杨元合,方精云.青藏高原植被活动对降水变化的响应.北京大学学报(自然科学版), 2007, 43(6):771-775.
    [95]周晓峰,赵惠勋,孙慧珍.正确评价森林水文效应.自然资源学报. 2001, 16(5):420-426.
    [96] Abbott M B, Bathurst J C, Cunge J A, et al. An introduction to the European Hydrologic System– SHE. Journal of Hydrology, 1986, 87:45-77.
    [97] Adegoke J O, Carleton A M. Satellite Vegetation Index-Soil Moisture Relations in the US Corn Belt. Journal of Hydrometeorology, 2002, 3:395-405.
    [98] Allen R, Pereira L, Raes D, et al. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage, Rome, Italy, 1998, 56.
    [99] Arora V K. The use of the aridity index to assess climate change effect on annual runoff.Journal of Hydrology, 2002, 265:164-177.
    [100] Atkinson S, Sivapalan M, Woods R, et al. Dominant physical controls of hourly streamflow predictions and an examination of the role of spatial variability: Mahurangi catchment, New Zealand. Advances in Water Resources, 2002, 26(2):219-235.
    [101] Baldocchi D, Xu L, Kiang N. How plant functional type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland, Agricultural and Forest Meteorology, 2004, 123:13-39.
    [102] Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 2005, 438:303-309.
    [103] Beate K and Haberlandt U. Impact of land use changes on water dynamics—a case study in temperate meso and macroscale river basins. Physics and Chemistry of the Earth, 2002, 27:619-629.
    [104] Berger K P, Entekhabi D. Basin hydrologic response relations to distributed physiographic descriptors and climate. Journal of Hydrology, 2001, 247:169-182.
    [105] Beven K. Towards an alternative blue point for a physically based digitally simulated hydrologic response modeling system. Hydrological Processes, 2002, 16:189-206.
    [106] Bonan G B. Ecological Climatology. Cambridge University Press, 2002.
    [107] Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 1982, 55:3-23.
    [108] Boulain N, Cappelaere B, Seguis L, et al. Hydrologic and land use impacts on vegetation growth and NPP at the watershed scale in a semi-arid environment. Regional Environmental Change, 2006, 6(3):147-156.
    [109] Bounoua L, Collatz G J, LOS SO, et al. Sensitivity of climate to changes in NDVI. Journal of Climate. 2000, 13(13):2277-2292.
    [110] Bounoua L, DeFries R, Collatz GJ, et al. Effects of land cover conversion on surface climate. Climatic Change, 2002, 52 (1-2):29-64.
    [111] Brown A E, Zhang L, Mamahon T A, et al. A review of paired catchment studies for determining changes in water yield resulting from alternations in vegetation. Journal of Hydrology, 2005, 310:28-61.
    [112] Brutsaert W, Parlange M B. Hydrologic cycle explains the evaporation paradox. Nature, 1998, 6706: 396.
    [113] Budyko M I. Climate and Life. Miller D H Trans, Academic Press, San Diego, Calif, 1974.
    [114] Buermann W, Dong J R, Zeng X B, et al. Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations. Journal of Climate, 2001, 14(17):3536-3550.
    [115] Calanca P. Climate change and drought occurrence in the alpine regions: how severe are becoming the extremes. Global and Planetary Change, 2007, 57:151-160.
    [116] Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote sensing of Environment, 1997, 62:241?252.
    [117] Chapman T. Comment on“evaluation of automated techniques for base flow and recession analyses”by R. J. Nathan and T. A. McMahon. Water Resources Research, 1991, 27(7):1783-1785.
    [118] Chattopadhyay N, Hulme M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology, 1997, 87(1):55-73.
    [119] Chen L, Huang Z, Gong J, et al. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau China. Catena, 2007, 70:200-208.
    [120] Choudhury B J and Monteith J. A four-layer model for the heat budget of homogeneous land surfaces. Quarterly Journal of the Royal Meteorological Society, 1988, 114:373-398.
    [121] Choudhury B J. Evaluation of an equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 1999, 216:99-110.
    [122] Contreras S, Boer M M, AlcaláF J, Francisco D, García M, Antonio P, Juan P. An ecohydrological modelling approach for assessing long-term recharge rates in semiarid karstic landscapes. Journal of Hydrology, 2008, 351:42-57.
    [123] Cosandey C, Andréassian V, Martin C, et al. The hydrological impact of the Mediterranean forest: a review of French research. Journal of Hydrology, 2005, 301:235-249.
    [124] Domingo F, Villagarc?'a L, Boer M M, Alados-Arboledas L, Puigdefa'bregas J. Evaluating the long-term water balance of arid zone stream bed vegetation using evapotranspiration modeling and hillslope runoff measurements. Journal of Hydrology, 2001, 243:17-30.
    [125] Donohue R J, Roderick M L, McVicar T R. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol Earth Syst Sci, 2007, 11(2):983-995.
    [126] Eagleson P S. Ecohydrology: Darwinian expression of vegetation form and function. Cambridge University Press, 2002.
    [127] Eder G, Sivapalan M, Nachtnebel H.P. Modeling of water balances in Alpine catchment through exploitation of emergent properties over changing time scales. Hydrological Processes, 2003, 17 (11):2125-2149.
    [128] Falkenmark M and Rockstrom J. Balancing Water for Humans and Nature: the new approach in ecohydrology. UK&USA, Earthscan, 2004.
    [129] FAO. Crop water requirements. Irrigation and Drainage Paper No.24, Rome. Itally, 1977.
    [130] FAO. Map of Soil texture of China, 2000. http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGL/swlwpnr/reports/y_ea/z_cn/home.htm
    [131] Farmer D, Sivapalan M, Jothityangkoon C. Climate, soil and vegetation controls upon the variability of water balance in temperate and semi-arid landscapes: downward approach to hydrological prediction. Water Resources Research, 2003, 39 (2):1035-1055.
    [132] Fernández J E, Slawinski C, Moreno F, et al. Simulating the fate of water in a soil-crop system of a semi-arid Mediterranean area with the WAVE 2.1 and the EURO-ACCESS-II models. Agricultural Water Management, 2002, 56:113–129.
    [133] Gomez-Plaza A, Martinez-Mena M, Albaladejo J, et al. Factors regulating spatial distribution of soil water content in small semiarid catchments. Journal of Hydrology, 2001, 253:211–226.
    [134] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote sensing, 1998, 19:1533?1543.
    [135] Hickel, Zhang L. Estimating the impact of rainfall seasonality on mean annual water balance using a top-down approach. Journal of Hydrology, 2006, 331:409–424.
    [136] IGBP-DIS (Global Soil Data Task: Global Soil Data Products CD-ROM). International Geosphere-Biosphere Programme - Data and Information Services. Available online at (http://www.daac.ornl.gov/) from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 2000.
    [137] Jothityangkoon C, Sivapalan M, Farmer D. Process controls of water balance variability in a large semi-arid catchment: downward approach to hydrological model development. Journal of Hydrology, 2001, 254(1-4):174-198.
    [138] Kirchner JW. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 2006, 42:W03S04, doi:10.1029/2005WR004362.
    [139] Klemes V. Conceptualization and scale in hydrology. Journal of Hydrology, 1983, 65:1-23.
    [140] Kokkonen T S, Jakeman A J. Structural effects of landscape and land use in streamflow response. Elsevier, Amsterdam, 2002.
    [141] Laio F, Porporato A, Ridolfi L, et al. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics. Advances in Water Resources, 2001, 24(7):707-723.
    [142] Li X. Influence of variation of soil spatial heterogeneity on vegetation restoration. Science in China Ser. D Earth Sciences, 2005, 48(11):2020-2031.
    [143] Li Z, Wang Y, Zhou Q, et al. Spatiotemporal variability of land surface moisture based on vegetation and temperature characteristics in Northern Shaanxi Loess Plateau China. Journal of Arid Environments, 2008, 72:974-985.
    [144] Littlewood B, Croke F, Jakeman A, et al. The role of‘top-down’modelling for Prediction in Ungauged Basins (PUB). Hydrological Processes, 2003, 17:1673–1679.
    [145] Liu Y H, An S Q, Xu Z, et al. Spatio-temporal variation of stable isotopes of river waters, water source identification and water security in the Heishui Valley (China) during the dry-season. Hydrogeology Journal, 2006, 16:311-319.
    [146] Maidment D R.水文学手册, 1992.张建云,李纪生,译.北京:科学出版社, 2002.
    [147] Mark B G, Seltzer G O. Tropical glacial meltwater contribution to stream discharge: a case study in the Cordillera Blanca, Perú. Journal of Glaciology, 2003, 49(165):271-281.
    [148] McDonnell J J, Woods R. On the need for catchment classification. Journal of Hydrology, 2004, 299:2–3.
    [149] McVicar T R, Li L, Niel T, et al. Developing a decision support tool for China’s re-vegetation program: simulating regional impacts of afforestation on average streamflow in the Loess Plateau. Forest Ecology and Management, 2007, 251:65-81.
    [150] Milly P C D, Dunne K A, Vecchia A V. Global pattern of trends in streamflow and water availability in a changing climate. Nature, 2005, 438:347-350.
    [151] Milly P C D. Climate, interseasonal storage of soil water and the annual water balance. Advances in Water Resources, 1994, 17:19-24.
    [152] Montandon L M, Small E E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sensing of Environment, 2008, 112:1835-1845.
    [153] Nathan R J, McMahon T A. Evaluation of automated techniques for base-flow and recession analyses. Water Resources Research, 1990, 26(7):1465-1473.
    [154] New M, Hulme M, Jones P. Representing twentieth-century space-time climate variability. Part I: development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate, 1999, 12:829-856.
    [155] New M, Hulme M, Jones P. Representing twentieth-century space-time climate variability. Part II: development of 1901– 1996 monthly grids of terrestrial surface climate. Journal of Climate, 2000, 13:2217-2238.
    [156] Noilhan J, Planton S. A simple parameterization of land surface processes for meteorological models. Monthly Weather Review, 1989, 177:536–549.
    [157] Ol’dekop, E. M. On evaporation from the surface of river basins. Trans. Meteorol. Observ. 1911, 4.
    [158] Onstad C A., Jamieson D G. Modeling the effect of land use modifications on runoff. Water Resources Research, 1970, 6: 1287-1295.
    [159] Ortega-Farias S, Olioso A, Fuentes S, and Valdes H. Latent heat flux over a furrow-irrigated tomato crop using Penman–Monteith equation with a variable surfacecanopy resistance. Agricultural Water Management, 2006, 82:421–432.
    [160] Oudin L, Andréassian V, Lerat J, et al. Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments. Journal of Hydrology, 2008, 357(3-4):303-316, doi:10.1016/j.hydrol.2008.05.021.
    [161] Penman H L. Natural evaporation from open water, bare and grass. Proceeding of the Royal Society of London Ser A, 1948, 193:120–145.
    [162] Peterson T C, Golubev V S, Groisman P Y. Evaporation losing its strength. Nature, 1995, 377:87–688.
    [163] Philip J R. General method of exact solution of the concentration-dependent diffusion equation. Australian Journal of Physics, 1960, 13(1):1-12.
    [164] Philip J R. The theory of infiltration, IV: sorptivity and algebraic infiltration equations. Soil Sci, 1957, 84:257-264.
    [165] Pike J G. The estimation of annual runoff from meteorological data in a tropical climate. Journal of Hydrology, 1964, 2(2):116–123.
    [166] Porporato A, D'Odorico P, Laio F, Ridolfi L, Rodriguez-Iturbe I. Ecohydrology of water-controlled ecosystems. Advances in Water Resources, 2002, 25:1335–1348.
    [167] Potter N, Zhang L, Milly P, et al. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. Water Resources Research, 2005, 41, W06007, doi:10.1029/2004WR003697.
    [168] Qian T, A. Dai, K. E. Trenberth, and Oleson K. W. Simulation of global land surface conditions from 1948-2004, Part I: Forcing data and evaluation. Journal of Hydrometeorology, 2006, 7 (5):953-975.
    [169] Rechid D, Jacob D. Influence of monthly varying vegetation on the simulated climate in Europe. Meteorologische Zeitschrift, 2006, 15(1):99-116.
    [170] Refsgaard J, Storm B. MIKE SHE. In V.P. Singh ed., Computer Models in Watershed Hydrology, Water Resources Publication, 1995.
    [171] Roderick M L, Farquhar G D. Changes in Australian pan evaporation from 1970 to 2002. International Journal of Climatology, 2004, 24:1077–1090.
    [172] Rodríguez-Iturbe I, Porporato A, Laio F, et al. Plants in water-controlled ecosystems:active role in hydrologic processes and response to water stress: I. Scope and general outline. Advances in Water Resources, 2001, 24 (7):695-705.
    [173] Rodríguez-Iturbe I, Porporato A. Ecohydrology of Water- Controlled Ecosystems: Soil Moisture and Plant Dynamics. Cambridge University Press, New York, 2004.
    [174] Schreiber P. Uber die Beziehungen zwischen dem Niederchlag und der Wasserfuhrung der Flusse in Mittelleuropa. Z Meteorology, 1904, 21:441-452.
    [175] Schultz G A, Engman E T.水文与水管理中的遥感技术, 2000.韩敏,译.北京:中国水利水电出版社, 2006
    [176] Sellers P J, Los S O, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 2: The generation of global fields of terrestrial biophysical parameters from satellite data. Journal. Climate, 1996b, (9):706-737.
    [177] Sellers P J, Randall D A, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. Journal. Climate, 1996a, 9:676-705.
    [178] Shamir E, Imam B, Morin E, et al. The role of hydrograph indices in parameter estimation of rainfall runoff models. Hydrological Processes, 2005, 19(11):2187–2207.
    [179] Shao W, Yang D, Hu H, et al. Water resources allocation considering the water use flexible limit to water shortage– a case study in the Yellow River basin of China. Water Resour Manage, 2009, 23:869-880, doi:10.1007/s11269-008-9304-2.
    [180] Shi Y, Shen Y, Kang E, et al. Recent and future climate change in northwest china. Climate Change, 2007, 80(3):379-393.
    [181] Shuttleworth W J. Evaporation. Handbook of Hydrology, Maidment D R ed., New York: McGraw-Hill, 1993.
    [182] Singh V P, Woolhiser D A. Mathematical modeling of watershed hydrology. Journal of Hydrological Engineering, 2002, 7(4):270-292.
    [183] Sivapalan M, Bl?schl G, Zhang L, et al. Downward approach to hydrological prediction. Hydrological Processes, 2003, 17:2101-2111.
    [184] Sivapalan M. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 2003, 48(6):857-879.
    [185] Sivapalan M. Pattern, processes and function: elements of a unified theory of hydrology at the catchment scale. In: Anderson, M. (ed.) Encyclopedia of hydrological sciences. London: John Wiley, 2005.
    [186] Son K, Sivapalan M. Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data. Water Resources Research, 2007, 43, W01415, doi:10.1029/2006WR005032.
    [187] Steven M D, Malthus T J, Baret F, et al. Intercalibration of vegetation indices from different sensor systems. Remote Sensing of Environment, 2003, 88:412-422.
    [188] Stockli R, Vidale P L. Modeling diurnal to seasonal water and heat exchanges at European Fluxnet sites. Theoretical and applied climatology, 2005, 80 (2):229-243.
    [189] Sugawara M, Ozaki E, Watanabe I, et al. Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanaga River and Nam Mune. Research note of the National Research Center for Disaster Prevention, 1974, 11:1-64.
    [190] Sugawara M. The flood forecasting by a series storage type model. InternationalSymposium on floods and their computation. Leningrad. USSR, 1967.
    [191] Tabios G Q, Salas J D. A comparative analysis of techniques for spatial interpolation of precipitation. Water Resources Bulletin, 1985, 21(3):365-380.
    [192] Tachikawa Y, Takasao T, ShibaM. TIN-based topographic modeling and runoff prediction using a basin geomorphic information system. IAHS Publication, 1996, 235:225-232.
    [193] van Genuchten M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980, 44:892–898.
    [194] Wagener T, Sivapalan M, Troch P, et al. Catchment classification and hydrologic similarity. Geography Compass, 2007, 1(4):901-903.
    [195] Yamanaka T, Kaihotsu I, Oyunbaatar D, et al. Summertime soil hydrological cycle and surface energy balance on the Mongolian steppe. Journal of Arid Environments, 2007, 69(1):65-79.
    [196] Yang D, Herath S, Musiake K. Analysis of geomorphologic properties extracted from DEMs for hydrological modeling. Annual Journal of Hydraulic Engineering, JSCE, 1997, 41:105-110.
    [197] Yang D, Herath S, Musiake K. Development of a geomorphology-based hydrological model for large catchments. Annual Journal of Hydraulic Engineering, JSCE, 1998a, 42:169-174.
    [198] Yang D, Herath S, Musiake K. Hillslope-based hydrological model using catchment area and width function. Hydrological Sciences Journal, 2002, 47:49-65.
    [199] Yang D, Kanae S, Oki T, Musiake K. Expanding the distributed hydrological modeling to continental scale. IAHS Publication 2001, 270:125-134.
    [200] Yang D, Li C, Hu H, et al. Analysis of water resources variability in the Yellow River basin during the last half century using the historical data. Water Resources Research, 2004, W06502, doi:10.1029/2003WR002763.
    [201] Yang D, Musiake K, Kanae S, et al. Use of the Pfafstetter basin numbering system in hydrological modeling. Proceedings of 2000 Annual Conference. Japan Society of Hydrology and Water Resources, 2000.
    [202] Yang D, Shao W. Analysis of water resources variability in the Yellow River of China using a distributed hydrological model. IAHS Publication, 2008, 322:228-233.
    [203] Yang D, Shao W. Toward understanding uncertainties in water resources assessment in the Yellow River basin. International Symposium on Flood Forecasting and Water Resources Assessment for IAHS-PUB. Beijing: Tsinghua University, 2006.
    [204] Yang D, Sun F B, Liu Z, et al. Analyzing spatial and temporal variability of annual water-energy balance in non-humid regions of China using the Budyko hypothesis. Water Resources Research, 2007, 43, W04426, doi:10.1029/2006WR005224.
    [205] Yang D, Sun F, Liu Z, et al. Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses. Geophysical Research Letters, 2006, 33, L18402, doi:10.1029/2006GL027657.
    [206] Yang D. Distributed hydrological model using hillslope discretization based on catchment area function development and applications [Thesis for Degree of Doctor of Engineering]. University of Tokyo, 1998b.
    [207] Yang H, Yang D, Lei Z, et al. New analytical derivation of the mean annual water-energy balance equation. Water Resources Research, 2008, 44, W03410, doi:10.1029/2007WR006135.
    [208] Yu L, Cao M, Li K. Climate-induced changes in the vegetation pattern of China in the 21st century. Ecological Research, 2006, 21(6):912-919.
    [209] Zeng X, Zeng X, Shen S, et al. Vegetation-soil water interaction within a dynamical ecosystem model of grassland in semi-arid areas. Tellus, 2005, 57B:189-202.
    [210] Zhang L, Dawes W R, Walker G R. Predicting the effect ofvegetation changes on catchment average water balance. CRC for Catchment Hydrology Technical report, 1999, 99/12.
    [211] Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001, 37(3):701-708.
    [212] Zhang L, Hickel K, Dawes W R, et al. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 2004, 40, W02502, doi:10.1029/2003WR002710.
    [213] Zhang L, Potter N, Hickel K, et al. Water balance modeling over variable time scales based on the Budyko framework - Model development and testing. Journal of Hydrology, 2008, 360(1-4):117-131.
    [214] Zhang X, Zhang L, McVicar T R, et al. Modelling the impact of afforestation on average annual streamflow in the Loess Plateau. China. Hydrological Processes, 2007, 22(12):1996-2004.
    [215] Zhang Y, Schilling K. Effect of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: a field observation and analysis. Journal of Hydrology, 2006, 319:328-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700