流体力学中几类波方程的有限体积元方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有限体积元方法是数值求解偏微分方程的一类重要的数值工具.由于该方法易于执行、剖分灵活,并且能够自然保持主要物理守恒律,它越来越受到研究者的重视.本文主要研究了流体力学中几类波动方程的有限体积元方法.针对不同的问题构造了相应的有限体积元格式,进一步对微分方程进行了数值研究.
     首先考察带延迟项的双曲偏微分-差分方程.对该方程设计了有限体积元格式及迎风有限体积元格式,并给出迎风有限体积元格式的L2误差估计.数值试验验证了格式的有效性及收敛性.
     其次研究带有随机效应的衰减改进Boussinesq方程.对于随机衰减改进Boussinesq方程,空间方向用二次Lagrange函数逼近,时间方向用三阶强稳定格式近似,随机项用蒙特卡罗方法离散,构造了全离散的有限体积元格式.利用得到的格式,数值研究了随机效应对系统质量及孤立波振幅的影响.
     接下来讨论定义在球面上的二维准地转方程.对于全球准地转方程提出了Fourier有限体积元方法.纬度方向用一次多项式近似,经度方向用Fourier基逼近,时间方向用蛙跳格式离散,建立了Fourier有限体积元格式.数值结果表明该格式具有二阶收敛,能够保持能量和涡度拟能守恒,而且能克服极点问题.
     最后研究了基于无导数优化算法的空气质量最优控制问题.应用特征有限差分方法数值求解描述污染物运动发展的空气污染模型,以排放污染物的工厂位置为决策变量,定义相关的目标函数,对所构造的极小化问题使用无导数优化进行求解.一系列的数值试验表明,无导数算法能够对我们构造的问题进行求解,经优化过的工厂位置能够以较低的成本,满足空气质量指标.
The finite volume element method has been an important numerical tool for solv-ing partial differential equations. Since the method is easily implemented, can effi-ciently deal with complex geometries and naturally preserve main physical conserva-tion laws, it has attracted considerable interest. This work is devoted to finite volume element methods for some wave equations in fluid dynamics. We design some effec-tive finite volume element schemes to study these wave equations.
     Firstly, we consider the hyperbolic partial differential-difference equation with shift and design standard finite volume scheme and upwind finite volume element scheme for solving it. At the same time, L2error estimate is given for upwind finite volume element scheme. Several numerical experiments are performed to check the efficiency and convergence of the numerical schemes.
     Secondly, we study the stochastic damped improved Boussinesq equation. To numerically solve the equation, we use quadratic Lagrange functions to approximate space derivative, three-order strong-stability-preserving scheme to discretize time derivative and Monte Carlo method to deal with stochastic term. We have obtained fully discrete finite volume element scheme for the equation. By the scheme, we nu-merical investigate the influence of a noise term on mass of system and amplitude of solitary wave.
     Next, we consider the two-dimensional quasi-geostrophic equations on a sphere and propose a new Fourier finite volume element method. By using piecewise linear functions in the latitudinal direction, Fourier discretization in the longitudinal direc-tion and leap-frog scheme to discretize time derivative, we can get the Fourier finite volume element schemes. Some numerical results illustrate that the new method is second-order convergence, and can conserve the energy and enstrophy of system and overcome pole problem.
     At last, we discuss optimal control of air quality based on derivative-free opti-mization method. The characteristic finite difference method is used to solving the air pollution model which describe the development of pollutant. The locations of industrial pollutant sources are chosen as the decision variables. By defining rel- ative objective functions, we solve the optimization problems using derivative-free optimization method. Some numerical examples demonstrate that derivative-free op-timization method can be used to solve these problems. The optimal locations of pollution sources can meet the air quality index at low cost.
引文
[1]陈传淼.科学计算概论.北京:科学出版社,2007.
    [2]姜礼尚,陈亚浙,刘西垣,易法奎.数学物理方程讲义.北京:高等教育出版社,2007.
    [3]李荣华.两点边值问题的广义差分法.吉林大学自然科学学报,1(1982)26-40.
    [4]R. Li. Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal.,24(1987) 77-88.
    [5]Z. Cai, J. Mandel, and S. Mccormick. The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal.,28(1991) 392-402.
    [6]R. Li, Z. Chen, and W. Wu. Generalized difference methods for differential equation:numerical analysis of finite volume methods. New York:Marcel Dekker,1999.
    [7]R. Ewing, T. Lin, and Y. Lin. On the accuracy of the finite volume ele-ment method based on piecewise linear polynomials. SIAM J. Numer. Anal., 39(2002)1865-1888.
    [8]J. Xu and Q. Zou. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math.,111(2009) 469-492.
    [9]Z. Zhang. Error estimate of finite volume element method for the pollution in groundwater flow. Numer. Meth. Part. D. E.,25(2009) 259-274.
    [10]P. Wang and Z. Zhang. Quadratic finite volume element method for the air pollution model. Int. J. Comput. Math.,87(2010) 2925-2944.
    [11]Z. Zhang and F. Lu. Quadratic finite volume element method for the improved Boussinesq equation. J. Math. Phys.,53(2012) 013505.
    [12]P. Chatzipantelidis. A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions. Numer. Math.,82(1999) 409-432.
    [13]C. Bi and L. Li. Mortar finite volume method with Adini element for bihar-monic problem. J. Comput. Math.,22(2004) 475-488.
    [14]H. Man and Z. Shi. P1-nonconforming quadrilateral finite volume element method and its cascadic multigrid algorithm for elliptic problems. J. Comput. Math.,24(2006) 59-80.
    [15]L. Durlofsky. A triangle based mixed finite element-finite volume tech-nique for modeling two phase flow through porous media. J. Comput. Phys., 105(1993)252-266.
    [16]R. Guenette and M. Fortin. A new mixed finite element method for computing viscoelastic flows. J. Non-Newton. Fluid.,60(1995) 27-52.
    [17]T. Wang. A mixed finite volume element method based on rectangular mesh for biharmonic equations. J. Comput. Appl. Math.,172(2004) 117-130.
    [18]L. Durlofsky, Y. Efendiev, and V. Ginting. An adaptive local-global multiscale finite volume element method for two-phase flow simulations. Adv. Water Re-sour.,30(2007)576-588.
    [19]T. Wang. Alternating direction finite volume element methods for 2D parabolic partial differential equations. Numer. Meth. Part. D. E.,24(2007) 24-40.
    [20]Z. Li. The immersed interface method using a finite element formulation. Appl. Numer. Math.,27(1998) 253-267.
    [21]Z. Li, T. Lin, and X. Wu. New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math.,96(2003) 61-98.
    [22]Z. Li and K. Ito. The immersed interface method:numerical solutions of PDEs involving interfaces and irregular domains. SIAM, Philadelphia,2006.
    [23]Y. Gong, B. Li, and Z. Li. Immersed-interface finite-element methods for ellip-tic interface problems with nonhomogeneous jump conditions. SIAM J. Numer. Anal.,46(2008) 472-495.
    [24]X. He, T. Lin, and Y. Lin. The convergence of the bilinear and linear im-mersed finite element solutions to interface problems. Numer. Meth. Part. D. E.,28(2012) 312-330.
    [25]R. Ewing, Z. Li, T. Lin, and Y. Lin. The immersed finite volume element methods for the elliptic interface problems. Math. Comput. Simulat.,50(1999) 63-76.
    [26]X. He, T. Lin, and Y. Lin. A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficient. Commun. Comput. Phys.,6(2009) 185-202.
    [27]B. Katz. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol.,111(1950) 261-282.
    [28]R. Stein. A theoretical analysis of neuronal variability. Biophys. J.,5(1965) 173-194.
    [29]M. Levine. The distribution of the intervals between neural impulses in the maintained discharges of retinal ganglion cells. Biol. Cybern.,65(1991) 459-467.
    [30]P. Tiesinga, J. Jose, and T. Sejnowski. Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated channels. Phys. Rev. E,62(2000) 8413-8419.
    [31]A. Kuhn, A. Aertsen, and S. Rotter. Neuronal integration of synaptic input in the fluctuation-driven regime. J. Neurosci.,24(2004) 2345-2356.
    [32]A. Burkitt. A review of the integrate-and-fire neuron model:I. homogeneous synaptic input. Biol. Cybern.,95(2006) 1-9.
    [33]K. Sharma and P. Singh. Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution. Appl. Math. Comput.,201(2008) 229-238.
    [34]P. Singh and K. Sharma. Numerical solution of first-order hyperbolic partial differential-difference equation with shift. Numer. Meth. Part. D. E.,26(2010) 107-116.
    [35]P. Singh and K. Sharma. Numerical approximations to the transport equation arising in neuronal variability. Int. J. Pure. Appl. Math.,69(2011) 341-356.
    [36]N. Zabusky and M. Kruskal. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett.,15(1965) 240-243.
    [37]M. Wadati. Stochastic Korteweg-de Vries equation. J. Phys. Soc. Jpn.,52(1983) 2642-2648.
    [38]M. Wadati and Y. Akutsu. Stochastic Korteweg-de Vries equation with and without damping. J. Phys. Soc. Jpn.,53(1984) 3342-3350.
    [39]A. Debouard and A. Debussche. On the stochastic Korteweg-de Vries equation. J. Funct. Anal.,154(1998) 215-251.
    [40]A. Debussche and J. Printems. Numerical simulation of the stochastic Korteweg-de Vries equation. Physica D,134(1999) 200-226.
    [41]L. Guang, G. Leopold, and E. George. Numerical studies of the stochastic Korteweg-de Vries equation. J. Comput. Phys.,213(2006) 676-703.
    [42]R. Herman and A. Rose. Numerical realizations of the solutions of the stochas-tic KdV equation. Math. Comput. Simulat,80(2009) 164-172.
    [43]P. Christiansen, V. Muto, and S. Rionero. Solitary wave solutions to system of Boussinesq-like equations. Chaos Soliton. Fract.,2(1992) 45-50.
    [44]H. El-Zoheiry. Numerical study of the improved Boussinesq equation. Chaos Soliton. Fract.,14(2002) 377-384.
    [45]A. Bratsos. A second-order numerical scheme for the improved Boussinesq equation. Phys. Lett. A,370(2007) 145-147.
    [46]A. Bratsos. A predictor-corrector scheme for the improved Boussinesq equa-tion. Chaos Soliton. Fract.,40(2009) 2083-2094.
    [47]E. Arevalo, Y. Gaididei, and F. Mertens. Soliton dynamics in damped and forced Boussinesq equations. Eur. Phys. J. B,27(2002) 63-74.
    [48]E. Arevalo and F. Mertens. Thermal diffusion of Boussinesq solitons. Phys. Rev. E,76(2007) 046607.
    [49]P. Kloeden and E. Platen. Numerical solution of stochastic differential equa-tions. Berlin:Springer,1999.
    [50]J. Liu. Monte Carlo strategies in scientific computing. New York:Springer, 2008.
    [51]D. Xiu. Numerical methods for stochastic computations. Princeton Unisversity Press,2010.
    [52]J. Pedlosky. Geophysical fluid dynamics. New York:Springer-Verlag,1987.
    [53]G. Vallis. Atmospheric and oceanic fluid dynamics:fundamentals and large-scale circulation. Cambridge University Press,2006.
    [54]Y. Leon and N. Paldor. Linear waves in midlatitudes on the rotating spherical earth. J. Phys. Oceanor.,39(2009) 3204-3215.
    [55]D. Durran. Numerical methods for fluid dynamics:with application to geo-physics. New York:Springer-Verlag,2010.
    [56]Y. Kurihara. Numerical integration of the primitive equations on the spherical grid. Mon. Weather Rev.,93(1965) 399-415.
    [57]N. Phillips. Numerical integration of the primitive equations on the hemisphere. Mon. Weather Rev.,87(1959) 333-345.
    [58]R. Sadourny. Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Weather Rev.,100(1972) 136-144.
    [59]W. Bourke. An efficient, one-level, primitive-equation spectral model. Mon. Weather Rev.,100(1972) 683-689.
    [60]J. Hack and R. Jakob. Description of a global shallow water model based on the spectral transform method. Technical report,1992.
    [61]H. Shaban, A. Elkamel, and R. Gharbi. An optimization model for air pollution control decision making. Environ. Modell. Softw.,12(1997) 51-58.
    [62]J. Shih, A. Russell, and G. Mcrae. An optimization model for photochemical air pollution control. Eur. J. Oper. Res.,106(1998) 1-14.
    [63]G. Guariso, G. Pirovano, and M. Volta. Multi-objective analysis of ground-level ozone concentration control. J. Environ. Manage.,71(2004) 25-33.
    [64]A. Mayer, C. Kelley, and C. Miller. Optimal design for problems involving flow and transport phenomena in saturated subsurface systems. Adv. Water Resour., 25(2002) 1233-1256.
    [65]K. Fowler, J. Reese, C. Kees, J. Dennis, C. Kelley, C. Miller, C. Audet, A. Booker, G. Couture, R. Darwin, M. Farthingc, D. Finkelh, J. Gablonskyd, G. Grayi, and T. Koldai. Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems. Adv. Water Resour.,31(2008) 743-757.
    [66]R. Leveque. Finite volume methods for hyperbolic problems. Cambridge Uni-versity Press,2002.
    [67]Z. Yan, F. Xie, and H. Zhang. Symmetry reduction, integrability and solitary wave solutions to high-order modified Boussinesq equation with damping term. Commun. Theor. Phys.,36(2001) 1-6.
    [68]G. Chen, W. Rui, and X. Chen. Cauchy problem for a damped generalized IMBq equation. J. Math. Phys.,52(2011) 053504.
    [69]S. Wang and H. Xu. On the asymptotic behavior of solution for the gener-alized IBq equation with hydrodynamical damped term. J. Differ. Equations, 252(2012) 4243-4258.
    [70]C. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys.,179(1988) 439-471.
    [71]A. Biswas, D. Milovic, and A. Ranasinghe. Solitary waves of Boussinesq equa-tion in a power law media. Commun. Nonlinear Sci.,14(2009) 3738-3742.
    [72]S. Mishra, D. Subrahmanyam, and M. Tandon. Divergent barotropic instability of the tropical asymmetric easterly jet. J. Atmos. Sci.,38(1981) 2164-2171.
    [73]R. Tulloch and K. Smith. A note on the numerical representation of surface dynamics in quasi-geostrophic turbulence:application to the nonlinear eady model. J. Atmos. Sci.,66(2009) 1063-1068.
    [74]M. Mu and Z. Zhang. Conditional nonlinear optimal perturbations of a two-dimensional quasigeostrophic model. J. Atmos. Sci.,63(2006) 1587-1604.
    [75]W. Verkley. A balanced approximation of the one-layer shallow-water equa-tions on a sphere. J. Atmos. Sci.,66(2009) 1735-1748.
    [76]S. Orszag. Fourier series on spheres. Mon. Weather Rev.,102(1973) 56-74.
    [77]T. Dubos. A conservative Fourier-finite-element method for solving partial dif-ferential equations on the sphere. Quart. J. Roy. Meteor. Soc.,135(2009) 1877-1889.
    [78]J. Gottelmann. A spline collocation scheme for the spherical shallow water equations. J. Comput. Phys.,148(1999) 291-298.
    [79]A. Layton. Cubic spline collocation method for the shallow water equations on the sphere. J. Comput. Phys.,179(2002) 578-592.
    [80]D. Williamson, J. Drake, J. Hack, R. Jakob, and P. Swarztrauber. A standard test set for numerical weather prediction over a sphere. J. Comput. Phys.,102(1992) 221-224.
    [81]H. Cheong. Application of double Fourier series to the shallow water equations on a sphere. J. Comput. Phys.,165(2000) 261-287.
    [82]S. Neamtan. The motion of harmonic waves in the atmosphere. J. Meteor., 3(1946) 53-56.
    [83]B. Hoskins. Stability of the Rossby-Haurwitz wave. Quart. J. Roy. Meteor. Soc.,99(1973) 723-745.
    [84]P. Thompson. Haurwitz solutions of the nonlinear shallow-water equations for a small Froude number. Meteor. Atmos. Phys.,38(1988) 89-94.
    [85]D. Williamson. Integration of the barotropic vorticity equation on spherical geodesic grid. Tellus,4(1968) 642-653.
    [86]G. Cressman. Barotropic divergence and very long atmospheric waves. Mon. Weather Rev.,86(1958) 293-297.
    [87]J. Thuburn and Y. Li. Numerical simulation of the Rossby-Haurwitz waves. Tellus,52(2000) 181-189.
    [88]W. Spotz, M. Taylor, and P. Swartztrauber. Fast shallow-water eqation solvers in latitude-longitude coordinates. J. Comput. Phys.,145(1998) 432-444.
    [89]M. Tolstykh. Vorticity-divergence semi-Lagrangian shallow-water model of the sphere based on compact finite differences. J. Comput. Phys.,179(2002) 180-200.
    [90]M. Zerroukat, N. Wood, A. Staniforth, and J. Thuburn. An inherently mass-conserving semi-implicit semi-Lagrangian discretisation of the shallow-water equations on the sphere. Quart. J. Roy. Meteor. Soc.,135(2009) 1104-1116.
    [91]A. Kasahara. The dynamical influence of orography on the large-scale motion of the atmosphere. J. Atmos. Sci.,23(1966) 259-271.
    [92]G. Flierl, P. Malanotte-Rizzoli, and N. Zabusky. Nonlinear waves and coherent vortex structures in barotropic β-plane jets. J. Atmos. Sci.,17(1987) 1408-1438.
    [93]S. Mishra. Linear barotropic instability of the tropical easterly jet on a sphere. J. Atmos. Sci.,44(1987) 373-383.
    [94]J. LACARRA and O. Talagrand. Short-range evolution of small perturbations in a barotropic model. Tellus,40(1988) 81-95.
    [95]I. Gilmour, L. Smith, and R. Buizza. Linear regime duration:is 24 hours a long time in synoptic weather forecasting?. J. Atmos. Sci.,58(2001) 3525-3539.
    [96]A. Monahan and L. Pandolfo. Meridional localization of planetary waves in stochastic zonal flows. J. Atmos. Sci.,58(2001) 808-820.
    [97]N. Nevers. Air pollution control engineering. Waveland Press, Incorporated, 2010.
    [98]C. Carnevale, E. Pisoni, and V. Marialusia. An optimization model for air pol-lution control decision making. Automatica,44(2008) 1632-1641.
    [99]F. Liu, F. Hu, and J. Zhu. Adjoint method for the optimum planning of industrial pollutant sources. Sci. China, Ser. D,48(2005) 1270-1279.
    [100]F. Liu, J. Zhu, F. Hu, and Y. Zhang. An optimization model for air pollution control decision making. Environ. Modell. Softw.,22(2007) 548-557.
    [101]P. Gilmore and C. T. Kelley. An implicit filtering algorithm for optimization of functions with many local minima. SIAM J. Optimiz.,5(1995) 269-285.
    [102]D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expen-sive black-box functions. SIAM J. Optimiz.,13(1998) 455-492.
    [103]M. Erickson, A. Mayer, and J. Horn. Multi-objective optimal design of ground-water remediation systems:application of the niched Pareto genetic algorithm (NPGA). Adv. Water Resour.,25(2002) 51-65.
    [104]A. Conn, K. Scheigberg, and L. Vicente. Introduction to derivative-dree dpti-mization. SIAM, Philadelphia,2009.
    [105]Z. Zlatev, J. Christensen, and (?). Hov. A Eulerian air pollution model for Europe with nonlinear chemistry. Adv. Water Resour.,15(1992) 1-37.
    [106]Z. Zhang, Y. Wang, and Q. Wang. A characteristic centred finite difference method for a 2D air pollution model. Int. J. Comput. Math.,88(2011) 2178-2198.
    [107]J. Samet, F. Dominici, F. Curriero, I. Coursac, and S. Zeger. Fine particulate air pollution and mortality in 20 U.S. cities. New Engl. J. Med.,343(2000) 1742-1749.
    [108]C. Pope, R. Burnett, M. Thun, E. Calle, D. Krewski, K. Ito, and G. Thurston. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine par-ticulate air pollution. J. Am. Med. Assoc.,287(2002) 1132-1141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700