基于NX的汽车视野检测工具开发及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“基于NX的汽车视野检测工具开发及方法研究”针对目前汽车安全问题的不断提升和汽车企业缩短产品开发周期的需求,借助在现代车身设计中广泛应用的计算机辅助设计,在UG/NX开发平台上,运用UG/Open API、UG/KF、UI Component等二次开发技术,完成了汽车驾驶员360°范围内视野检测工具的开发,并对车身C柱和发动机罩的局部检测方法进行了研究。
     本文开发的汽车整体视野检测工具是在车身概念设计阶段,对已满足基本法规标准的车身设计模型进行前、后、侧及立柱四部分的直接视野检测,然后输出相应的测量值用于视野的评价。之后,文章又介绍了C柱和发动机罩这两个车身部件的视野检测工作,并对其视野检测方法进行了研究。
     本文通过研究汽车视野检测,讨论了基于NX的二次开发技术在车身设计中的应用,这种方法能够简化车身设计中的重复工作,从而提高车身的设计效率和设计质量。通过对所开发模块的测试,其测试结果验证了模块的实用性,也充分体现了该设计方法的优势。
     本文讨论的汽车视野检测工具及方法已经得到相关企业的使用认可,并在实际设计中得到了应用。
Along with the increasing depth of automobile in people's life, performance requirements of automobile have been constantly enhanced. Not only does it require automobile to have a beautiful shape, good power and economy, reliable operation stability, moreover to have a better field of vision performance. Vision performance of automobile is an important segment during the procedure of auto-body general layout. It directly influences automobile's travel security, comfort and operational convenience. So, it requires that the body designers fully apply the modern body design methods and ergonomics theory in the body structure and internal layout design, and enable the drivers to obtain the best field of vision under certain conditions by the most comfortable sitting posture. Therefore, the checking and validating of automobile vision plays an important role in automobile field of vision's design. In the conceptual design phase, it not only can judge the quality of driver’s vision, but also can evaluate the reasonableness of initial design and layout, and change the design size in time, if necessary. So the development and research of professional automobile vision checking and validating tools has the theoretical and practical significance.
     After understanding the domestic and foreign relevant theories of vision design, this paper focus the research content in the vision of 360°assessment, the front lower view of automobile and the BC pillar obstructions, which are researched few at present. Combining the computer-aided design, which widely used in modern body design, this paper utilizes UG/Open API, UG/KF, UI Component and so on re-development technologies in UG/NX development platform. It completes the development of automobile overall vision checking and validating tools, and researches on the vision design of auto-body C pillar and hood.
     The Unified Development Unit of UG/NX is user's re-development platform offered by UGS. Using the open code that UG/NX provides, one can almost carry out all the functions existed in UG/NX. The design rule and experiences can be collected into the product model by using the KF language. Using UI Component, a good interface can be designed. In the development work of this paper, UG/Open API, KF and UI Component are used. The function and interface of modules can be achieved.
     This paper researches on automobile vision checking and validating in the conception design stage. The tool is used, to those which vision has been designed to meet basic standards body model, to check them the direct vision. The tool of the overall vision checking and validating is a rough check of 360°driver’s vision. The vision is divided into four parts, including front, rear, side and pillar, in order to measure the different angles or distances. In front vision, front upper angle, front lower angle, hood invisible distance and road surface invisible distance are measured. In rear vision, rear upper angle, rear lower angle, T/LID visibility consideration and road surface invisible distance are measured. In side vision, Dr side upper angle, Dr side lower angle, Asst side upper angle and Asst side lower angle are measured. About pillars, there are Dr side A-PLR obstruction angle, Asst side A-PLR obstruction angle, Asst side B-PLR obstruction angle, Asst side C-PLR obstruction angle, FR view angle, C-PLR(D-PLR) view angle and RR view angle to be measured. The completed module can automatically calculate and generate eye points through importing H-point and vehicle parameters. Then different eye points are selected to measure values. Partial vision checking and validating is a particular check after overall vision check. About the vision check of C-pillar, perspective is used to create the visible view with Motorcycle at passenger side, in order to evaluate C-pillar structure and location design. About the vision check of hood, an arithmetic of section curves to obtain tangent point is used. Through the obtaining limit line, the quality of hood vision design is evaluated. The two methods of partial vision checking and validating can be used not only in C-pillar and hood, but also in other parts of auto-body, even can be used for other transport vision design. The application of the two methods is relatively extensive.
     Conception design is very important for an auto-body design. Auto-body structure and most parameters could be determined in this phase, while some parameters would impact the validity and cycle of following work. In the other hand, the cost of conception design nearly comes to 70% of the total development’s. Changes in this phase are most easy to be carried out and lowest cost to be spent, while they would do best for save product’s cost. Therefore, concurrent engineering and cooperation could be used in this phase to consider product’s manufacturability, assembly and maintenance-ability. They would greatly help to reduce or avoid the following reduplicated work and shorten the development cycle.
     The re-development technique of auto-body based on NX is provided by UG/NX. It can simplify the repetition work in the body design, and help to realize cooperation in the design. This technique will improve the efficiency and quality of body design. Also it will shorten the development period and reduce the development cost. Finally, the test results confirm the module usability and fully manifest the advantages of this design method.
     Automatization and intelligentization of auto-body design are current pop topic. This paper mainly discusses the development and research of NX-based automobile vision checking and validating tools. It could be studied as a reference of auto-body design module development for conception design phase.
引文
[1] 黄天泽、黄金陵. 汽车车身结构与设计. 机械工业出版社. 1992: 1-46.
    [2] 张鄂. 现代设计方法. 西安交通大学出版社. 1999: 2-3.
    [3] 仲志维. 基于知识工程的开发技术在仪表盘设计中的应用研究. 吉林大学硕士论文. 2007.5.
    [4] 李少波、谢庆生、楚甲良. 汽车车身设计方法探讨. 贵州工业大学学报(自然科学版). 1999-28-6: 78-82.
    [5] 王昊. 汽车视野安全的研究与进展. 江苏理工大学学报(自然科学版). 2001-22-2.
    [6] 邬晴晖、郭竹亭. 国内外车身设计技术的差距. 汽车技术. 1999.8: 14-16.
    [7] Josef Loczi. Application of the 3-D CAD Manikin RAMSIS to Heavy Duty Truck Design at Freightliner Corporation. SAE Technical Paper 2000-01-2165: 3-4.
    [8] SAE J903. Passenger Car Windshield Wiper System. SAE Handbook, p2-10.
    [9] SAE J942. Passenger Car Windshield Wiper System. SAE Handbook, p1-6.
    [10] SAE J198. Windshield Wiper Systems-Trucks, Buses and Multipurpose Vehicles. SAE Handbook, p1-6.
    [11] SAE J1944. Truck and Bus Multipurpose Vehicle Windshield Washer System. SAE Handbook, p1-3.
    [12] SAE J834a. Passenger Car Rear Vision. SAE Handbook, p1-4.
    [13] SAE J1050-AUG94. Describing and measuring the driver’s field of view. SAE Handbook, p11-22.
    [14] Josef Loczi. Ergonomics Program at Freightliner. SAE Technical Paper 2000-01-3402: 3.
    [15] 黄金陵、汪成应等. 汽车视野设计CAD系统开发及应用. 汽车工程. 1997-19-1: 21-23.
    [16] 葛安林、任金东、黄金陵、龚梦泽. 汽车视野设计原理和方法研究. 机械工程学报. 2002-38-4: 148-151.
    [17] 任金东、葛安林、黄金陵、龚梦泽. 基于CATIA平台的汽车视野设计系统研究与实现. 汽车工程. 2002-24-1.
    [18] 任金东、范子杰、黄金陵. 基于知识的汽车后视野分析系统. 汽车工程. 2006-28-2: 159-162.
    [19] 庞兴华、孙建颖. 计算机辅助汽车后视野检验的研究及实现. 交通与计算机. 2004-22-3.
    [20] 彭新宇、徐宗俊、杨德一、杨静. 基于UG的汽车视野评价系统的研究及实现. 机械科学与技术. 2003-22-7.
    [21] 李华. 基于知识的轿车视野校核系统研究与开发. 燕山大学硕士论文. 2005.4.
    [22] 廖琪梅. 人体工程学在汽车车身设计中的应用. 上海工程技术大学学报. 2002.2: 99-104.
    [23] 乐玉汉. 人体工程学在车身设计中的应用. 国外汽车. 1993.5: 11-15.
    [24] 吕景华. 轿车人体工程设计一般方法的研究. 汽车技术. 2002.10: 1-5.
    [25] 孙凌玉、陈世全. 人机工程学在轿车车身安全性设计中的应用. 中国公路学报. 2001.4: 107-110.
    [26] 宋建军、杜诗文、闫献国. 汽车虚拟设计中UG的应用. 太原重型机械学院学报. 2002-23-2: 156-157.
    [27] 王晓枫、赵春亮、王亮. 基于UG NX的型腔零件 3D建模与NC加工. 机械工程与自动化. 2005.6: 25-26.
    [28] 唐春文等. 中文Unigraphics NX高级应用与实例. 冶金工业出版社. 2004: 15-16.
    [29] 董正卫、田立中、付宜利. UG/OPEN API 编程基础. 清华大学出版社. 2002.8:1-6.
    [30] Unigraphicis Solutions Inc(美). UG知识熔接技术培训教程. 清华大学出版社. 2002.6.
    [31] 史忠植. 知识工程. 清华大学出版社. 1988: 2.
    [32] 李春梅. KBE技术在UG中的应用. 中国模具论坛. 2004-6.
    [33] 刘波. 知识驱动的车身结构设计方法研究及软件系统关键技术开发. 吉林大学博士论文. 2007.5.
    [34] 史野. 基于知识的臂式车门玻璃升降器的 CAD 软件开发. 吉林大学硕士论文. 2007.5.
    [35] 温吾凡. 汽车人体工程学. 吉林科学技术出版社. 1991.8: 18-23.
    [36] 乐玉汉. 轿车车身设计. 高等教育出版社. 2000: 1-8.
    [37] 占建云、郑晋军. 汽车车身总布置设计工具初探. 天津汽车. 2002-2.
    [38] SAE J1100-JUL2002. Motor Vehicle Dimensions. SAE Handbook. 2004.3: 34.130-146.
    [39] SAE J1052-APR2002. Motor Vehicle Driver and Passenger Head Position. SAE Handbook. 2004.3: 34.49-51.
    [40] SAE J826-JUN2001. Device for Use in Defining and Measuring Vehicle Seating Accommodation. SAE Handbook. 2002.3: 34.111-118.
    [41] SAE J1516-DEC2000. Accommodation Tool Reference Point. SAE Handbook. 2002.3: 34.341-344.
    [42] SAE J941-SEP2002. Motor Vehicle Driver’s Eye Locations. SAE Handbook. 2003.3: 34.292-295.
    [43] GB/T 11562-1994. 汽车驾驶员前方视野要求及测量方法.
    [44] 任金东. 车身布置方法研究和布置系统开发. 吉林大学博士论文. 2003.
    [45] 李国美. 人机工程学与汽车主动安全系统设计. 汽车技术. 2004.1: 8-11.
    [46] JIS D1702-1996. Road vehicles-Test method for the direct driver’s field of view.
    [47] JIS D0024-1985-R2006. Road vehicles-procedure for H-point determination.
    [48] GB/T 11563-1995. 汽车H点确定程序.
    [49] 姜莞. 商用车人机工程设计与评价方法的研究. 吉林大学硕士论文. 2007.5.
    [50] 候清富、郭岗. 软件工程师实战基本功. 人民邮电出版社. 2005.1: 36-39.
    [51] 占强. 视野盲点成为安全杀手. 世界汽车. 2007.7: 36-37.
    [52] 胡群、童军. 基于CATIA的汽车发动机罩逆向设计. 汽车技术. 2006-9.
    [53] 姚远、周继红、赵新才、朱佩芳、王正国. 摩托车交通事故调查分析. 局解手术学杂志. 2006-11-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700