土传植物病害拮抗细菌根围生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从浙江大学华家池蔬菜所和抗州市蔬菜所的老熟菜地土壤中分离到大量土著细菌,然后从中筛选出对Pythium aphanidermatum和Fusarium oxysporum f.sp.cucumerinum分别具有离体拮抗作用细菌分离物6株ZJ7、ZJ14、ZJ31、ZJ32S1、ZJ45和A2,进一步通过促芽实验和无菌土盆栽测定,发现菌株ZJ14和ZJ32S1能促进黄瓜种子的萌发;6要菌株都能促进黄瓜苗的生长、增加苗干物质重量。在接种引起黄瓜苗期猝倒病(Pythium spp.)和中期枯萎病(Fusarium oxysporum f.sp.cucumerinum)的盆栽测定中,发现它们能明显提高防病效果。
     根据格兰氏染色反应、生理生化测定和16S rDNA序列同源性比对,鉴定了生防效果相对稳定的4个菌株,分别为ZJ14(Bacillus subtilis),ZJ32S1(Bacillus subtilis),ZJ45(Pseudomonas aeruginosa)和A2(Paenibacillus polymyxa)。
     相对于革兰氏阴性细菌定殖研究的蓬勃发展,革兰氏阳性细菌缺乏稳定、高效的标记系统。而枯草芽孢杆菌(Bacillus subtilis)由于其具有较强的抗逆性,在生物防治研究中越来越受到重视。为了进一步研究生防枯草芽孢杆菌在植物根际的定殖情况,对其进行标记是有必要的。因此,根据绿色荧光蛋白基因和枯草芽孢杆菌木糖诱导型启动子PxylR序列,分别设计两对特异引物xylR-F/R和GFPuv-F/R,扩增得到完整的xylR启动子序列和GFPuv基因序列后分别对上述产物做克隆,获得pGEM-xylR和pGEM-gfp质粒。对上述质粒分别经HindⅢ/KpnI双酶切后连接,获得质粒pGEM-xylRGFP。经SphI/KpnI双切质粒pGEM-xylRGFP后,回收片段xylR-gfp,插入穿梭载体pRP22,得到重组子pRP22-GFP。经原生质体转化法转化B.subtilis 168和野生菌株CC41和ZJ32S1均得到有良好发光表型的转化子。并且,室内平板显示,工程菌株抑菌效果与原始菌株无明显差异,并且在紫外灯下易于区别。
Abundant bacterial isolates were obtained from vegetable-field in the farms of Zhejiang University and Hangzhou Institution of Vegetable. Six strains of those bacteria ZJ7, ZJ14, ZJ31, ZJ32S1, ZJ45 and A2, were showed an antagonize to Pythium aphanidermatum caused seedling damping-off and Fusarium oxysporum f.sp. cucumerinum caused stem wilt of cucumber in plate. Among them, ZJ7, ZJ14, ZJ31, ZJ32S1 and ZJ45 antagonized to P. aphanidermatum, and ZJ45 and A2 to F.
    
    
    
    oxysporum f.sp. cucumerinum. Then, those bacteria were effective on germination of cucumber seeds in plate and pot testing in sterile soil. Two strains called , ZJ14 and ZJ32S1, largely increased the length of root and hypocotyls of cucumber after seed bacterization, and all 6 strains above promoted growth of cucumber seedlings, including increasing incidence of emergence and plant dry weight. These 6 antagonists were used to test the effect of bio-control on the cucumber damping-off and Fusarium wilt at pot testing respectively. The results showed that while the growth of seedlings was promoted, the diseases were suppressed too.
    6 strains, ZJ14, ZJ32S1, ZJ45 and A2 were identified from Gram-stain, Physiological and biochemical characteristics, and combined with 16S rDNA sequence cluster. The results were showed that ZJ14 and ZJ32S1 was as Bacillus subtilis, ZJ45 as Pseudominas aeruginosa, and A2 as Paenibacillus polymyxa respectively.
    There were lack of stabile and effective marker approaches for Gram-posotive bacteria relatively to Gram-nagative bacteria. Bacillus subtilis plays more and more important roles in biological control, due to its resistance to terrible environment. So it is nessary to construct a vector to mark wild type strains of Bacillus subtilis for their colonization hi rhizosphere.
    The full length of the promoter and GFPuv gene were obtained by PCR with two pairs unique primers xylR-F/R and primers GFPuv-F/R respectively, which were designed according to the GFPuv gene and the sequence of xylose operon from Bacillus subtilis 168, and the DNA template chromosomal DNA of B.subtilis 168 and plasmid pGFPuv. Furthermore, grp gene were inserted into pGEM-xylR, after plasmids pGEM-xylR and pGEM-gfp were digested by Hind III and Kpn I, which were clones of above the PCR production. Then, the DNA fragment xylR-gfp which were obtained after pGEM-xylRGFP being digested by Kpn I and Sph I , was inserted into Kcoli-B.subtilis shuttle vector pRP22, and the resulted recombinant plasmid was named at pRP22-GFP. The recombinant plasmid was transferred into their protoplasts of B.subtilis lab strain 168 and wild type strain CC41 and ZJ32S1 respectively, and the resulted transformants were showed the bright green under
    
    
    365nm UV light. There were no obvious difference between the transformants of CC41 and ZJ32S1 and then- wild type strains in plate.
引文
1.陈龙英.1995.桃树根癌病的生物防治.中国果树,1:8-10.
    2.陈营,陆承平等.1999.绿色荧光蛋白标记可移动载体质粒的构建及其在嗜水气单胞菌的表达.农业生物技术学报,7(4):329-332.
    3.陈晓斌,张炳欣,楼兵干等.2001.运用生色基因标记黄瓜根围促生菌(PGPR)筛选菌株.微生物学报,41(3):287-292.
    4.方中达编著.1998.植病研究方法(第三版).北京:中国农业出版社.
    5.傅君芬,洪文澜.1998.16s-23s区间序列——一种分类及细菌鉴定的新方法.《国外医学》流行病学传染学分册,25(6):245-249.
    6.李德葆,周雪平,许建平等.1996.基因工程操作指南.上海:科学技术出版社.
    7.梁志宏,王慧敏,王建辉.2001.E26防治植物根癌病的效果及其稳定性初步研究.中国农业大学学报,6(1):91-95
    8.楼兵干,张炳欣,胡利强.2001.腐霉对甲霜灵抗性测定及其生物防治.植物保护学报.8(1):55-60.
    9.楼兵干,张炳欣.2002.黄瓜苗期猝倒病生物防治.植物保护学报,9(2):109-113.
    10.鲁素芸.1993.植物病害生物防治学.北京:北京农业大学出版社.
    11.吕颂雅,杨复华,刘祖强等.2001.gfp基因标记的重组杆状病毒对棉铃虫的侵染历程.中国生化与分子生物学报,17(6):743-750.
    12.吕泽勋,李久蒂,朱至清.2001.用绿色荧光蛋白基因(gfp)标记产酸克雷伯氏菌SG-11其在水稻苗期根部的定殖.农业生物技术学报,9(1):13-18.
    13.沈爱华,张炳欣,李斌等.2003.黄瓜苗根围细菌X3的分类鉴定.应用生态学报,14(9):1521-1524.
    14.王玉菊,祁红英,郭建华.1995.植物土传病害的微生物防治研究进展.世界农业,1:37-39.
    15.王平,胡正嘉,李阜棣.1997.小麦根围荧光假单胞菌的发光酶基因标记.华中农业大学学报,16(3):220-225.
    16.王平,胡正嘉,李阜棣.2000.发光酶基因的荧光假单胞菌X16L2在小麦根围的定殖动态.微生物学报,15(3):26-34.
    
    
    17.徐同,钟镜萍,李德葆.1994.木霉对土传病原真菌的拮抗作用.植物病理学报,23:63-67.
    18.姚震声,陈中义,陈志谊等.2003.绿色荧光蛋白基因标记野生型生防枯草芽孢杆菌的研究.生物工程学报.19(5):551-555.
    19.张炳欣,张平,陈晓斌.2000.影响引入微生物根部定殖的因素.应用生态学报,11(6):951-953.
    20.张玉勋,王道本,彭于发.1996.拮抗细菌D93菌株在小麦根部定殖的研究.华中农业大学学报,15(1):18-23.
    21.张中鸽,彭于发,黄大防等.1992.荧光93菌体和代谢物对全蚀病菌和小麦生长影响的初步研究.生物防治通报,8(3):125-128.
    22.Cebolla A, V(?)zquez ME and Palomares A J. 1995. Expression vecters for the use of eukaryotic luciferases as bacterial markers with different colors of luminescence. Appl Environ Microbiol, 61:660-668.
    23.Arshad M & Frankenberger WTJ. 1998. Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron, 62:145-151.
    24.Bangera MG & Thomashow LS. 1996. Characterization of a genomic locus required for synthesis of the antibiotic 2-4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant Microbe Interact, 9:83-90.
    25.Bardin SD, Huang HC, and Moyer JR. 2004. Control of Pythium damping-off of sugar beet by seed treatment with crop straw powders and a biocontrol agent. Biological control, 29:453-460.
    26.Barry GE 1986. Permanent insertion of foreign genes into the chromosomes of soil bacteria. Biotechnology, 4: 446-449.
    27.Barry GE 1988. A broad-host-range shuttle system for gene insertion tnto the chromosome of Gram-negative bacteria. Gene, 71:75-84.
    28.Beyer M., and Diekmann H. 1985. The chitinase system ofStreptomyces sp.ATCC 11238 and its significance for fungal cell wall degradation. Appl. Microbiol. Biotechnol, 23:140-146.
    29.Bhavsar AP, Zhao X-M and Brown ED. 2001. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis:conditional complementation of a teichoic acid mutant. Appl Environ Microbiol, 67:403-410.
    30.Bloemberg GV, Qtoole GA, Lugtenberg BJ et al. 1997. Green fluorescent protein as a marker
    
    for Pseudomonas spp. Appl Environ Microbiol, 63:4543-4551
    31.Bloemberg GV, WijfJes AHM, Lamers GEM et al. 2000. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact, 13:1170-1176
    32.Budi SW, van Tuinen D, Martinotti G and Gianinazzi S. 1999. Isolation from the Sorghum bicolor Mycorrhizosphere of a Bacterium Compatible with Arbuscular Mycorrhiza Development and Antagonistic towards Soilborne Fungal Pathogens. Appl Environ Microbiol, 65:5148-5150.
    33.Burlage RS, Yang ZK and Mehlhorn T. 1995. A transporson for green fluorescent protein transcriptional fusion: application for bacterial transport experiment. Gene, 173:53-58.
    34.Buysens S, Heungens K, Poppe J et al. 1996. Involvement of Pyochelin and Pyoverdin in Suppression of Pythium-Induced Damping-Off of Tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol, 62:865-871.
    35.Chang S. Cohen SN. 1979. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol. Gen. Genet. 168:111-115
    36.Chet I, Shapiro R, Ordentlich A et al. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteda. Plant Soil, 129: 85-92.
    37.Christensen BB, Steinberg C and Molin S. 1996. Bacterial plasmid conjugation on semi-solid surfaces monitored with the green fluorescent protein (Gfp) from Aequorea victoria as a marker. Gene, 173:59-65.
    38.Christensen BB, Sternberg C, Andersen JB et al. 1998. Establishment of new genetic trains in a microbial biofilm community. Appl Enviren Microbiol, 64:2247-2255.
    39.Cook R J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Ann. Rev. Phytopathol, 31:53-80.
    40.Corbell N & Loper JE. 1995. Aglobal regulator of secondary mmetabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol, 177:6230-6236.
    41.Dahl MK, Schmiedel D and Hillen W. 1995. Glucose and glucose-6-phosphate interaction with xyl repressor proteins from Bacillus spp. May contribute to regulation of xylose utilization, J Bacteriol, 177:5467-5472
    
    
    42.Dahlberg C, Bergstrom M and Hermansson M. 1998. Insite detection of high levels of horizontal plasmid transfer in marine bacterial communities. Appl Environ Microbiol, 64:2670-2675.
    43.Dal-Soo K, Cook PJ and Weller DM. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology, 87:551-558.
    44.De Meyer G and H(?)fte M .1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology, 87: 588-593.
    45.Dhandayuthapani S, Via LE, Thomas CA et al. 1995. Green fluorescent protein as a marker for gen expression and cell biology of mycobacterial interactions with macrophages. Mol Microbiol, 17:901-912.
    46.Dobbelaere S, Croonenborghs A, Thys Aet al. 1999. Analysis and relevance of the phytostimulatory sffect of genetically modified Azospirillum brasilienxe strains upon wheat inoculation. Plant soil, 212:155-164.
    47.Dobbelaere S, Croonenborghs A, Thys Aet al. 2001. Responses of agronomieally important crops to inoculation with Azospirillum. Aust J Plant Physiol, 28:871-879.
    48.Duffy BK & D(?)fago G. 1999. Environmental Factors Modulating Antibiotic and Siderophore Biosynthesis by Pseudomonasfluorescens Biocontrol Strains. J Bacteriol, 65:2429-2438.
    49.Eberd L, Schulze R, Ammevdola Aet al. 1997. Use of green fluorescent protein as a marker for ecological studies of activatated sludge communities. FEMS Microbiol Lett, 149:77-83.
    50.Etchebar C, Trigalet-Demery D, van Gijsegem F et al. 1998. Xylem Colonization by an HrcV(?) Mutant of Ralstonia solanacearum Is a Key Factor for the Efficiem Biological Control of Tomato Bacterial Wilt. Mol Microbiol Plant Interact, 11:869-877.
    51.Gage D J, Bobo T and Long SR. 1996. Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J Bacteriol, 178:7159-7166.
    52.Gaudin V, Vrain D and Jouanin L. 1994. Bacterial genes modifying hormonal balance in plant. Plant Physiol Biochem, 32:11-29.
    53.G(?)ntner D, Degenkolb J, Ripperger JA et al. 1988. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. J Bacteriol,
    
    170:3102-3109
    54.Glick BR, Jacobson CB, Schwarze MMK et al. 1994. Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol, 40:911-915.
    55.Glick BR. 1995. The enhancement of plant growth by free-living bacteria. Can J Microbiol, 41:109-117.
    56.Gryczan TJ, Contente S and Dubnau D. 1980. Molecular cloning of heterologous chromosomal DNA by recombination between a plasmid vector and a homologous resident plasmid in Bacillus subtilis. MoL. Gen. Genet, 177:459-467
    57.Haas D & Keel C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. And relevance for biological control of plant disease. Ann Rev Phytopathol, 41:117-153.
    58.Handelsman J and Stabb E V. 1996. Biocontrol of soilborne plant pathogens. The plant cell, 8:1855-1869.
    59.Handfield M, Sehweizer HP, Mahan MJ et al. 1998. ASD-GFP vector for in vivo expression technology in Pseudomonas aeruginosa and other gram-negative bacteria. Biotech, 24:261-264.
    60.Harris AR, Sehisler DA, Ryder MH et al. 1994. Bacteria suppress damping-off caused by Pythium ultimum var. sporangiiferum and promote growth in bedding plants. Soil Biology & Biochem, 26(10):1431-1437.
    61.Hoffland E, Pieterse, CMJ, Bik L et al. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol. Mol. Plant Pathol, 46: 309-320.
    62.Howie W J & Suslow T V. 1991. Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol. Plant-Microbe Interact, 4:393-399.
    63.Ibekwe AM & Kennedy AC. 1998. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol Ecol, 26:151-163
    64.Kerr A. 1980. Biological control of crown gall through production of agrocin 84. Plant disease, 64:25-30.
    
    
    65.Koch E. 1999. Evaluation of commercial products for microbial control of soil-borne plant diseases. Crop protection. 18:119-125.
    66.Kremer L, Baulard A, Estaquier Jet al. 1995. Green fluorescent protein as a new expression makrer in Mycobacteria. Mol Microbil, 17:913-922.
    67.Kreuzer P, G(?)rtner D, Allmansberger R et al. 1989. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J Bacteriol, 171:1738-1745.
    68.Lebuhn M, Heulin T, and Hartmann A. 1997. Production of auxin and other indolic and phenolic compounds by Paenibaeillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol, 22:325-334.
    69.Lee SW & Cooksey DA. 2000. Genes Expressed in Pseudomonas putida during Colonization of a Plant-Pathogenic Fungus. Appl Environ Microbiol, 66:2764-2772.
    70.Leeman M, van Pelt JA, den Ouden FM et al. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonasfluorescens. Phytopathology, 85:1021-1027.
    71.Leenman M, den Ouden FM, van Pelt JA et al. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology, 86:149-155.
    72.Liu L, Kloepper JW and Tuzun S. 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology, 85:695-698
    73.Lorito M, Hayes CK, Di Pietro Aet al. 1993. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr Genet, 24:349-356.
    74.Lorito M, Hayes CK, Zoina Aet al. 1994. Potential of genes and gene products from Trichoderma sp. and Gliocladium sp. for the development of biological pesticides. Mol Biotechnol, 2:209-217.
    75.Mahairas GG, Cao J and Minion FC. 1990. Genetic exchange of transposon and integrative plasmid markers in Mycoplasmapulmonis. J Bacteriol, 172:2267-2272.
    76.Mark RHH & Jackson TA. 2002. Use of the green fluorescent protein to monitor the fate of Serratia entomophila causing amber disease in the New Zealand grass grub, Costelytra zealandiea. J Microbiol Methods, 50:1-8
    
    
    77.Mavingui P & Heulin T. 1994. In vito chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol Biochem, 26:801-803.
    78.Mavrodi DV, Ksenzenko NV, Bonsall FRet al. 1998. A Seven-Gene Locus for Synthesis of Phenazine-1-Carboxylic Acid by Pseudomonas fluorescens 2-79. J Bacteriol, 180:2541-2548.
    79.Mavrodi, DV, Bonsall RF, Delaney SM et al. 2001. Functional analysis of genes for biosynthesis of pyoeyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PA01. J. Bacteriol. 183: 6454-6465.
    80.Milner JL, Silo-Suh L, Lee JC et al. 1996. Production of kanosamine by Bacillus cereus UW85. J Bacteriol, 62:3061-3065.
    81.Neilands JB. 1981. Microbial iron compounds. Annu. Rev. Biochem, 50:715-731
    82.Nielsen P & Sorensen J. 1997. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol, 22:183-192.
    83.Olofsson AC, Zita A and Hermansson M. 1998. Floe stability and adhesion of green-fluorescent-protein-marked bacteria to floes in activated sludge. Microbiology, 144:519-528.
    84.Ode Asaka & Makoto Shoda. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB 14. Appl Environ Microbiol, 62:4081-4085
    85.O'Sllivan DJ & O'Gara F. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Molecular Biology Rev, 56:662-676.
    86.Parker AE & Bermudez LE. 1997. Expression of the green fluorescent protein (GFP) in Mycobacteria avium as a tool to study the interaction between Mycobacteria and host cells. Microb Pathol, 22:193-198.
    87.Pierson LS, Keppenne VD and Wood DW. 1994. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol, 176:3699-3974.
    88.Pierson LS, Gaffney T, Lain S et al. 1995. Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett, 134:299-307.
    
    
    89.Pierson LS & Pierson EA. 1996. Phenazine antibiotic production in Pseudomonas aureofaciens: Role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett, 136:101-108.
    90.Pieterse CM, van Wees SC, Hoffland E et al. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 8:1225-1237.
    91.Pieterse CM and van Loon LC. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci, 4:52-58.
    92.Pridham TG, Lindenfelser LA, Shotwell OL et al. 1956. Antibiotics against plant disease. Ⅰ. Laboratory and greenhousesurvey. Phytopathology, 46:568-575.
    93.Pridham TG, Lindenfelser LA, Shotwell OL et al. 1956. Antibiotics against plant disease. Ⅱ.Effective agents produced by Streptomyces cinnamoneus for Azacoluta f. nov. Phytopathology, 46:575-581
    94.Raupaeh GS & Kloepper JW. 1998. Mixtures of plant growth-promoting rhizobaeteria enhance biologieai control of multiple cucumber pathogens. Phytopathology, 88:1158-1164
    95.Buchanan RE, GibbonsNE etal. 1984. 伯杰细菌鉴定手册(第八版).北京:科学出版社.
    96.Robleto EA, Kmiecik K, Oplinger ES et al. 1998. Trifolitoxin Production Increases Nodulation Competitiveness of Rhizobium etli CE3 under Agricultural Conditions. Appl Environ Microbiol, 64:2630-2633.
    97.Ryder MH. 1994. Detection of introduced Bacteria in Rhizosphere use marker gene and DNA probes. In: O'Gara F, Dowling D N, Boesten Bed. Molecular Ecology of Rhizosphere Microorganisms.Weilhein New York, Basel Cambridge, Tokyo VCH:CRC press. 29-47
    98.Sambrook J, Fritsch EF, and Maniatis T. 1989. Molecular cloning a laboratory manual 2nd ed. Cold Spring Harbor Laboratory Press.
    99.Schippers B. 1993. Exploitation of microbial mechanisms to promote plant health and plant growth. Phytopathology , 21:275-279.
    100.Singh HP, Singh TA. 1993. The interaction of rockphosphate, Bradyrhizobiurn, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean groum in a sub-Himalayan mollisol. Mycorrhiza, 4:34-43.
    101.Silo-Suh LA, Lethbridge B J, Raffel S Jet al. 1994. Biological activities of two fungistatic
    
    antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol, 60:2023-2030.
    102.Thomma BP, Penninckx IA, Broekaert WF et al. 2001. The complexity of disease signaling in Arabidopsis. Curt Opin lmmunol, 13:63-68.
    103.Tombolin R. Unge A and Davey ME. 1997. Flow cytometric and microscopic analysis of GFP tagged Pseudomonas fluorescens bacteria. FEMS Microbiol Ecol, 22:17-28.
    104.Tress O, Errampalli D, Kosstrzynska Met al. 1998. Green fluorescent protein as a visual marker in a p-nitrophenol degrading Moraxella sp. FEMS Microbiol Lett, 164:187-193.
    105.Valdivia RH, Hromockyj AE, Monack D et al. 1996. Applications for green fluorescent protein (GFP) in study of host-pathogen interactions. Gene, 173:47-52.
    106.van Peer R, Niemann GJ and Sehippers B. 1991. Induced systemic resistance and phytoalexin accumulation in biologicalcontrol of Fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology, 81: 728-734.
    107.van Wees, SCM, Pieterse CMJ, Trijssenaar A et al. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact, 10:716-724.
    108.Wang AY, Brown HN, Crowley DE et al. 1993. Evidence for direct utilization of a siderophore, ferdoxamine B, in axenically grown cucumber. Plant Cell Environ, 16:579-585.
    109.Wang SL, Yieh TC and Shih IL. 1999. Purification and characterization of a new antifungal compound produced by Pseudomonas aeruginosa K-187 in a shidmp and crab shell powder medium. Enzyme and Microbial Technol, 25:439-446.
    110.Wei G, Kloepper JW and Tuzun S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteda. Phytopathology, 81: 1508-1512
    111.Weissburg WG, Barns SM et al. 1991.16S ribosomal DNA amplification for phylogenetic study. J Bacteriol, 173(2):697-703
    112.Weller D M, Cook R J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology, 73:463-469.
    113.Weller DM. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol, 26:379-407.
    114.White D, Leifert C, Ryder MH et al. 1996. Lux gene technology —a strategy to optimize biological control of soilborne disease. New Phytologist, 133: 173-181
    
    
    115.Wood DW & Pierson LS. 1996. The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene, 168:49-53.
    116.Yedidia I, Shoresh M, Kerem Z et al. 2003. Concomitant Induction of Systemic Resistance to Pseudomonas syringae pv. lachrymans in Cucumber by Trichoderma asperellum (T-203) and Accumulation of Phytoalexins. Appl Environ Microbiol, 69(12):7343-7353

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700