小麦抗病分子标记辅助育种技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究运用GISH、RAPD和SCAR分析方法,对抗全蚀病、黄矮病和兼抗黄矮病白粉病的小麦杂交后代材料进行分析,获得了一些对育种实践有重要意义的易位系、异附加系材料和几个可用于辅助育种的特异性分子标记。
     选育抗病品种是防治全蚀病最为有效、经济和安全的方法。本研究先用基因组原位杂交(GISH)对经鉴定抗全蚀病的材料进行分析,检测出三个抗性源于簇毛麦的端体异附加系材料,再利用RAPD方法,对这三个材料和抗感病亲本进行分析,得到了两个与全蚀病抗性基因紧密相关的特异性RAPD标记。
     目前,研究得较为深入的抗黄矮病材料的抗性基因Bdv2源于中间偃麦草7X。中间偃麦草与小麦杂交获得的部分双二倍体无芒中4所含的抗病基因位于中间偃麦草第二染色体组2Ai-2上,相对于Bdv2基因,其对中国流行的GPV和GAV黄矮病株系表现出更好的抗性,因此对具2Ai-2的材料进行易位系选育有重要的意义。本研究采用RAPD方法,对具2Ai-2端体和完整染色体异附加或异代换系进行分析,从随机引物中,选出两个分别位于2Ai-2染色体两臂上的分子标记,然后用这两个标记对中间偃麦草和普通小麦的杂交后代进行筛选,选出小麦抗黄矮病易位系新材料。
     选育携带多个抗性基因的多基因聚合体材料具有重要的育种意义,但是传统的育种方法难以同时快速准确鉴定两个以上的抗性基因。分子标记辅助育种技术的发展,使对多基因聚合体材料的选育变得简单易行。本研究利用黄矮病抗性基因Bdv2特异的SCAR标记SCW-37,及对白粉病抗性基因Pm13和Pm21特异的标记,对54株杂交回交后代进行扩增,检测选择到Pm13+Pm21+Bdv_2抗病优质材料1株1484-16;Pm13+Bdv_2一株1484-9;Pm21+Bdv_2基因聚合株11株。
In this research , by using of genomic in situ hybridization (GISH) , random amplified polymorphism DNA (RAPD) technology and three specific SCAR molecular markers, the author analyzed wheat hybrid generations carrying the desired genes that were resistant to take-all, BYDV and/or powdery mildew, and developed some alien chromosome addition and translocation lines that were important in breeding practice, and some specific molecular markers that could be applied in marker-assisted selection.
    Breeding resistant or immune cultivars was the most economical and efficient way to control wheat take-all disease. In this study, the author used GISH technology to analyze the material that was resistant to take-all in test, and got three chromosome arm addition lines that carried the resistance genes derived from the amphiploid of Triticum-Haynaldia. The above arm addition lines and their resistant and sensitive parents were analyzed by RAPD method and two specific molecular markers that were tightly linked to resistant gene were obtained.
    Amount studies on BYDV resistant gene Bdv2 on 7X of Thinopyrum intermedium were reported.Another resistance gene on 2Ai-2 of chromosome group 2 of Thinopyrum intermedium from amphiploid Zhong 4 Awnless had better resistance to GPV and GAV serotype of BYDV that were prevail in China ,so it's important to develop the chromosome translocation lines of Zhong 4 Awnless. In this research, the author utilized RAPD method to analyze 2Ai-2 chromosome or arm of addition or substitution lines of Zhong 4 Awnless . Two RAPD molecular markers located on different arms of 2Ai-2 chromosome from Thinopyrum intermedium were selected and the generations of the hybrid generation derived from Zhong 4 Awnless and wheat were analyzed. Two chromosome translocation lines were screened for wheat breeding program to control BYDV.
    It's important to breed varieties(lines) with multiple disease resistance genes, but it's difficult for traditional breeding ways to identify two or more resistant characteristics quickly and immediately at the same time. Marker-assisted selection technology made this issue simple and feasible. In this study, the author used a molecular marker SCW-37 that was specific for BYDV resistant gene Bdv2, and two molecular markers that were specific for powdery mildew resistant genes Pm13 and Pm21 to analyze 54 candidate plants. As a result, 1 plant pyramided Pm13+Pm21+ Bdv2 resistant genes, 1 plant pyramided Pm13+ Bdv2, 11 plants pyramided Pm21+ Bdvi, were selected for further breeding practice.
引文
[1] Garrett S D.Intoduction.In:Biology and control of take-all(eds M.J.C. Asher and P.J.Shipton).Academic Press.London. 1981
    [2] Indira Genowati.Take-all in wheat: PCR indentification of the pathogen and the interactions amongst potential biological control agents.Thesis of the requirements for the degree of master of science.2001
    [3] Clarkson J D S, Polley R W. Diagnosis, assessment, crop-loss appraisal and forecasting.In: Biology and control of Take-all(eds M.J.C. Asher and P.J.Shipton).Academic Press.London. 1981:251-270
    [4] 贾廷祥,吴桂本,叶学昶等.我国小麦全蚀病的初步研究.中国农业科学。1982,(4):65-73
    [5] Gutteridge R J, Bateman GL, Todd AD. Variation in the effects of take-all disease on grain yield and quality of winter cereals in field experiments. Pest Manag Sci. 2003 Feb;59(2):215-24.
    [6] Skou J P.Morphology and cytology of the infection process.In: Biology and control of take-all(eds M.J.C. Asher and P.J.Shipton).Academic Press.London. 1981:175-198
    [7] Walker J. Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored ascomycetes and phialophora conidial state, with a note on hyphopodia. Mycotaxon, 1980,11:1-129
    [8] Walker J. Taxonomy of take-all fungi and related genera and species. In: Biology and control of Take-all(eds M.J.C. Asher and P.J.Shipton).Academic Press.London. 1981:15-74
    [9] Henson J M, Goins T, Grey W, et al. Use of polymerase chain reaction to detect Gaeumannomyces graminis DNA in plant groen in artificially and naturally infected soil. Phytopathology, 1993,83:283-287
    [10] Goodwin P H, Hsiang Y, Xue B G, et al. Differentiation of Gaeumannomyces graminis from other turf-grass funggi by amplification with primers from robosomal internal transcribed spacer. Plant Pathology, 1995,44:384-391
    [11] Bryan G T, Daniels M J, Osbourn A E. Comparision of fungi within the Gaeumannomyces -phialophora complex by analysis of robosomal DNA sequences. Applied and Enciromental Microbiology, 1995, 61:681-689
    [12] Herdina, Harvey p, Ophel-keller K. Quantification of Gaeumannomyces graminis var.tritici in infected roots and soil using slot-blot hybridizatiob.Mycological Research, 1996,100:962-970
    [13] Fouly H M, Wilkinson H T. Detection of Gaeumannomyces graminis varieties using polymerase chain reaction with variety-specific primers. Plant Disease,2000,84:947-951
    [14] Wilson I G. Inhibition and facilitation of nucleic acid amplification. Applied and Enviromental Microbiology, 1997,63:3741-3751
    
    
    [15] Vocossiouk T, Robb E J, Nazar R N. Direct DNA extraction for PCR-mediated assay of soil organisms. Applied and Enviromental Microbiology, 1995,(61): 3972-3976
    [16] McGregor D P, Forster S, Steven J,等Simultaneous datection of microorganimcs in soil suspension based on PCR amplification of becterial 16s rRNA fragments. Bio Techniques, 1996,(21):463-471
    [17] Niepold F, Schober-Butin B. Application of the one-tube PCR technique in combination with a fast DNA-extraction procedure for detecting phialophora infestans in infected potato tubers. Microbiological Research, 1997,152:345-351
    [18] Heinz R A, Platt H W. Improved DNA extraction method for verticitcium detection and quantification in large-scale studies using PCR-based techniques. Canadian Journal of Plant Pathology, 2000,(22): 117-121
    [19] Ekman S. PCR optimization and troubleshooting with special reference to the amplification of ribosomal DNA in lichenized fungi. Lichenologist, 1999,31:517-531
    [20] Stromberg E L, Roberts D P, Lacy G H,等Field evaluation of selected becterial isolates and seed treatment fungicides for the control of take-all in Jackson soft red winter wheat. Biological and Cultural Test for Control of Plant Diseases, 1999,(14): 127-129
    [21] Yarham D J. Practical aspects of epidemiology and control. In: Biology and control of Take-all(eds M.J.C. Asher and P.J.Shipton).Academic Press.London. 1981:353-384
    [22] Sivasithamparam K, Stukely M, Parker CA. A volatile factor inducing transmissible lysis in Gaeumannomyces graminis (Sacc.) Arx and Olivier var. tritici Walker. Can J Microbiol. 1975 Mar;21(3):293-300.
    [23] Bednarova M, Stanek M, Vancura V, Vesely D. Microorganisms in the rhizosphere of wheat colonized by the fungus Gaeumannomyces graminis var. tritici. Folia Microbiol (Praha). 1979;24(3):253-61.
    [24] Vrany J, Vancura V, Stanek M. Control of microorganisms in the rhizosphere of wheat by inoculation of seeds with Pseudomonas putida and by foliar application of urea. Folia Microbiol (Praha). 1981 ;26(1):45-51.
    [25] Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces grarninis var. tritici and Pythium spp. Antimicrob Agents Chemother. 1986 Mar;29(3):488-95.
    [26] Thomashow LS, Weller DM. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol. 1988 Aug;170(8):3499-508.
    [27] Hamdan H, Weller DM, Thomashow LS. Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl Environ
    
    Microbiol. 1991 Nov;57(11):3270-7.
    [28] Vincent MN, Harrison LA, Brackin JM, Kovacevich PA, Mukerji P, Weller DM, Pierson EA. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Environ Microbiol. 1991 Oct;57(10):2928-34.
    [29] Schnider U, Keel C, Voisard C, Defago G, Haas D. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHAO: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. Appl Environ Microbiol. 1995 Nov;61(11):3856-64.
    [30] Slininger PJ, Burkhead KD, Schisler DA, Bothast RJ. Isolation, identification, and accumulation of 2-acetamidophenol in liquid cultures of the wheat take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol. 2000 Sep;54(3):376-81.
    [31] Raaijmakers JM, Weller DM. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol. 2001 Jun;67(6):2545-54.
    [32] Landa BB, Mavrodi OV, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS, Weller DM. Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol. 2002 Jul;68(7):3226-37.
    [33] Ghisalberti EL, Rowland CY. Antifungal metabolites from Trichoderma harzianum. J Nat Prod. 1993 Oct;56(10): 1799-804.
    [34] Ross IL, Alami Y, Harvey PR, Achouak W, Ryder MH. Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Appl Environ Microbiol. 2000 Apr;66(4): 1609-16.
    [35] Liu CH, Zou WX, Lu H, Tan RX. Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. J Biotechnol. 2001 Jul 12;88(3):277-82.
    [36] Lasik J, Stanek M, Vancura V, Wurst M. Effect of bacterial polysaccharides on the growth of Gaeumamnomyces graminis var. tritici and wheat roots. Folia Microbiol (Praha). 1979;24(3):262-8.
    [37] Pierson LS 3rd, Thomashow LS. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol Plant Microbe Interact. 1992 Jul-Aug;5(4):330-9.
    [38] Bangera MG, Thomashow LS. Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant Microbe Interact. 1996 Mar;9(2):83-90.
    [39] Wood DW, Gong F, Daykin MM, Williams P, Pierson LS 3rd. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression
    
    by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol. 1997 Dec; 179(24):7663-70.
    [40] Pierson EA, Wood DW, Cannon JA, Blachere FM., and Pierson Ⅲ LS, Mol. Plant-Microbe Interact. 1998, 11:1078-1084.
    [41] Morello JE, Pierson EA, Pierson LS 3rd. Negative Cross-Communication among Wheat Rhizosphere Bacteria: Effect on Antibiotic Production by the Biological Control Bacterium Pseudomonas aureofaciens 30-84. Appl Environ Microbiol. 2004 May;70(5):3103-9.
    [42] Oberhansli T, Dfago G, Haas D. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHAO of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol. 1991 Oct;137 (Pt 10):2273-9.
    [43] Su C, Oliw EH. Purification and characterization of linoleate 8-dioxygenase from the fungus Gaeumannomyces graminis as a novel hemoprotein. J Biol Chem. 1996 Jun 14;271(24):14112-8.
    [44] Joseph-Horne T, Wood PM, Wood CK, Moore AL, Headrick J, Hollomon D. Characterization of a split respiratory pathway in the wheat "take-all" fungus, Gaeumannomyces graminis var. tritici. J Biol Chem. 1998 May 1;273(18): 11127-33.
    [45] Litvintseva AP, Henson JM. Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Appl Environ Microbiol. 2002 Mar;68(3): 1305-11.
    [46] Mazzola M. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek. 2002 Aug;81 (1-4):557-64.
    [47] Linda C. Dekkers, Claartje C. Phoelich, Leslie van der Fits, and Ben J.J. Lugtenberg. A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Microbiology, 1998 June 9,95(12): 7051-7056
    [48] Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS. Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4197-201.
    [49] Keel c, Schnider U, Maurhofer M,等Supression of root disease by pseudomonas fluorescens CHAO: Importance of the becterial secondary metabolite 2.4-diacety-phloroglucinol. Molecular Plant Microbe Interactions, 1992,(5):4-13
    [50] Pierssion L S, Thomashow S. Cloning and heterologous expression of the phenazine biosythetic locus from pseudomonas aureofaciens 30-84. Molecular Plant Microbe Interaction,1992,(50):330-339
    [51] Ownley BH, Duffy BK, Weller DM. Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. Appl Environ Microbiol. 2003 Jun;69(6):3333-43.
    [52] Hamdan H, Weller D M, Thomashow L S. Relative importance of fluorescent
    
    siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by pseudomonas fluorescens 2-79 and M4-80R. Applied and Eviromental Microbiology, 1991,57(11):3270-3277
    [53] Duffy B k, Weller D M. Use of Gaeumannomyces graminis var.graminis alone and in combination with fluorescent pseudomonas spp. to suppress take-all of wheat. Plant Disease, 1992,79:907-911
    [54] Duffy B k, Simon A, Weller D M. Combination of trichocterma koningii with fluorescent pseudomonas for control of take-all on wheat. Phytopathology, 1996,(86): 188-194
    [55] Thomashow L S, Weller D M. Role of anti-biotics and siderophores in biocontrol of disease of wheat. Plant and Soil, 1990,(129):93-96
    [56] Caroline Blumer, Stephan Heeb, Gabriella Pessi, and Dieter Haas.Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Microbiology 1999 November 23, 96 (24): 14073-14078
    [57] Kim D S, Cook R J, Weller D M. Bacillus sp. L324-92 for biological control of three root disease, of wheat grown with reduced tillage. Phytopathology, 1997,(87):551-558
    [58] Kim D S. Cook R J, Weller D M. Population dynamics of Bacillus sp.L324-92R_(12) and pseudomonas fluorescens 2-79RN_(10) in the rhizosphere of wheat. Phytopathology, 1997,(87):559-564
    [59] de Boer M, Van der Sluis I, Van Loon L C,等Combining fluorescent pseudomonas spp. strains to enchance suppression of fusarium wilt of radish. European Journal of Plant Pathology, 1999,(105):201-210
    [60] Fukui R, Schoth M N, Hendson M, Hancock J G. Interaction between stains of pseudomonas in sugar beet spermosphere and their relationship to pericarp colonization by pythium uctimum in soil. Phytopathology, 1994,(84): 1322-1330
    [61] Schottel J L, Shimizu K, Kinkell L L. Relationships of in vitro pathogen inhibition and soil colonization to potato scab biocontrol by antagonistic streptomyces spp.. Biological Control,2001,20:102-112
    [62] Mazzola M, Cook R J. Effects of fungal strains of fluorescent pseudomonas in the wheat rhizosphere. Applied and Enviromental Microbiology, 1991 ,(57):2171-2178
    [63] Mazzola M, Fujimoto D K, Thomashow L S,等Variation in sensitivity of Gaeumannornyces graminis to antibiotics produced by fluorescent pseudomonas spp and efffect on biological control of take-all of wheat. Applied and Enviromental Microbiology, 1995,(61):2554-2559
    [64] Weller D M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 1988,(26):379-407
    [65] Ryder M H, Yan Z, Terrace T E, et al. Use of strains of bacillus isolated in china to suppress take-all and rhizoctonia root rot, and promote seedling growth of
    
    glasshouse-grown wheat in Australian soils. Soil Biology and Biochemistry, 1999,(31): 19-29
    [66] Slininger PJ, Shea-Wilbur MA. Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol. 1995 Oct;43(5):794-800.
    [67] Marchand PA, Weller DM, Bonsall RF. Convenient synthesis of 2,4-diacetylphloroglucinol, a natural antibiotic involved in the control of take-all disease of wheat. J Agric Food Chem. 2000 May;48(5):1882-7.
    [68] Jorgensen H J, Jensen H P. Screening of cereal species and varieties for resistance to take-all fungus Gaeumannomyces graminis.Z. Pfanzenzuchtg, 1970,63:323-332
    [69] Brooks D H. Wild and cultivated grasses as carriers of the take-all fungus (ophiobolus graminis).Ann. Appl. Biol. 1965,(55):307-316
    [70] David Gottlied, Dora Volovsky de Hemandez, Mario Rogers. The resistance of various grasses to ophiobolus graminis. Plant Disease Reporter, 1958,42(1):26-29
    [71] Scott P R. Variation in host susceptibility. In: Biology and control of Take-all(eds M.J.C. Asher and P.J.Shipton).Academic Press.London. 1981:219-236
    [72] Mattson B. Studies on Gaeumannomyces graminis (sacc.) Arx et Oliver ( ophiobolus graminis Sacc.).I. The variation of pathogenicity of the fungus and the susceptibility of wheat, barley, rye and oats. Z.Planzenzuchtg, 1969,61:101 - 110
    [73] Nilsson H E. Studies of root and foot rot disease of cereals and grasses. I.On resistance to ophiobolus graminis Sacc. Lantbrukshog Skolans Annaler, 1969,35:775-807
    [74] Butler F C. Root and foot rot disease of wheat. Sci. Bull. Dept.Agric. N. S. W, 1961 ,(77): 1-98
    [75] Gotttlieb D. Take-all of wheat in chile. F.A.O PI. Prot.Bull,1957,(6):20-21
    [76] Halloran G M. ophiobolus graminis resistance in the genera agropyron and secale and its possible significence to wheat breeding. Euphytica, 1974,23:225-235
    [77] Riley R & Macer R C F.The chromosomal distribution of the genetic resistance of rye to wheat pathogens. Can.J.Genet.Cytol,1966,8:640-653
    [78] Hollins T W, Scott P R, Gregory R S. The relative resistance of wheat, rye and triticale to take-all caused by Gaeumannomyces graminis. Plant Pathology, 1986,35:93-100
    [79] Zogg H. Studies on the biological disinfection of the soil.Ⅳ.Elimination of ophiobolus graminis in the prasence of varius mono-and-dicotyledonous fodder plants. Phytopath.Z., 1963, 48(3):272-286
    
    
    [80] Sprague R. Check list ofophiobolusgraminis. New.Phytol, 1955, 62(1):50-52
    [81] Linde-Layrsen I, Jensen H P, Jorgensen J H. Resistance of triticale, Aegilops and Haynaldia species to the take-all fungus, Gaeumannomyces graminis. Z. Pfanzenzuchtg, 1973,70:200-213
    [82] Conner R L, MacDonald M D, Whelan E D P. Evaluation of take-all resistance in wheat-alien amphiploid and chromosome substitution lines. Genome, 1988,(30):597-602
    [83] Eastwood R F, Kollmorgen J F, Hannah M. Triticum tauschii: Reaction to the take-all fungus (Gaeumannomyces graminis var.tritici),Aust,J.Agric.Res., 1993,(44):745-754
    [84] 陈孝,徐惠君,杜丽璞等.利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究.中国农业科学,1996,29(5):1—8
    [85] 任贤,杨德光,张曦燕等.小麦全蚀病与抗性基因转移研究.作物杂志.2003,1:15-17
    [86] 王美南,商鸿生.华山新麦草对小麦全蚀病菌的抗病性研究.西北农业大学学报,28(6):69—71
    [87] Borgemeister C; Doehling H M. Reasons for and consequences of the serious BYDV infectation in northen Germany. Bulletin in Crop, 14(4):60-66
    [88] 辛志勇,徐惠君,陈孝.应用生物技术向小麦导入黄矮病抗性的研究.中国科学(B辑),21(1):36-42
    [89] Qualset C O, et al. The barley yellow dwarf virus in wheat: importance, sources of resistance and heritability. In Proceeding, Proc. 4th inter. Wheat Genet. Sym, 1973:465-470
    [90] Cisar G C, et al.Effect of fall or spring infection and sources on wheat breeding of tolerance of barley yellow dwarf of winter wheat. Crop Science,1982, (22):474-478
    [91] 钱幼亭,周广和,周希明.从小麦类种质资源中筛选大麦黄矮病毒(BYDV)抗病.植物保护学报,1993,20(1):71—75
    [92] 张增艳.抗黄矮病小麦新种质的鉴定和抗性基因定位.中国农业科学院研究生院,博士学位论文,1998
    [93] Cauderon Y. The resistance to wheat rust of Agropyron intermedium and its use in wheat improvement.Proc. 4th inter. Wheat Genet. Sym, 1973:465-470
    [94] 孙善澄.小偃麦新品种与中间类型的选育途径、程序和方法,1981,7(1):51-58
    [95] Xin Z Y, Chen X, Xu H J, et al.Development of addition lines resistance to barley yellow dwarf virus from wheat-Th. Intermedium. In: Pro. 8th. Wheat Genet.Symp. 1993:485-488
    [96] Larkin P J, Bands P M, Lagudah E S, et al.Disomic thniopyrum intermedium addition lines in wheat barley yellow dwarf virus resistance and with rust resistance. Genome, 1995,(38):385-394
    [97] 张增艳,王丽丽,辛志勇,林志珊。中间偃麦草染色体2Ai-2特异PCR新
    
    标记的建立和st基因组特异序列的克隆.遗传学报,2002,29(7):627—633
    [98] McIntosh R A, Hart G E, Devos K M, et al.Proceedings of the 9th Int. Wheat Symp.(vol.5), Saskatoon, Sakatchewan, Canada, 1998
    [99] Peush A H, Hsam S L K, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.em. Thell.). 3 gene Pm22 in cultivatr vires[J]. Euphytica, 1996,(91): 149-152
    [100] Shi A N, Leather S, Murphy J P. A major gene for powdery mildew resistance transferred to common wheat from wild einkon wheat[J]. Phytopathology, 1998,(88): 144-147
    [101] Sears E R, Briggle L W. Mapping the gene Pm1 for resistance to erysiphe graminis f. Sp. tritici on chromosome 7A of wheat [J].Crop Sci, 1969,(9):96-97
    [102] Pulgsley A T, Carter M V. Resistance of twelve varieties of triticum vulgare to erysiphe graminis tritici[J]. Aust J of Bio Sci, 1953,(6):335-346
    [103] Mcintosh R A, Baker E P. Cytogenetic studies in wheat Ⅳ. Chromosomal location and linkage studies involving the Pro2 locus for powdery mildew resistance[J]. Euphytica, 1970,(19):71-77
    [104] Q L L, Zhou B, Zhang S Z, et al.Transfer of a gene to powdery mildew resistance from triticum ararticum Jakubz to triticum aestivum L.I. Studies on cytogeetics and identification of powdery mildew resistance in hybrid progenies of T.aestivurn and T. ararticum[J]. Acta Genetica Sinica, 1998,25(1):59-66
    [105] Pulgsley A T. Additional resistance in triticum vulgare to erysiphe graminis tritici[J].Aust J Bio Sci, 1961,(14):70-75
    [106] Brigg L W. Transfer of resistance to erysiphe graminis f.sp. tritici from khapli emmer Yuma durum to hexaploid wheat[J]. Crop Sci, 1966,(6):459-461
    [107] Zeller F J, Lutz J, Stephan U. Present status of wheat powdery mildew resistance genetics[A]. In: Li Z S, Xin Z Y (eds), Proc 8th Int Wheat Gene Symp[C]. Beijing, China Agricultural Scientech Press,1993:929-931
    [108] Lebsock K L, Briggle L W. Gene Pm5 for resistance to erysiphe graminis f.sp. tritici in Hope Wheat[J]. Crop Sci, 1974,14:561-563
    [109] Nyquist W E.Inheritance of powdery mildew resistance in hybrids involving a common wheat strain derived from tritivum timophee vi[J]. Crop Sci, 1963,(3):40-43
    [110] Driscoll C J, Jensen N F. Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistances[J]. Crop Sci, 1965,(5):279-280
    [111] Bennett F G A. Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding program[J]. Plant Pathol, 1984,33:279-300
    [112] Ren S X, Wu Y W, Mcintosh R A, et al.A genetic study on the suppressing of the poedery mildew resistance gene Pm8[J]. Acta Genetica Sinica, 1997,74(4):336-343
    [113] Schneider D M, Heum M, Fischbeck G. Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat[J]. Plant
    
    Breed,1991,107:161-164
    [114] Yosa Y, Tokunaga H, Ogura H. Identification of a gene for resistance to wheat grass powdery mildew fungus in common wheat cultivar Chinese Spring[J]. Genome,1988,30:612-614
    [115] Jia J, Devos K M, Chao S, et al.RFLP-based maps of the homoeologous group-6 chromosome of Pm12, a powdery mildew resistance gene transferred from Aegilops spetoiders to wheat[J]. Theor Appl Genet, 1996,(92):559-565
    [116] Ceoloni C, Signore G, Ercoli L,等Locating the alien chromatin segment in common wheat-aegilops longissim mildew resistant transfers[J]. Hereditas, 1992,(116):239-245
    [117] Reader M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat[J]. Euphytica, 1994,(53):57-60
    [118] Lowry J R, Sammons D J, Baenziger P S, et al.Identification and characterization of the gene conditioning powdery mildew resistance in 'Amigo' Wheat[J], Crop Sci, 1984,(24): 129-132
    [119] Heun M, Friebe B, Bushuk W. Chromosomal location of the powdery mildew resistance gene of Amigo wheat[J]. Phytopathology, 1990,(80): 1129-1133
    [120] Friebe B, Heun M, Tuleen N N,等Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat[J]. Crop Sci, 1994,(34):621-625
    [121] Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of genes for resistance to poedery mildew in common wheat(triticum aestivum 1.em.thell.) 4 gene Pm24 in chinese landrace Chiyacao[J]. Theor Appl Genet, 1997,95:950-953
    [122] Shi A N, Leath S, Murphy J P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat [J]. Phytopathology, 1998,88:144-147
    [123] Rong J K, Millet E, Maniterski J, et al. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping [J]. Euphytica, 2000,115: 121-126
    [124] Jrve K, Peusha H O, Tsmbalova J, et al. Chromosomal location of a triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat [J]. Genome, 2000,43: 377-381
    [125] Liu Z Y, Sun Q X, Ni Z F, et al. Molecular characterization of a novel powdery mildew resistance gene in wheat originating from wild emmer [J]. Euphytica, 2002,123:21-29
    [126] 解超杰,倪中福,孙其信,等.利用小麦微卫星标记定位一个来自野生二粒小麦的抗白粉病基因[J].遗传学报,2001,28(11):1034—1039
    [127] Yu Ling, Niu Ji-Shan, Ma Zheng-Qiang, Chen Pei-Du, Qi Li-Li, Liu Da-Jun. Cloning, characterization and localization of two powdery mildew resistance-related gene sequence from wheat. Acta Botanica Sinica, 2002,
    
    44(12):1438-144
    [128] 张海泉,符晓棠,郝晨阳等.小麦白粉病抗性基因的研究进展.沈阳农业大学学报,2003,34(1):68—71
    [129] Gale J G & Pardue M L. Formation and detection of RNA-DNA hybrid moleculars on cytological preparation. Proc Natt Acad Sci USA, 1969, 69:378-383
    [130] Rayburn A L, Gill B S. Use of biotinlabelled probes to map specific DNA sequence on wheat chromosomes. J. Heredity,1985,76:78-81
    [131] 石云素、李洪杰、郭北海等.用荧光原位杂交检测小麦背景中的1B/1R易位.华北农学报,1999,14(1):18-21
    [132] 魏育明,郑有良,周荣华等.应用荧光原位杂交和RFLP标记检测多小穗小麦新种质10—A中的黑麦染色质.植物学报,1999,41(7):722-725
    [133] 郭长虹,石锐,王同昌等.小麦—黑麦异代换及小麦种内易位系的分子细胞遗传学检测.西北植物学报,2001,21(3):413-418
    [134] Chen P D, Wang Z D, Wang S L, 等Transfer of useful germplasm from legmus racemosus lam. To common wheat.Ⅲ. Development of addition lines with wheat scab resistance. Acta Genet Sin, 1995,(22):206-210
    [135] 陈发棣,陈佩度,王苏玲.普通小麦—大赖草—簇毛麦附加、易位系的选育和鉴定.植物学报,2001,43(4):359—363
    [136] 马有志,富田因则,中田升等.应用分子原位杂交技术解析小麦—天兰冰草部分双二倍体—远中2号的染色体构成.遗传学报,1997,24(4):344—349
    [137] 张增艳,马有志,辛志勇等.应用基因组原位杂交技术鉴定抗黄矮病小麦新种质.中国农业科学,1998,31(3):1—4
    [138] 李义文,唐顺学,赵铁汉等.利用两个小麦异源二体代换系杂交创造易位系.科学通报,1999,44(10):1052—1055
    [139] 牟金叶,李集临,王献平等.异源细胞质小麦—中间偃麦草易位系的培育与荧光原位杂交鉴定.科学通报,2000,45(3):297-300
    [140] 李义文,李洪杰,沈天明等.荧光原位杂交分析小麦—簇毛麦杂种减数分裂与染色体易位.遗传学保,2000,27(4):317-324
    [141] 傅杰,周荣华,赵继新等.不同小麦背景小簇麦双二倍体的品质、抗病性及分子细胞遗传学研究.西北植物学报,2001,21(6):1103—1109
    [142] 亓增军,刘大均,陈佩度等.利用染色体C—分带和荧光原位杂交技术鉴定普通小麦—黑麦—簇毛麦双重易位系1RS.1BL,6VS.6AL.遗传学报,2001,28(3):267—273
    [143] 孔凡晶,陈孝,马有志等.簇毛麦端体6VS的显微切割及其专化DNA序列的克隆和分析.植物学保,2002,44(3):307-313
    [144] 周荣华,贾继增,董玉琛.用基因组原位杂交检测小麦—新麦草杂交后代.中国科学(C)辑,1997,27(6):543—549
    [145] 英加,李滨,穆素梅等.蓝粒小麦易位系的荧光原位杂交鉴定.植物学报,2001,43(2):1164—1168
    [146] 孔秀英,周荣华,董玉琛等.尾状山羊草与硬粒小麦、普通小麦的杂交及外
    
    源染色质检测.植物学报,1999,41(11):1164-1168
    [147] 孔秀英,董玉琛,周荣华等.普通小麦与钩刺山羊草杂交F1的农艺性状及细胞遗传学的观察.植物学报,2000,42(8);845-848
    [148] 王洪刚,张建民.抗白粉病小麦—中间偃麦草异附加系的细胞学和RAPD鉴定.西北植物学报,2000,20(1);64-67
    [149] 刘金元,陶文静.与小麦抗性基因Pm2紧密连锁RAPD标记的筛选研究.遗传学报,2000,27(2):139—145
    [150] 孙光祖,李忠杰.抗大麦黄矮病小麦新品系选育及其RAPD分子验证.核农学报,2000,14(2):72—75
    [151] 龙明山,李保云.偃麦草E染色体组特异RAPD和SCAR标记的建立.中国农业大学学报,2002,7(5):1—6
    [152] 张江丽,蔡士宾,张光祥等.马卡小麦耐湿性的RAPD标记及定位研究.南京农业大学学报,2003,26(2):7—10
    [153] 万平,周青文,马正强等.小麦矮杆基因Rht3的RAPD和RFLP标记分析.遗传学报,2001,28(11):1028-1033
    [154] 索广力,黄占景,何聪芬等.利用RAPD-BSA技术筛选小麦耐盐突变位点的分子标记.植物学报,2001,43(6):598—602
    [155] 海林,翁跃进.小麦耐盐种质遗传多样性的RAPD分析.西北植物学保,2000,20(6):942—948
    [156] 张立异,张庆勤,董超华.贵农21与P38的SDS—PAGA蛋白质图谱及RAPD分析.麦类作物学报,2000,20(3):89—91
    [157] 黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999(4):19-22
    [158] Zietkiewicz E,等Genomics.1994,20;176—183
    [159] Nett M M,等Plant J.1998,14:387-392
    [160] Deal K K.Abstract of Plant Genome Ⅲ.San Diego.USA,1995,41
    [161] 张增艳,辛志勇,陈孝等.源于L1的小麦抗黄矮病基因的特异PCR标记及辅助育种的研究.作物学报,2002,28(4):486—491
    [162] 张增艳,陈孝,张超等.分子标记选择小麦抗白粉病基因Pm4b,Pm13和Pm21聚合体.中国农业科学,2002,35(7):789-793

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700