免疫相关性全血细胞减少症患者骨髓造血细胞膜靶抗原的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.检测免疫相关性全血细胞减少症(immuno-related pancytopenia, IRP)患者自身抗体IgG在骨髓造血细胞膜上的作用靶点,探索IRP患者造血细胞膜上可能的靶抗原成分,为进一步纯化和克隆IRP患者自身抗原提供依据。2.检测已发现的红系膜抗原促红细胞生成素受体(erythropoietin receptor, EPOR)在树突状细胞(dendritic cell, DC)上的表达,以期初步验证IRP中抗原呈递的过程。
     方法:
     1.研究对象为32例初治IRP患者作为实验组,15例再生障碍性贫血(AA)患者作为病例对照组及15名正常健康者作为对照。FCM检测骨髓造血细胞膜抗体,提取细胞膜蛋白,同时使用辛酸法+盐析法提纯骨髓上清液中的IgG,然后使用免疫印迹法检测IRP患者骨髓上清液中自身抗体IgG的阳性率,进而应用聚丙烯酰胺凝胶电泳结合免疫印迹法分离和鉴定IRP患者自身抗体IgG在细胞膜上的靶抗原,并与正常对照及病例对照组进行对比;选取目标蛋白条带进行高压液相串联质谱(LC-MS/MS)分析以确定靶抗原成分。并对所鉴定出的部分蛋白成分检测其在造血细胞膜上的异常表达。
     2.研究对象为39例骨髓有核红细胞抗体阳性(GlycoA+)患者、30例GlycoA-患者、及17名正常健康者作为对照。使用FCM检测骨髓DC细胞胞膜及胞浆中EPOR的表达,并进行统计学分析,进一步使用RT-PCR的方法检测不同组病例骨髓除红系后造血细胞中EPOR的mRNA表达的差异。
     结果:
     1. IRP患者组骨髓上清液中IgG的阳性率为50%(16/32),明显高于病例对照组(0%)和正常对照组(13%,2/15)(均P<0.01)。在32例初治IRP患者中,其骨髓造血细胞膜上共有两种蛋白成分可被自身抗体IgG识别,其相对分子量分别为72-95kDa及55kDa,阳性率分别为56.25%(9/16)和31.25%(5/16)。切割蛋白条带进行高压液相串联质谱分析,发现乳铁蛋白和WD重复序列蛋白两种膜蛋白成分,其中乳铁蛋白第121位精氨酸存在替代点突变,被丝氨酸或天门冬氨酸所取代。正常对照组10-25kDa蛋白条带未鉴定成功。进一步检测乳铁蛋白在有核红细胞膜上的表达。GlycoA+组患者骨髓有核红细胞乳铁蛋白的平均阳性率为13.44±3.53%,明显高于GlycoA组患者的3.22±2.32%(P<0.001)及正常对照组的0.54±0.48%(P<0.001),后两者之间亦存在明显差异(P<0.05)。
     2. EPOR在骨髓DC细胞中的表达。
     a) GlycoA+组与GlycoA进行比较。
     i.DCl细胞膜上EPOR的表达,GlycoA+组表达率1.45±5.45%与GlycoA-组表达率9.89±4.03%及正常对照组表达率1.06±2.06%无明显差异,而后两者之间存在统计学差异(P=0.016)。DC1胞浆中EPOR的表达,GlycoA+组表达率24.67±31.15%,明显高于GlycoA组表达率8.45±3.04%(P<0.05)及正常对照组表达率12.45±28.46%(P=0.001),后两者之间无统计学差异。
     ii.DC2细胞膜上EPOR的表达,GlycoA+组表达率10.47±5.26%,明显高于正常对照组表达率0.94±2.67%(P<0.05),与GlycoA-组表达率13.23±7.27%无明显差异。DC2胞浆中EPOR的表达,GlycoA+组表达率30.85±11.20%,明显高于GlycoA组表达率15.44±6.53%(P<0.05)及正常对照组表达率10.34±4.88%(P=0.001),后两者之间亦有明显差异差异(P<0.05)。
     b)使用上述数据对两实验组进行组内DC1与DC2的比较、
     ⅰ. GlycoA+组,DC1与DC2胞膜EOPR表达率均明显低于胞内(P均<0.05)。DC2细胞EPOR表达率无论在细胞膜上还是在胞浆中均明显高于DC1细胞的表达(P<0.05)。
     ⅱ. GlycoA组DC1与DC2的EPOR胞膜胞浆上的表达均无明显差异。
     c)骨髓去除红系后细胞,三组EOPR的mRNA均未见表达。
     结论:
     1.IRP患者骨髓上清液中存在自身抗体IgG,可作用于骨髓细胞膜上多个靶抗原成分,乳铁蛋白及WD重复序列蛋白就是其中两种可能的抗原,且部分乳铁蛋白存在第121为精氨酸序列的替代点突变,被丝氨酸或天门冬氨酸所替代。另外IRP患者的有核红细胞膜上的确存在本不定位于其细胞膜的乳铁蛋白的异常表达。
     2. GlycoA+的IRP患者其DC2细胞胞浆中存在EPOR的异常表达,与其细胞膜表达并不匹配,可能是早期呈递EPOR作为IRP患者造血细胞靶抗原的关键细胞。
Objective:1.To investigate the auto-antigens targeted by auto-antibodies IgG on the membrane of bone marrow hematopoietic cells of the patients with immuno-related pancytopenia(IRP),for further purifying and cloning them.2. To investigate the expression of erythropoietin receptor (EPOR), which is a previously discovered auto-antigen, on dendritic cells (DCs) for elucidating the antigen presenting procedure in IRP patients.
     Method:
     1.32newly diagnosed IRP patients and15aplastic anemia patients were enrolled in the study, as well as15healthy donors as controls. The antibody IgG was examined by flow cytometry, and then the total membrane protein was extracted. At the same time, the IgG in the marrow supernatant was purified by organic acid and salting out method. The IgG in supernatant was also examined by western blot. And the bone marrow cell membrane auto-antigens targeted by IgG in IRP were identified from membrane protein extracts by SDS-PAGE, Western blot and liquid chromatography-mass spectrography/mass spectrography. Furthermore, the abnormal expression of a newly discovered auto-antigen on the membrane of bone marrow nucleared erythroid cells was investigated.
     2.39newly diagnosed GlycoA+IRP patients and30GlycoA-IRP patients were enrolled in the study, as well as17healthy donors as controls. The expression of EPOR on DCs (both on cytomembrane and in cytoplasm) was investigated, and then statistically analyzed. Furthermore, the mRNA expression of EPOR in bone marrow cells without erythroid cells was examined by PT-PCR.
     Result:
     1. Autoantibody IgG reacting with bone marrow cell membrane antigens could be found in bone marrow supernatant of IRP patients in a positive rate of50%(16/32), which was significantly higher than those of aplastic anemia(AA)(0%) or normal controls(13%,2/15)(P<0.01). Autoantibody IgG in IRP could react with several auto-antigens with approximate MWs of72-95kDa及55kDa. Positive rates of each auto-antigen were56.25%(9/16) 和31.25%(5/16) respectively. The positive bands on the gel were cut, and identified by liquid chromatography-mass spectrography/mass spectrography; the result suggested that the two proteins were lactoferrin (Lf) and WD repeat-containing protein. Furthermore, part of the discovered lactoferrin had the point replaced mutation in the amino acid of Arg121, which replaced by Ser or Asp. The10-25kDa proteins in normal controls were failed to be identified. And then, the expression of lactoferrin on the membrane of marrow nucleared erythroid cells was examined. The expression rate in GlycoA+group patients is13.44±3.53%, which is significantly higher than that in the GlycoA-group patients'3.22±2.32%(P<0.001) or controls'0.54±0.48%(P<0.001), and the later two also has significant difference.
     2. The expression of EPOR in DCs.
     a) Comparison between GlycoA+group and GlycoA-group,
     ⅰ. The expression rate of EPOR on the membrane of DC1was1.45±5.45%in the GlycoA+group,9.89±4.03%in the GlycoA-group, and1.06±2.06%in control group, except the later two had significant difference (P=0.016), no difference between other groups. And the expression rate of EPOR in the cytoplasm of DC1was24.67±31.15%in the GlycoA+group, which is significantly higher than that in GlycoA-group (8.45±3.04%, P<0.05) and control group (12.45±28.46%, P=0.001), there is no significant difference between the later two groups.
     ⅱ. The expression rate of EPOR on the membrane of DC2was10.47±5.26%in the GlycoA+group, which is significantly higher than that in control group (0.94±2.67%, P<0.05), but compared with the GlycoA+group's13.23±7.27%, there is no significant difference. And the expression rate of EPOR in the cytoplasm of DC2was30.85±11.20%in the GlycoA+group, which is significantly higher than that in GlycoA-group (15.44±6.53%, P <0.05) and control group (10.34±4.88%, P=0.001), the later two also has significant difference (P<0.05)
     b) According to the date above, the expression comparisons were done in each group.
     i. In GlycoA+group, on the membrane of both DC1and DC2, the expression rate of EPOR is significantly lower than that in cytoplasm (P<0.05). The expression in DC2is significantly higher than that in DC1, both on the membrane and in cytoplasm,
     ii. In GlycoA-group, there is no difference between each group.
     c) The mRNA expression of EPOR in bone marrow cells without erythroid cells are all negative in the three groups.
     Conclusion:
     1. There are auto-antibodies in the bone marrow supernatant of IRP patients, which can target several antigens on hematopoietic cells' membrane, and lactoferrin and WD repeat-containing protein just two probable candidates. But part of the lactoferrin had the point replaced mutation in the amino acid of Arg121. Furthermore, there is abnormal expression of lactoferrin on the bone marrow erythroid membrane of GlycoA+IRP patients.
     2. The expression of EPOR in the cytoplasm of DC2was abnormally higher in GlycoA+patients group than that in other groups. However, the EPOR expression on the membrane of DC2and in the cytoplasm of it is not match, suggesting that DC2may be a critical factor in the early stage of EPOR antigen presenting.
引文
[1]付蓉,邵宗鸿,刘鸿,等.与免疫相关的血细胞减少患者骨髓造血细胞自身抗体的研究[J].中华血液学杂志,2003,24:177-180。
    [2]和虹,邵宗鸿,刘鸿,等.与异常免疫相关的全血细胞减少症[J].中华血液学杂志,2001,22:79-82。
    [3]邵宗鸿.免疫性血细胞减少症的分类及治疗原则.中国实用内科杂志,2006,26(7):481-482。
    [4]付蓉.免疫相关性全血细胞减少症的诊断和治疗.中国实用内科杂志.2006;26(7):492-495。
    [5]Valent P,Horny HP,Bennett JM,et al.Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes:consensus statements and report from a working conference.Leuk Res,2007,31:727-736.
    [6]Wimazal F,Fonatsch C,Thalhammer R,et al.Idiopathic cytopenia of undetermined significance (ICUS) versus low risk MDS:the diagnostic interface.Leuk Res,2007,31:1461-1468.
    [7]Hong He,Zonghong Shao, Rong Fu. Hemocytopenia related to immunity detected by modified Coombs test for measuring autoantibody of bone marrow mononuclear cells.BLOOD,2002,100:136b.
    [8]Rong Fu, Zonghong Shao, HongLiu. Type, Distribution, and Clinical Significance of Auto-antibody on Bone Marrow Hematopoietic Cells in Patients with Immuno-Related Pancytopenia.BLOOD,2002,100:136b.
    [9]Rong Fu, Zonghong Shao, Hong he, et al. The quantities and apoptosis Related protein levels of B lymphocytes in patients with immunorelated pancytopenia. BLOOD,2002,100:171b.
    [10]Fu R, Shao ZH, Liu H,et al.Role of B lymphocyte and its subpopulations in pathogenesis of immunorelated pancytopenia.Chin Med Sci J,2007,22(3):199-202.
    [11]Xing LM, Shao ZH, Fu R, et al.Subtypes of B lymphocytes in patients with autoimmune hemocytopenia. Chin Med Sci J,2007,22(2):128-131.
    [12]滕广帅,付蓉,刘惠等。免疫相关性全血细胞减少症患者树突状细胞亚群、数量及其临床意义。中国实验血液学杂志,2012年第三期。
    [13]陈瑾,付蓉,李丽娟等.骨髓单个核细胞Coomb's试验阳性的血细胞减少患者骨髓液补体水平变化及其意义.中华血液学杂志,2009,30(7):544-547。
    [14]王一浩,付蓉,邵宗鸿等.骨髓单个核细胞Coombs实验+血细胞减少患者骨髓巨噬细胞数量及功能的研究.中华血液学杂志,200930(8):538-542。
    [15]FuR, Wang Y H, Shao Z H et al. Study on the Ratio and Function of nacrophages in the Patients with BMMNC Test(+) Hematocytopenia[J]. Blood(ASH Annual Meeting Abstracts),2008; 112:4656.
    [16]Fu R, Wang Y H, Shan Z H et al. Study on the mechanism of'ei'formationin the bone nlal'l'ow snxXIm of the patients with BMMNC—Coombs test(+) Hematoeytepenia[J]. Blood(ASH Annual Meeting Al,8tmcts),2008; 112:4753.
    [17]Leeuwen EF,van JT,Engelfriet CP,et al.Specificity of autoantibodies in autoimmune thrombocytopenia.Blood,1982 59:23-26.
    [18]William C,Paul H,Haering P,Beat S.Conformational modulation of purified Glycoprotein (GP) Ⅱb-Ⅲa allows proteolytic generation of active fragments from either active or inactive GP Ⅱb-Ⅲa. J Biol Chem,1992267:18844-51.
    [19]Pedersen SK,Sloane AJ,Prasad SS,et al.An immunoproteomic approach for identification of clinical biomarkers for monitoring disease.Mol Cell Proteomics,2005, 4:1052-1060.
    [20]Leddy JP,Wikinson SL,et al.Erythrocyto membrance proteins reactive with IgG anti-red blood cell autoantibodies:Ⅱ.antibodies coprecipitating band 3 and glycophorin A.Blood,1994,84(2):650-6.
    [21]Uchida K,Akita Y,Matsuo K,,Identification of autoantigens in sjogren's syndrome by SEREX. Immunology,2005,116:53-63.
    [22]McMillan R.Autoantibodies and autoantigens in chronic immune thrombo-Cytopenic purpura.J Semin Hemotol,2000;37:239-48.
    [23]张之南,沈悌主编.血液病诊断及疗效标准.第三版,北京:科学技术出版社,2007。
    [24]Smith T. F., Gaitatzes C, Saxena K. and Neer E. J. (1999) The WD repeat:a common architecture for diverse functions. Trends Biochem. Sci.24:181-185.
    [25]Vander V. and Ploegh H. L. (1992) The WD-40 repeat. FEBS Lett.307:131-134.
    [26]Neer E. J., Schmidt C. J., Nambudripad R. and Smith T. F. (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297-300.
    [27]Tyers M. and Willems A. R. (1999) One ring to rule a superfamily of E3 ubiquitin ligases. Science 284:601-603.
    [28]Sondek J., Bohm A., Lambright D. G., Hamm H. E. and Sigler P. B. (1996) Crystal structure of a G-protein beta gamma dimmer at 2.1 A resolution [published erratum appears in Nature (1996) 379(6568):847]. Nature 379:369-374.
    [29]Neer E. J. and Smith T. F. (1996) G protein heterodimers:new structures propel new questions. Cell 84:175-178
    [30]Garcia-Higuera I., Fenoglio J., Li Y., Lewis C., Panchenko M. P., Reiner O. et al. (1996) Folding of proteins with WD-repeats:comparison of six members of the WD-repeat superfamily to the G protein beta subunit. Biochemistry 35:13985-13994.
    [31]Ron D., Chen C. H., Caldwell J., Jamieson L., Orr E. and Mochly-Rosen D. (1994) Cloning of an intracellular receptor for protein kinase C:a homolog of the beta subunit of G proteins. Proc. Natl. Acad. Sci. USA 91:839-843.
    [32]Croze E., Usacheva A., Asarnow D., Minshall R. D., Perez H. D. and Colamonici O. (2000) Receptor for activated C-kinase (RACK-1), a WD motif-containing protein, specifically associates with the human type Ⅰ IFN receptor. J. Immunol.165:5127-5132.
    [33]Castets F., Bartoli M., Barnier J. V., Baillat G., Salin P., Moqrich A. et al. (1996) A novel calmodulin-binding protein, belonging to the WD-repeat family, is localized in dendrites of a subset of CNS neurons. J. Cell. Biol.134:1051-1062.
    [34]Roberts S. G. (2000) Mechanisms of action of transcription activation and repression domains. Cell. Mol. Life Sci.57:1149-1160.
    [35]Dynlacht B. D., Weinzierl R. O., Admon A. and Tjian R. (1993) The dTAFII80 subunit of Drosophila TFIID contains betatransducin repeats. Nature 363:176-179
    [36]Mitsuzawa H., Seino H., Yamao F. and Ishihama A. (2001) Two WD repeat-containing TAFs in fission yeast that suppress defects in the anaphase-promoting complex. J Biol.Chem 276:17117-17124.
    [37]Dubrovskaya V., Lavigne A. C., Davidson I., Acker J., Staub A. and Tora L. (1996) Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIFbeta (RAP30) and incorporation into the TFIID complex. EMBO J.15:3693-3701.
    [38]Yamamoto T. and Horikoshi M. (1998) Defect in cytokinesis of fission yeast induced by mutation in the WD40 repeat motif of a TFIID subunit. Genes Cells 3: 347-355.
    [39]Kokubo T., Gong D. W., Yamashita S., Takada R., Roeder R. G., Horikoshi M. et al. (1993) Molecular cloning, expression, and characterization of the Drosophila 85-kilodalton TFIID subunit. Mol. Cell. Biol.13:7859-7863.
    [40]Takagaki Y. and Manley J. L. (1992) A human polyadenylation factor is a G protein beta-subunit homologue. J. Biol. Chem.267:23471-2347.4
    [41]Verreault A., Kaufman P. D., Kobayashi R. and Stillman B. (1996) Nucleosome assembly by a complex of CAF-1 andacetylated histones H3/H4. Cell 87:95-104.
    [42]Tyler J. K., Bulger M., Kamakaka R. T., Kobayashi R. and Kadonaga J. T. (1996) The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase- associated protein. Mol. Cell. Biol.16:6149-6159.
    [43]Ahmad A., Takami Y. and Nakayama T. (1999) WD repeats of the p48 subunit of chicken chromatin assembly factor-1 required for in vitro interaction with chicken histone deacetylase- 2. J. Biol. Chem.274:16646-16653.
    [44]Waters M. G., Serafini T. and Rothman J. E. (1991)'Coatomer':a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349:248-251.
    [45]Chow V. T. and Quek H. H. (1996) HEP-COP, a novel human gene whose product is highly homologous to the alpha-subunit of the yeast coatomer protein complex. Gene 169:223-227.
    [46]Duden R., Griffiths G., Frank R., Argos P. and Kreis T. E. (1991) Beta-COP, a 110 kd protein associated with nonclathrin- coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64:649-665.
    [47]Stenbeck G., Harter C., Brecht A., Herrmann D., Lottspeich F., Orci L. et al. (1993) Beta(?)-COP, a novel subunit of coatomer. EMBO J.12:2841-2845.
    [48]Gerich B., Orci L., Tschochner H., Lottspeich F., Ravazzola M., Amherdt M. et al. (1995) Non-clathrin-coat protein alpha is a conserved subunit of coatomer and in Saccharomyces cerevisiae is essential for growth. Proc. Natl. Acad. Sci. USA 92: 3229-3233.
    [49]Weinstein J. (1997) Cell cycle-regulated expression, phosphorylation, and degradation of p55Cdc:a mammalian homolog of CDC20/Fizzy/slpl. J. Biol. Chem. 272:28501-28511.
    [50]Fukui Y., Engler S., Inoue S. and Hostos E. L. de (1999) Architectural dynamics and gene replacement of coronin suggest its role in cytokinesis. Cell Motil. Cytoskel. 42:204-217.
    [51]Nakamura T., Takeuchi K., Muraoka S., Takezoe H., Takahashi N. and Mori N. (1999) A neurally enriched coronin-like protein, ClipinC, is a novel candidate for an actin cytoskeleton-cortical membrane-linking protein. J. Biol. Chem.274: 13322-13327.
    [52]Weber I., Niewohner J. and Faix J. (1999) Cytoskeletal protein mutations and cell motility in Dictyostelium. Biochem. Soc. Symp.65:245-265.
    [53]Kim S. H., Lin D. P., Matsumoto S., Kitazono A. and Matsumoto T. (1998) Fission yeast Slpl:an effector of the Mad2- dependent spindle checkpoint. Science 279:1045-1047.
    [54]Thompson C. B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456-1462.
    [55]Thornberry N. A. and Lazebnik Y. (1998) Caspases:enemies within. Science 281: 1312-1316.
    [56]Denecker G., Vercammen D., Declercq W. and Vandenabeele P. (2001) Apoptotic and necrotic cell death induced by death domain receptors. Cell. Mol. Life Sci.58: 356-370.
    [57]Zou H., Henzel W.J., Liu X., Lutschg A. and Wang X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405-413.
    [58]Hu Y., Benedict M. A., Ding L. and Nunez G. (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J.18:3586-3595.
    [59]Hu Y, Ding L., Spencer D. M. and Nunez G. (1998) WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J. Biol. Chem.273: 33489-33494.
    [60]Rodriguez A., Oliver H., Zou H., Chen P., Wang X. and Abrams J. M. (1999) Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat. Cell Biol.1:272-279.
    [61]Lo N. C., Chong C. S., Smith A. C., Dobyns W. B., Carrozzo R. and Ledbetter D. H. (1997) Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum. Mol. Genet.6:157-164.
    [62]Neer E. J., Schmidt C. J. and Smith T. (1993) LIS is more. Nat. Genet 5:3-4.
    [63]Reiner O., Carrozzo R., Shen Y., Wehnert M., Faustinella F., Dobyns W. B. et al. (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717-721.
    [64]Hattori M., Adachi H., Tsujimoto M., Arai H. and Inoue K. (1994) Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase [corrected]. Nature 370:216-218.
    [65]Troelstra C., Gool A. van, Wit J. de, Vermeulen W., Bootsma D. and Hoeijmakers J. H. (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71: 939-953.
    [66]Henning K. A., Li L., Iyer N., McDaniel L. D., Reagan M. S., Legerski R. et al. (1995) The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82: 555-564.
    [67]Tullio-Pelet A., Salomon R., Hadj-Rabia S., Mugnier C., Laet M. H. de, Chaouachi B. et al. (2000) Mutant WD-repeat protein in triple-A syndrome. Nat. Genet 26:332-335.
    [68]Handschug K., Sperling S., Yoon S. J., Hennig S., Clark A. J. and Huebner A. (2001) Triple A syndrome is caused by mutations in AAAS, a new WD-repeat protein gene. Hum. Mol. Genet.10:283-290.
    [69]J. Montreuil, J. Tonnelat, S. Mullet, Preparation and properties of lactosiderophilin (lactotransferrin) of human milk, Biochim. Biophys. Acta 45 (1960)413-421.
    [70]M.L. Groves, The isolation of the red protein from milk, J. Am. Chem. Soc. 82(1960)3345-3350.
    [71]B. Johanson, Isolation of an iron-containing red protein from human milk, Acta Chem. Scand.14 (1960) 510-512.
    [72]B.W.A. Van Der Strate, L. Belijaars, G. Molema, M.C. Harmsen, D.K.F. Meijer, Antiviral activities of lactoferrin, Antiviral Res.52 (2001) 225-239.
    [73]E.R. Oztas Yesim, N. Ozgiines, Lactoferrin:a multifunctional protein, Adv. Mol. Med.1 (2005) 149-154.
    [74]D.A. Rodriguez, L. Vazquez, G. Ramos, Actividad Antimicrobiana de la lactoferrina:Mecanismos and aplicaciones clinicas potenciales, Rev. Latinoam. Microbiol.47 (2005) 102-111.
    [75]J. Wally, S.K. Buchanan, A structural comparison of human serum transferrin and human lactoferrin, BioMetals 20 (2007) 249-262.
    [76]M. Haridas, B.F. Anderson, E.N. Baker, Structure of human diferric lactoferrin refined at 2.2 A resolution, Acta Crystallogr.51 (1995) 629-646.
    [77]J. Mazurier, G. Spik, Comparative study of the iron-binding properties of human transferrins:Ⅰ. complete and sequential iron saturation and desaturation of the Lactotransferrin, Biochim. Biophys. Acta 629 (1980) 399-408.
    [78]H.M. Baker, B.F. Anderson, E.N. Baker, Dealing with iron:common structural principles in proteins that transport iron and heme, Proc. Natl. Acad. Sci. U.S.A.100 (2004)3579-3583.
    [79]P. Aisen, A. Leibman, Lactoferrin and transferrin:a comparative study, Biochim. Biophys. Acta 257 (1972) 314-323.
    [80]E.N. Baker, Structure and reactivity of transferrins, Adv. Inorg. Chem.41 (1994) 389-463.
    [81]Zimecki, M., Mazurier, J., Macnicki, M., Wieczorek, etl,.1991 Immunostimulatory activity of lactotransferrin and maturation of CD4-CD8- murine thymocytes. Immunol. Lett.30:119-123.
    [82]Bi, B.Y., etl.1997. Effect of lactoferrin on proliferation and differentiation of the Jurkat human lymphoblastic T cell line. Arch. Immunol. Ther. Exp. (Warsz.), 45:315-320.
    [83]Dhennin-Duthille, I., Masson, M., Damiens, E., Fillebeen, C., Spik, G., and Mazurier, J.2000. Lactoferrin upregulates the expression of CD4 antigen trhough the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J. Cell. Biochem.79:583-593.
    [84]Kuhara, T., Iigo, M., Itoh, T., Ushida, Y., Sekine, K., Terada, N., Okamura, H., and Tsuda, H.2000. Orally administered lactoferrin exerts an antimetastatic effect and enhances production of IL-18 in the intestinal epithelium. Nutr. Cancer,38: 192-199.
    [85]Togawa, J., Nagase, H., Tanaka, K., Inamori, M., Nakajima, A., Ueno, N., Saito, T., and Sekihara, H.2002a. Oral administration of lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. J. Gastroenterol. Hepatol.17:1291-1298.
    [86]Moed, H., Boorsma, D.M., Stoof, T.J., von Blomberg, B.M., Bruynzeel, D.P., Scheper, R.J., Gibbs, S., and Rustemeyer, T.2004. Nickel-responding T cells are CD4+CLA+CD46RP+ and express chemokine receptors CDCR3. CCR4 and CCR10. Br.J.Dermatol.151::32-41.
    [87]Cumberbatch, M., Dearman, R.J., Griffiths, C.E., and Kimber, I.2003. Epidermal Langerhans cell migration and sensitization to chemical allergens. APMIS, 111:797-804.
    [88]Kimber, I., Cumberbatch, M., Dearman, R.J., Headon, D.R., Bhushan, M., and Griffiths, C.E.2002. Lactoferrin:influences on Langerhans cells, epidermal cytokines, and cutaneous inflammation. Biochem. Cell Biol.80:103-107.
    [89]Elrod, K.C., Moore, W.R., Abraham, W.M., and Tanaka, R.D.1997. Lactoferrin, a potent tryptase inhibitor, abolishes latephase airway responses in allergic sheep. Am. J. Respir. Crit. Care Med.156:375-381.
    [90]Guillen, C., McInners, I.B., Vaughan, D.M., Kommajosyula, S., Van Berkel, P.H. Leung, B.P., Aguila, A., and Brock, J.H.2002 Enhanced Thl response to Staphylococcus aureus infection in human lactoferrin-transgenic mice. J. Immunol. 168:3950-3957.
    [91]Wakabayashi, H., Uchida, K., Yamauchi, K., Teraguchi, S., Hayasawa, H., and Yamaguchi, H.2000. Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J. Antimicrob. Chemother.46:595-602.
    [92]Ishii, K., Takamura, N., Shinohara, M., Wakui, N., Shin, H., Sumino, Y., et al. 2003. Long-term follow-up of chronic hepatitis C patients treated with oral lactoferrin for 12 months. Hepatol. Res.25:226-233.
    [93]付蓉,王红蕾,陈瑾等。骨髓单个核细胞Coombs试验(+)血细胞减少症患者Th17细胞数量及功能的研究。中华血液学杂志,2010年第10期。
    [94]Kaiko GE, Horvat JC, Beagley KW, Hansbro PM. Immunological decision-making:how does the immune system decide to mount a helper T-cell response? Immunology 2008; 123:326-38.
    [95]Mincheva-Nilsson L, Hammarstrom S, Hammarstrom ML. Activated human gamma delta Tlymphocytes express functional lactoferrin receptors. Scand J Immunol 1997;46:609-18.
    [96]Tanaka T, Morita H, Yoo YC, Kim WS, Kumura H, Shimazaki K. Detection of bovine lactoferrinbinding protein on Jurkat human lymphoblastic T cell line. J Vet Med Sci 2004;66:865-9.
    [97]Legrand D, van Berkel PH, Salmon V, van Veen HA, Slomianny MC, Nuijens JH, et al. The Nterminal Arg2, Arg3 and Arg4 of human lactoferrin interact with sulphated molecules but not with the receptor present on Jurkat human lymphoblastic T-cells. Biochem J 1997;327 (Pt 3):841-6.
    [98]Bi BY, Liu JL, Legrand D, Roche AC, Capron M, Spik G, et al. Internalization of human lactoferrin by the Jurkat human lymphoblastic T-cell line. Eur J Cell Biol 1996;69:288-96.
    [99]Dhennin-Duthille I, Masson M, Damiens E, Fillebeen C, Spik G, Mazurier J. Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J Cell Biochem 2000;79:583-93.
    [100]Frydecka I, Zimecki M, Bocko D, Kosmaczewska A, Teodorowska R, Ciszak L, et al. Lactoferrin-induced up-regulation of zeta (zeta) chain expression in peripheral blood T lymphocytes from cervical cancer patients. Anticancer Res 2002;22:1897-901.
    [101]Zimecki M, Miedzybrodzki R, Mazurier J, Spik G. Regulatory effects of lactoferrin and lipopolysaccharide on LFA-1 expression on human peripheral blood mononuclear cells. Arch Immunol Ther Exp (Warsz) 1999;47:257-64.
    [102]Zimecki M, Mazurier J, Spik G, Kapp JA. Human lactoferrin induces phenotypic and functional changes in murine splenic B cells. Immunology 1995;86:122-7.
    [103]Debbabi H, Dubarry M, Rautureau M, Tome D. Bovine lactoferrin induces both mucosal and systemic immune response in mice. J Dairy Res 1998;65:283-293.
    [104]Sfeir RM, Dubarry M, Boyaka PN, Rautureau M, Tome D. The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. J Nutr 2004; 134:403-9.
    [105]Artym J, Zimecki M, Kuryszko J, Kruzel ML. Lactoferrin accelerates reconstitution of the humoral and cellular immune response during chemotherapy-induced immunosuppression and bone marrow transplant in mice. Stem Cells Dev 2005; 14:548-55.
    [106]Artym J, Zimecki M, Kruzel ML. Effect of lactoferrin on the methotrexate-induced suppression of the cellular and humoral immune response in mice. Anticancer Res 2004;24:3831-6.
    [107]Choi BK, Actor JK, Rios S, d'Anjou M, Stadheim TA, Warburton S, et al. Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris:effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J 2008;25:581-93.
    [108]Puddu P, Valenti P, Gessani S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie.2008.
    [109]Damiens, E., El Yazidi, I., Mazurier, J., Elass-Rochard, E., Duthille, I., Spik, G., and Boilly-Marer, Y.1998. Role of heparan sulphate proteoglycans in the regulation of human lactoferrin binding and activity in the MDA-MB-231 breast cancer cell line. Eur. J. Cell Biol.77(4):344-351.
    [110]Leveugle, B., Mazurier, J., Legrand, D., Mazurier, C., Montreuil, J., and Spik, G. 1993. Lactotransferrin binding to its platelet receptor inhibits platelet aggregation. Eur. J. Biochem.213(3):1205-1211.
    [111]Mazurier, J., Legrand, D., Hu, W.L., Montreuil, J., and Spik, G.1989. Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. Isolation of the receptors by antiligand-affinity chromatography. Eur. J. Biochem.179(2):481-487.
    [112]Gliemann, J.1998. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Biol. Chem.379(8-9):951-964.
    [113]Oh, S.M., Hahm, D.H., Kim, I.H., and Choi, S.Y.2001. Human neutrophil lactoferrin trans-activates the matrix metalloproteinase 1 gene through stress-activated MAPK signaling modules. J. Biol.276(45):42575-42579.
    [114]Oh, S.M., Lee, S.H., Lee, B.J., Pyo, C.W., Yoo, N.K., Lee, S.Y., et al. 2007. A distinct role of neutrophil lactoferrin in RelA/p65 phosphorylation on Ser536 by recruiting TNF receptor-associated factors to IkB kinase signaling complex. J. Immunol.179(9):5686-5692.
    [115]H. Ramaswamy, C.V. Swamy, M.R. Das, Purification and characterization of a high molecular weight ribonuclease from human milk, J. Biol. Chem.268 (1993) 4181-4187.
    [116]R.M. Bennett, M.M. Merrit, G. Gabor, Lactoferrin binds to neutrophilic membrane DNA, Br. J. Haematol.63 (1986) 105-117.
    [117]J. He, P. Furmanski, Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA, Nature 373 (1995) 721-724.
    [118]N. Brandl, A. Zemann, I. Kaupe, S. Marlovits, P. Huettinger, H. Goldenberg, M. Huettinger, Signal transduction and metabolism in chondrocytes is modulated by lactoferrin, Osteoarthr. Cartil.18 (2010) 117-125.
    [119]E.N. Baker, H.M. Baker, Lactoferrin molecular structure, binding properties and dynamics of lactoferrin, Cell Mol. Life Sci.62 (2005) 2531-2539.
    [120]P. Furmanski, Z.P. Li, M.B. Fortuna, Multiple molecular forms of human lactoferrin, J. Exp. Med.170 (1989) 415-429.
    [121]Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419-426.
    [122]Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity.2002;17(2):211-220.
    [123]Probst HC, van den Broek M. Priming of CTLs by lymphocytic choriomeningitis virus depends on dendritic cells. J Immunol. 2005;174(7):3920-3924.
    [124]Sapoznikov A, Fischer JA, Zaft T, Krauthgamer R, Dzionek A, Jung S. Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J Exp Med.2007;204(8):1923-1933.
    [125]Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol.2007;7(1):19-30.
    [126]Steinman RM, Idoyaga J. Features of the dendritic cell lineage. Immunological reviews.2010;234(1):5-17.
    [127]Mulcahy L, The erythropoietic receptor [J]. Sem in Oncol,2001,28(2 Suppl 8):19.
    [128]Juul SE, Ledbetter DJ, Joyco AE, etal. Erythropoietic acts as a trophic factor in neonatal rat intest [J], GUT,2001,49(2):182-189.
    [129]Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature1998; 392:245-52.
    [130]Lopez-Bravo M, Ardavin C. In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity2008; 29:343-51.
    [131]Pulendran B, Tang H, Denning TL. Division of labor, plasticity, and crosstalk between dendritic cell subsets. Curr Opin Immunol 2008; 20:61-7.
    [132]Lifshitz L, Prutchi-Sagiv S, Avneon M, Gassmann M, Mittelman M, Neumann D. Non-erythroid activities of erythropoietin:functional effects on murine dendritic cells. Mol Immunol2009; 46:713-21.
    [133]Rocchetta F, Solini S, Mister M, Mele C, Cassis P, Noris M, Remuzzi G, Aiello S. Erythropoietin enhances immunostimulatory properties of immature dendritic cells. Clinical and Experimental Immunology,7 JUN 2011。
    [1]J. Montreuil, J. Tonnelat, S. Mullet, Preparation and properties of lactosiderophilin (lactotransferrin) of human milk, Biochim. Biophys. Acta 45 (1960)413-421.
    [2]M.L. Groves, The isolation of the red protein from milk, J. Am. Chem. Soc. 82(1960)3345-3350.
    [3]B. Johanson, Isolation of an iron-containing red protein from human milk, Acta Chem. Scand.14 (1960) 510-512.
    [4]F.L. Shanbacher, R.E. Goodman, R.S. Talhouk, Bovine mammary lactoferrin: Implications from messenger ribonucleic acid (mRNA) sequence and regulation contrary to other milk proteins, J. Dairy Sci.76 (1992) 3812-3831.
    [5]J.M. Torres, J.L. Concepcion, J.R. Vielma, Deteccion de lysozima y lactoferrina por western blot en ovas de trucha arcoiris (Oncorhynchus mykiss), Mundo Pecuario 2 (2006) 57-59.
    [6]B.W.A. Van Der Strate, L. Belijaars, G. Molema, M.C. Harmsen, D.K.F. Meijer, Antiviral activities of lactoferrin, Antiviral Res.52 (2001) 225-239.
    [7]E.R. Oztas, Yesim, N. Ozgunes, Lactoferrin:a multifunctional protein, Adv. Mol. Med.1 (2005) 149-154.
    [8]D.A. Rodriguez, L. Vazquez, G. Ramos, Actividad Antimicrobiana de la lactoferrina:Mecanismos and aplicaciones clinicas potenciales, Rev. Latinoam. Microbiol.47 (2005) 102-111.
    [9]T.D. Brogan, H.C. Ryley, L. Neale, J. Yassa, Soluble proteins of bronchopulmonary secretions from patients with cystic fibrosis, asthma, and bronchitis, Thorax 30 (1975) 72-79.
    [10]D.J. Lim, Y.M. Chun, H.Y. Lee, S.K. Moon, K.H. Chang, J.-D. Li, A. Andalibi, Cell biology of tubotympanum in relation to pathogenesis of otitis media e a review, Vaccine 19 (2000) S17-S25.
    [11]P. Aisen, A. Leibman, Lactoferrin and transferrin:a comparative study, Biochim. Biophys. Acta 257 (1972) 314-323.
    [12]E.N. Baker, Structure and reactivity of transferrins, Adv. Inorg. Chem.41 (1994) 389-463.
    [13]D.C. Duarte, A. Nicolau, J.A. Teixeira, L.R. Rodrigues, The effect of bovine milk lactoferrin on human breast cancer cell lines, J. Dairy Sci.94 (2011) 66-76.
    [14]S.M.E. Drago, Actividades antibacterianas de la lactoferrina, Enferm. Infecc. Microbiol.26 (2006) 58-63.
    [15]M. Marchetti, F. Superti, M.G. Ammendolia, P. Rossi, P. Valenti, L. Seganti, Inhibition of poliovirus type 1 infection by iron-, manganese-, and zinc-saturated lactoferrin, Med. Microbiol. Immunol. (Berl) 187 (1999) 199-204.
    [16]R. Sato, O. Inanami, Y. Tanaka, S.E. Takase, Y. Naito, Oral administration of bovine lactoferrin for treatment of intractable stomatitis in feline immunodeficiency virus (FIV)-positive and (FIV)-negative cats, Am. J. Vet. Res.57 (1996) 1443-1446.
    [17]M.H. Metz-Boutigue, J. Jolles, J. Mazurier, F. Schoentgen, D. Legrand, G. Spik, J. Montreuil, P. Jolles, Human lactotransferrin:amino acid sequence and structural comparisons with other transferrins, Eur. J. Biochem.145 (1984) 659-676.
    [18]M.W. Rey, S.L. Woloshuk, H.A. deBoer, F.R. Pieper, Complete nucleotide sequence of human mammary gland lactoferrin, Nucleic Acids Res.18 (1990) 5288.
    [19]J. Wally, S.K. Buchanan, A structural comparison of human serum transferrin and human lactoferrin, BioMetals 20 (2007) 249-262.
    [20]L.A. Lambert, H. Perri, T.J. Meehan, Evolution of duplications in the transferring family of proteins, Comp. Biochem. Physiol. B. Biochem. Mol. Biol.140 (2005) 11-25.
    [21]M. Haridas, B.F. Anderson, E.N. Baker, Structure of human diferric lactoferrin refined at 2.2 A resolution, Acta Crystallogr.51 (1995) 629-646.
    [22]J. Mazurier, G. Spik, Comparative study of the iron-binding properties of human transferrins:I. complete and sequential iron saturation and desaturation of the Lactotransferrin, Biochim. Biophys. Acta 629 (1980) 399-408.
    [23]H.M. Baker, B.F. Anderson, E.N. Baker, Dealing with iron:common structural principles in proteins that transport iron and heme, Proc. Natl. Acad. Sci. U.S.A.100 (2004) 3579-3583.
    [24]K. Arnold, F. Kiefer, J. Kopp, J.N. Battey, M. Podvinec, J.D. Westbrook, H.M. Berman, L. Bordoli, T. Schwede, The protein model portal, J. Struct. Funct. Genomics 10(2009)1-8.
    [25]B.F. Anderson, H.M. Baker, E.J. Dodson, G.E. Norris, S.V. Rumball, J.M. Waters, E.N. Baker, Structure of human lactoferrin at 3.2-A° resolution, Proc. Natl. Acad. Sci. U.S.A.84 (1987) 1769-1773.
    [26]J.A. Khan, P. Kumar, M. Paramasivam, R.S. Yadav, M.S. Sahani, S. Sharma, A. Srinivasana, T.P. Singh, Camel lactoferrin, a transferrin-cum-lactoferrin:crystal structure of camel apolactoferrin at 2.6 A resolution and structural basis of its dual role, J. Mol.
    [27]O.M. Connely, Antiinflammatory activities of lactoferrin, J. Am. Coll. Nutr.438 (2001)389S-395S.
    [28]M.P. Sherman, S.H. Bennett, F.F. Hwang, C. Yu, Neonatal small bowel epithelia: enhancing anti-bacterial defense with lactoferrin and Lactobacillus GG, BioMetals 17 (2004) 285-289.
    [29]K. Yamauchi, H. Wakabayashi, K. Shin, M. Takase, Bovine lactoferrin:benefits and mechanism of action against infections, Biochem. Cell Biol.84 (2006) 291-296.
    [30]S. Leffell, J.K. Spitznagel, Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes, Infect. Immun.6 (1972) 761-765.
    [31]J.R. Kalmar, R.R. Arnold, Killing of Actinobacillus actinomycetemcomitans by human lactoferrin, Infect. Immun.56 (1988) 2552-2557.
    [32]K. Yamauchi, M. Tomita, T.J. Giehl, R.T. Ellison III, Antibacterial activity of lactoferrin and a pepsin derived lactoferrin peptide fragment, Infect. Immun.61 (1993) 719-728.
    [33]P. Valenti, G. Antonini, Lactoferrin:an important host defense against microbial and viral attack, Cell. Mol. Life Sci.62 (2005) 2576-2587.
    [34]C.A. Bortner, R.R. Arnold, R.D. Miller, Bactericidal effect of lactoferrin on Legionella pneumophila:effect of the physiological state of the organism, Can. J. Microbiol.35 (1989) 1048-1051.
    [35]S. Farnaud, R.W. Evans, Lactoferrin:a multifunctional protein with antimicrobial properties, Mol. Immunol.40 (2005) 395-405.
    [36]J. O'leay, F.F. Busta, Effect of food components on growth of Basillius stearothermophilus, J. Food Sci.39 (1974) 1157-1160.
    [37]S.P. Oliver, R.T. Duby, R.W. Prange, J.P. Tritschler Ⅱ, Residues in colostrum following antibiotic dry cow therapy, J. Dairy Sci.67 (1984) 3081-3084.
    [38]J.D. Oram, B. Reitera, Inhibition of bacteria by lactoferrin and other iron-chelating agents, Biochim. Biophys. Acta.170 (1968) 351-365.
    [39]J. Qiu, D.R. Hendrixson, E.N. Baker, T.F. Murphy, J.W. St Geme Ⅲ, A.G. Plaut, Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae, Proc. Natl. Acad. Sci. U.S.A.95 (1998)12641-12646.
    [40]W. Bellamy, M. Takasea, K. Yamauchia, H. Wakabayashia, K. Kawasea, M. Tomita, Identification of the bactericidal domain of lactoferrin, Biochim. Biophys. Acta (1992) 130-136.
    [41]H.Y. Lee, J.H. Park, S.H. Seok, M.W. Baek, D.J. Kim, B.H. Lee, P.D. Kang, Y.S. Kim, J.H.Park, Potential antimicrobial effects of human lactoferrin against oral infection with Listeria monocytogenes in mice, J. Med. Microbiol.54 (2005) 1049-1054.
    [42]S. Hammerschmidt, G. Bethe, P.H. Remane, G.S. Chatwal, Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae, Infect. Immun.67 (1999) 1683-1687.
    [43]R.S. Bhimani, Y. Vendrov, P. Furmanski, Influence of lactoferrin feeding and injection against systemic staphylococcal infections in mice, J. Appl. Microbiol.86 (1999) 135-144.
    [44]F. Berlutti, M. Ajello, P. Bosso, C. Morea, P. Andrea, A. Giovanni, V. Piera, Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans, BioMetals 17 (2004) 271-278.
    [45]R.R. Arnold, J.E. Russell, W.J. Champion, J.J. Gauthier, Bactericidal activity of human lactoferrin:influence of physical conditions and metabolic state of the target microorganism, Infect. Immun.32 (1981) 655-660.
    [46]C. Dalmastri, P. Valenti, P. Visca, P. Vittorioso, N. Orsi, Enhanced antimicrobial activity of lactoferrin by binding to the bacterial surface, Microbiologica 11 (1988) 225-230.
    [47]M.I. Van der Kraan, J. Van Marle, K. Nazmi, J. Groenink, W. Van't Hof, E.C. Veerman, J.G. Bolscher, A.V. Amerongen, Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli, Peptides 26 (2005) 1537-1542.
    [48]A. Roseanu, P. Florian, M. Condei, D. Cristea, M. Damian, Antibacterial activity of lactoferrin and lactoferricin against oral Streptococci, Rom. Biotechnol. Lett.15 (2010)5788-5792.
    [49]T.J. Ochoa, M. Noguera-Obenza, F. Ebel, C.A. Guzman, H.F. Gomez, T.G. Cleary, Lactoferrin impairs type Ⅲ secretory system function in enteropathogenic coli, Infect. Immun.71 (2003) 5149-5155.
    [50]D.S.A. Beeckman, C.M. Van Droogenbroeck, J.A. De Cock, P.V. Oostveldt, D.C.G. Vanrompay, Effect of ovotransferrin and lactoferrins on Chlamydophila psittaci adhesion and invasion in HD11 chicken macrophages, Vet. Res.38 (2007) 729-739, doi:10.1051/vetres:2007028.
    [51]A. Nacimiento, L.O. Giugliano, Human milk fractions inhibit the adherence of diffusely adherent Escherichia coli (DAEC) and enteroaggregative E. coli (EAEC) to HeLa cells, FEMS Microbiol. Lett.184 (2000) 91-94.
    [52]E.J. Dial, J.J. Romero, D.R. Headon, L.M. Lichtenberger, Recombinant human lactoferrin is effective in the treatment of Helicobacter felis-infected mice, J. Pharm. Pharmacol.52 (2000) 1541-1546.
    [53]X. Wang, S. Hirmo, R. Willen, T. Wadstrom, Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BAlb/cA mouse model, J. Med. Microbiol.50 (2001) 430-435.
    [54]M.O. Husson, D. Legrand, G. Spik, H. Leclerc, Iron acquisition by Helicobacter pylori:importance of human lactoferrin, Infect. Immun.61 (1993) 2694-2697.
    [55]P. Goldoni, L. Sinibaldi, P. Valentiu, N. Orsi, Metal complexes of lactoferrin and their effect on the intracellular multiplication of Legionella pneumophila, BioMetals 13 (2000) 15-22.
    [56]F. Berlutti, C. Morea, A. Battistoni, S. Sarli, P. Cipriani, F. Superti, M.G. Ammendolia, P. Valenti, Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia, Int. J. Immunopathol. Pharmacol.18 (2005) 661-670.
    [57]H.A.E. Asfour, M.H. Yassin, A.M. Goma, Anti-bacterial activity of bovine milk lactoferrin against some mastitis causative pathogens with special regard to mycoplasma, Int. J. Microbiol. Res.97 (2010) 97-105.
    [58]M.P. Rogan, C.C. Taggart, C.M. Greem, P.G. Murphy, S.J. O'Neill, N.G. McElvaney, Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with fibrosis cystic, J. Infect. Dis.190 (2004) 1245-1253.
    [59]E.M. Willer, R.L. Lima, L.G. Giuigliano, In vitro adhesion and invasion inhibition of Shigella dysentariae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins, BMC Microbiol.4 (2004) 18-24.
    [60]R.R. Arnold, M.F. Cole, J.R. McGhee, A bactericidal effect for human lactoferrin,Science 197 (1977) 263-265, doi:10.1126/science.327545.
    [61]U.E. Schaible, H.L. Collins, F. Priem, S.H. Kaufmann, Correction of the iron overload defect in 2-microglobulin knockout mice by lactoferrin abolishes their susceptibility to tuberculosis, J. Exp. Med.196 (2002) 1507-1513.
    [62]S.A. Hwang, M.L. Kruzel, J.K. Actor, Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis, Int. Immunopharmacol.5 (2005) 591-599.
    [63]H. Wakabayashi, I. Kondo, Periodontitis, periodontopathic bacteria and lactoferrin, BioMetals 23 (2010) 419-424.
    [64]A. Del Olmo, J. Calzada, M. Nunez, Antimicrobial effect of lactoferrin and its amidated and pepsin-digested derivatives against Salmonella enteriditids and Pseudomona fluorescence, J. Dairy Sci.93 (2010) 3965-3969.
    [65]R.E. Reyes, H.A. Manjarrez, M.E. Drago, El hierro y la virulencia bacteriana, Enferm. Infecc. Microbiol.25 (2005) 104-107.
    [66]R.T. Ellison, T.J. Giehl, F.M. Laforce, Damage of the membrane of enteric Gramnegative bacteria by lactoferrin and transferrin, Infect. Immun.56 (1988) 2774-2781.
    [67]R.T. Coughlin, S. Tonsager, E.J. McGroaty, Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli, Biochemistry 22 (1983)2002-2007.
    [68]C.A. Leitch, M.D. Willcox, Elucidation of the antistaphylococcal action of lactoferrin and lysozyme, J. Med. Microbiol.48 (1999) 867-871.
    [69]D.H. Hendrixson, J. Qiu, S.C. Shewry, D.L. Fink, S. Petty, E.N. Baker, A.G. Plaut, J.W. St. Geme Ⅲ, Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites, Mol. Microbiol.47 (2003) 607-617.
    [70]R. Odeh, J.P. Quinn, Problem pulmonary pathogens:Pseudomonas aeruinosa, Semin. Respir. Crit. Care Med.21 (2000) 331-339.
    [71]P.K. Singh, M.R. Parsek, E.P. Greenberg, M.J. Welsh, A component of innate immunity prevents bacterial biofilm development, Nature 417 (2002) 552-555.
    [72]E.M. Caraher, K. Gumulapurapu, C.C. Taggart, P. Murphy, S. McClean, M. Callaghan, The effect of recombinant human lactoferrin on growth and the antibiotic susceptibility of the cystic fibrosis pathogen Burkholderia cepacia complex when cultured planktonically or as biofilms, J. Antimicrob. Chemother.60 (2007) 546-554.
    [73]E.C. Leitch, M.D. Willcox, Lactoferrin increases the susceptibility of S. epidermidis biofilms to lysozyme and vancomycin, Curr. Eye Res.19 (1999) 12-19.
    [74]E.D. Weinberg, Suppression of bacterial biofilm formation by iron limitation, Med. Hypotheses 63 (2004) 863-865.
    [75]J.H. Andersen, H. Jenssen, K. Sandvik, T.J. Gutteberg, Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface, J. Med. Virol.74 (2004) 262-271.
    [76]K. Hasegawa, W. Motsuchi, S. Tanaka, S. Dosako, Inhibition with lactoferrin of in vitro infection with human herpes virus, J. Med. Sci. Biol. (Jpn) 47 (1994) 73-85.
    [77]A.K. Marr, H. Jenssen, M. Roshan Moniri, R.E.W. Hancock, N. Pante, Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1, Biochimie 91 (2009) 160-164.
    [78]K. Hara, M. Ikeda, S. Saito, S. Matsumoto, K. Numata, N. Kato, K. Tanaka, H. Sekihara, Lactoferrin inhibits hepatitis B virus infection in cultured human hepatocytes, Hepatol. Res.24 (2002) 228.
    [79]R.M. Viani, T.J. Gutteberg, J.L. Lathey, S.A. Spector, Lactoferrin inhibits HIV-1 replication in vitro and exhibits synergy when combined with zidovudine, AIDS 13 (1999)1273-1274.
    [80]L. Beljaars, B.W. Van Der Strate, H.I. Bakker, Inhibition of cytomegalovirus infection by lactoferrin in vitro and in vivo, Antiviral Res.63 (2004) 197-208.
    [81]J.H. Andersen, S.A. Osbakk, L.H. Vorland, T. Traavik, T.J. Gutteberg, Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts, Antiviral Res.51 (2001) 141-149.
    [82]M. Ikeda, A. Nozakia, K. Sugiyama, T. Tanaka, A. Naganuma, K. Tanaka, H. Sekihara, K. Shimotohno, M. Saito, N. Kato, Characterization of antiviral activity of lactoferrinagainst hepatitis C virus infection in human cultured cells, VirusRes.66 (2000)51-63.
    [83]M. Ikeda, K. Sugiyama, T. Tanaka, K. Tanaka, H. Sekiharab, K. Shimotohno, N. Kato, Lactoferrin markedly inhibits hepatitis C virus infection in cultured human hepatocytes, Biochem. Biophys. Res. Commun.245 (1998) 549-553.
    [84]S.L. Beaumont, D.J. Maggs, H.E. Clarke, Effects of bovine lactoferrin on in vitro replication of feline herpesvirus, Vet. Ophthalmol.6 (2003) 245-250.
    [85]M. Marchetti, C. Longhi, M.P. Conte, S. Pisani, P. Valenti, L. Seganti, Lactoferrin inhibits herpes simplex virus type 1 adsorption to Vero cells, Antiviral Res.29(1996)221-231.
    [86]P.J. Swart, M.E. Kuipers, C. Smit, R. Pauwels, M.P. De Bethune, E. De Clercq, D.K.F. Meijer, J.G. Huisman, Antiviral effects of milk proteins:acylation results in polyanionic compounds with potent activity against human immunodeficiency virus types 1 and 2 in vitro, AIDS Res. Hum. Retroviruses 12 (1996) 769-775.
    [87]D. Legrand, K. Vigie', E.A. Said, E. Elass, M. Masson, M.C. Slomianny, M. Carpentier, J.P. Briand, J. Mazurier, A.G. Hovanessian, Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells, Eur. J. Biochem.271 (2004)303-317.
    [88]F. Groot, T.B. Geijtenbeek, R.W. Sanders, C.E. Baldwin, M. Sanchez-Hernandez, R. Floris, Y. van Kooyk, E.C. de Jong, B. Berkhout, Lactoferrin prevents dendritic cellmediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN-gp120 interaction, J. Virol.79 (2005) 3009-3015.
    [89]R. Siciliano, R. Bega, M. Marchetti, L. Seganti, G. Antonini, P. Valenti, Bovine lactoferrin peptidic fragments involved in inhibition of herpes simplex virus type 1 infection, Biochem. Biophys. Res. Commun.264 (1999) 19-23.
    [90]L. Seganti, A.M. Di Biase, M. Marchetti, A. Pietrantoni, A. Tinari, F. Superti, Antiviral activity of lactoferrin towards naked viruses, BioMetals 17 (2004) 295-299.
    [91]T.Y. Lin, C. Chu, C.H. Chiu, Lactoferrin inhibits enterovirus infection of human embryonal rhabdomyosarcoma cells in vitro, J. Infect. Dis.186 (2002) 161-1164.
    [92]L. Lu, G. Hangoc, A. Oliff, L.T. Chen, R.N. Shen, H.E. Broxmeyer, Protective influence of lactoferrin on mice infected with the polycythemia-inducing strain of Friend virus complex, Cancer Res.47 (1987) 4184-4188.
    [93]D.D. Addie, A. Radford, P.S. Yam, D.J. Taylor, Cessation of feline calicivirus shedding coincident with resolution of chronic gingivostomatitis in a cat, J. Small Anim. Pract.44 (2003) 172-176.
    [94]H.J. Andersen, H. Jenssen, K. Sandvik, T.J. Gutteberg, The anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulfate at the cell surface, J. Med. Virol.74 (2004) 262-271.
    [95]B. Berkhout, J.L. Van Wamel, L. Beljaars, D.K. Meijer, S. Visser, R. Floris, Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides, Antiviral Res.55 (2002) 341-355.
    [96]A. Pietrantoni, A.M. Di Biase, A. Tinari, M. Marchetti, P. Valenti, L. Seganti, Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides, Antimicrob. Agents Chemother.47 (2003) 2688-2691.
    [97]B.L. Waarts, O.J. Aneke, J.M. Smit, K. Kimata, R. Bittman, D. Meijerb, J. Wilschut, Antiviral activity of human lactoferrin:Inhibition of alphavirus interaction with heparan sulfate, Virology 333 (2005) 284-292.
    [98]T.C. Mettenleiter, Brief overview on cellular virus receptors, Virus Res.82 (2002) 3-8.
    [99]D. Spillmann, Heparan sulfate:anchor for viral intruders? Biochimie 83 (2001) 811-817.
    [100]D.M. Mann, E. Romm, M. Migliorini, Delineation of the glycosaminoglycanbinding site in the human inflammatory response protein lactoferrin, J. Biol. Chem.269 (1994) 23661-23667.
    [101]C.H. Kirkpatrick, I. Green, R.R. Rich, L.A. Schadeet, Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin:relation to host-defense mechanisms in chronic mucocutaneous candidiasis, J. Infect. Dis.124 (1971) 539-544.
    [102]M. Viejo-Diaz, M.T. Andres, J.F. Fierro, Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extra cellular cation concentration and target cell metabolic activity, Antimicrob. Agents Chemother.48 (2004)1242-1248.
    [103]R.R. Arnold, M. Brewer, J.J. Gauthier, Bactericidal activity of human lactoferrin:sensitivity of a variety of microorganisms, Infect. Immun.28 (1980) 893-898.
    [104]W. Bellamy, H. Wakabayashi, M. Takase, S. Kawase, S. Shimamura, M. Tomita, Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin, Med. Microbiol. Immunol. 182(1993)97-105.
    [105]H. Wakabayashi, S. Abe, T. Okutomi, S. Tansho, K. Kawase, H. Yamaguchi, Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents, Microbiol. Immunol.40 (1996) 821-825.
    [106]M.E. Kuipers, H.G. de Vries, M.C. Eikenboom, D.K. Meijer, P.J. Swart, Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates, Antimicrob. Agents Chemother.43 (1999) 2635-2641.
    [107]Y.Y. Xu, Y.H. Samaranayake, L.P. Samaranayake, H. Nikawa, In vitro susceptibility of Candida species to lactoferrin, Med. Mycol.37 (1999) 35-41.
    [108]N. Kondori, L. Baltzer, G.T. Dolphin, I. Mattsby-Baltzer, Fungicidal activity of human lactoferrin-derived peptides based on the antimicrobial a|3 region, Int. J. Antimicrob. Agents 37 (2011) 51-57.
    [109]P. Valenti, P. Visca, G. Antonini, N. Orsi, Interaction between lactoferrin and ovotransferrin and Candida cells, FEMS Microbiol. Lett.33 (1986) 271-275.
    [110]H. Nikawa, L.P. Samarayanake, J. Tenovuo, K.M. Pang, T. Hamada, The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei, Arch. Oral Biol.38 (1993) 1057-1063.
    [111]H. Nikawa, L.P. Samarayanake, T. Hamada, Modulation of the anti-Candida activity of apo-lactoferrin by dietary sucrose and tunicamycin in vitro, Arch. Oral Biol.40 (1995) 581-584.
    [112]K.A. Zarember, J.A. Sugui, Y.C. Chang, K.J. Kwon-Chung, J.I. Gallin, Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion, J. Immunol.178 (2007) 6367-6373.
    [113]A. Lupetti, J.T. Van Dissel, C.P.J.M. Brouwer, P.H. Nibbering, Human antimicrobial peptides antifungal activity against Aspergillus fumigatus, Eur. J. Clin. Microbiol. Infect. Dis.27 (2008) 1125-1129.
    [114]M.I.A. van der Kraan, J. Groenink, K. Nazmi, E.C.I. Veerman, J.G.M. Bolscher, A.V.N. Amerongen, Lactoferrampin:a novel antimicrobial peptide in the N1-domain of bovine lactoferrin, Peptides 25 (2004) 177-183, doi:10.1016/j.peptides.2003.12.006.
    [115]H. Wakabayashi, K. Uchida, K. Yamauchi, S. Teraguchi, H. Hayasawa, H. Yamaguchi, Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models, J. Antimicrob. Chemother.46 (2000) 595-601.
    [116]G.A. Weinberg, Iron chelators as therapeutic agents against Pneumocystis carinii, Antimicrob. Agents Chemother.38 (1994) 997-1003.
    [117]O. Cirioni, A. Giacometti, F. Barchiesi,G. Scalise, Inhibition of growth of Pneumocystis carinii by lactoferrins alone and in combination with pyrimethamine, clarithromycin and minocycline, J. Antimicrob. Chemother.46 (2000) 577-582.
    [118]N. Leon-Sicairos, M. Reyes-Lopez, C. Ordaz-Pichardo, M. de la Garza, Microbicidal action of lactoferrin and lactoferricin and their synergistic effect with metronidazole in Entamoeba histolytica, Biochem. Cell Biol.84 (2006) 327-336.
    [119]N. Leon-Sicartios, S.F. Lopez-Soto, M. Reyes-Lopez, D. Godinez-Vargas, C. Ordaz-Pichardo, M. de la Garza, Amoebicidal activity of milk, apo-lactoferrin, slgA and lysozyme, Clin. Med. Res.4 (2006) 106-113.
    [120]F. Lopez-Soto, N. Leon-Sicairos, K. Nazmi, J.G. Bolscher, M. de la Garza, Microbicidal effect of the lactoferrin peptides lactoferricin 17-30, actoferrampin 265-284, and lactoferrin chimera on the parasite Entamoeba histolytica, Biometals 23 (2010) 563-568. doi:10.1007/s10534-010-9295-3.
    [121]J. Tachezy, J. Kulda, I. Bahnikova, P. Suchan, J. Razga, J. Schrevel, Tritrichomonas foetus:iron acquisition from lactoferrin and transferrin, Exp. Parasitol. 83(1996)216-228.
    [122]T. Tanaka, Y. Abe, N. Inoue, W.S. Kim, H. Kumura, H. Nagasawa, The detection of bovine lactoferrin binding protein on Trypanosoma brucei, J. Vet. Med. Sci.66(2004)619-625.
    [123]D. Katarzyna, D. Bozena, D. Jaroslaw, D. Henryka, Toxoplasma gondii: inhibition of the intracellular growth by human lactoferrin, Pol. J. Microbiol.56 (2007)25-32.
    [124]Y. Omata, M. Satake, R. Maeda, A. Saito, K. Shimazaki, K. Yamauchi, Y. Uzuka, S. Tanabe, T. Sarashina, T. Mikami, Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin, J. Vet. Med. Sci.63 (2001) 187-190.
    [125]P. Botteon, C. Massard, R. Botteon, Seroprevalence of Babesia equi in three breeding systems of equines, Parasitol. Latinoam. (Bras) 57 (2002) 141-145.
    [126]H. Ikada, T. Tanaka, N. Shibahara, Short report:inhibitory effect of lactoferrin on in vitro growth of Babesia caballi, Am. J. Trop. Med. Hyg.73 (2005) 710-712.
    [127]D. Legrand, E. Elass, M. Carpentier, J. Mazurier, Interaction of lactoferrin with cells involved in immune function, Biochem. Cell Biol.84 (2006) 282-290.
    [128]J. Breton-Gorius, D. Mason, D. Buriot, J.-L. Vilde, C. Griscelli, Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections. Detection by immunoperoxidase staining for lactoferrin and cytochemical electron microscopy, Am. J. Pathol.99 (1980) 413-428.
    [129]R.M. Sfeir, M. Dubarry, P.N. Boyaka, M. Rautureau, D. Tome, The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice, J. Nutr.134 (2004) 403-409.
    [130]H. Wakabayashi, N. Takakura, K. Yamauchi, T. Yoshitaka, Modulation of immunerelated gene expression in small intestine of mice by oral administration of lactoferrin, Clin. Vaccine Immunol.13 (2006) 239-245.
    [131]M.L. Kruzel, Y. Harari, D. Mailman, J.K. Actor, M. Zimecki, Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice, Clin. Exp. Immunol.130 (2002) 25-31.
    [132]M.L. Kruzel, A. Bacsi, B. Choudhury, S. Sur, I. Boldogh, Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma, Immunology 119 (2006) 159-166.
    [133]D. Legrand, E. Elass, M. Carpentier, J. Mazurier, Lactoferrin:a modulator of immune and inflammatory responses, Cell Mol. Life Sci.62 (2005) 2549-2559.
    [134]S.V. Kane, W.J. Sandborn, P.A. Rufo, A. Zholudev, J. Boone, D. Lyerly, M. Camilleri, S.B. Hanauer, Fecal lactoferrin is a sensitive and specific marker in identifying intestinal inflammation, Am. J. Gastroenterol.98 (2003) 1309-1314.
    [135]E.N. Baker, H.M. Baker, Lactoferrin molecular structure, binding properties and dynamics of lactoferrin, Cell Mol. Life Sci.62 (2005) 2531-2539.
    [136]R.M. Bennett, J. Davis, Lactoferrin interacts with deoxyribonucleic acid:a preferential reactivity with double-stranded DNA and dissociation of DNA-anti-DNA complex, J. Lab. Clin. Med.99 (1982) 127-138.
    [137]K. Sorimachi, K. Akimoto, Y. Hattori, T. Ieiri, A. Niwa, Activation of macrophages by lactoferrin:secretion of TNF-alpha, IL-8 and NO, Biochem. Mol. Biol. Int.43 (1997) 79-87.
    [138]M. Zimecki, A. Wlaszczyk, R. Wojciechowski, J. Dawiskiba, M. Kruzel, Lactoferrin regulates the immune responses in post-surgical patients, Arch. Immunol. Ther. Exp.49 (2001) 325-333.
    [139]M. Machnicki, M. Zimecki, T. Zagulski, Lactoferrin regulates the release of tumor necrosis factor alpha and interleukin in vivo, Int. J. Exp. Pathol.74 (1993) 433-439.
    [140]M. Zimecki, K. Spiegel, A. Wlaszczyk, A. Kubler, M.L. Kruzel, Lactoferrin increases the output of neutrophil precursors and attenuates the spontaneous production of TNF-alpha and IL-6 by peripheral blood cells, Arch. Immunol. Ther. Exp. (Warsz) 47 (1999) 113-118.
    [141]M. Zimecki, J. Dawiskiba, B. Zawirska, Z. Krawczyk, M. Kruzel, Bovine lactoferrin decreases histopathological changes in the liver and regulates cytokine production by splenocytes of obstructive jaundiced rats, Inflamm. Res.52 (2003) 305-310.
    [142]L. Haversen, B.G. Ohlsson, M. Hahn-Zoric, L.A. Hanson, I. Mattsby-Baltzer, Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B, Cell. Immunol.220 (2002) 83-95.
    [143]K. Shimizu, H. Matsuzawa, K. Okada, S. Tazume, S. Dosako, Y. Kawasaki, K. Hashimoto, Y. Koga, Lactoferrin-mediated protection of the host from murine cytomegalo virus infection by T-cell-dependent augmentation of natural killer cell activity, Arch. Virol.141 (1996) 1875-1889.
    [144]I. Kurose, T. Yamada, R. Wolf, D.N. Granger, P-selectin-dependent leukocyte recruitment and intestinal mucosal injury induced by lactoferrin, J. Leuckoc. Biol.55 (1994) 771-777.
    [145]C.A. Szuter, T. Kaminska, S.M. Kandefer, Phagocytosis-enhancing effect of lactoferrin on bovine peripheral blood monocytes in vitro and in vivo, Arch. Vet.35 (1995)63-71.
    [146]G. Trinchieri, Interleukin-12 and the regulation of innate resistance and adaptive immunity, Nat. Rev. Immunol.3 (2003)133-146.
    [147]G. Trinchieri, Interleukin-12:a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity, Annu. Rev. Immunol.13 (1995) 251-276.
    [148]J. Bezault, R. Bhimani, J. Wiprovnick, P. Furmanski, Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice, Cancer Res.54 (1994) 2310-2312.
    [149]A. Varadhachary, J.S. Wolf, K. Petrak, B.W. O'Malley Jr., M. Spadaro, C. Curcio, G. Forni, F. Pericle, Oral lactoferrin inhibits growth of established tumors and potentiates conventional chemotherapy, Int. J. Cancer 111 (2004) 398-403.
    [150]T.G. Hayes, G.F. Falchook, G.R. Varadhachary, D.P. Smith, L.D. Davis, H.M. Dhingra, B.P. Hayes, A. Varadhachary, Phase I trial of oral talactoferrin alfa in refractory solid tumors, Invest. New Drugs 24 (2006) 233-240, doi: 10.1007/s10637-005-3690-6.
    [151]M. Iigo, M. Shimamura, E. Matsuda, K. Fujita, H. Nomoto, J. Satoh, S. Kojima, M.A. Moore, H. Tsuda, Orally administered bovine lactoferrin induces caspase-1 and interleukin-18 in the mouse intestinal mucosa:a possible explanation for inhibition of carcinogenesis and metastasis, Cytokine 25 (2004) 36-44.
    [152]S.P.M. Crouch, K.J. Slate, J. Fletcher, Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin, Blood 80 (1992) 235-240.
    [153]W.P. Wang, M. Ligo, J. Sato, K. Sekine, I. Adachi, H. Tsuda, Activation of mucosal intestinal immunity in tumor-bearing mice by lactoferrin, J. Cancer Res. (Jpn) 91(2000)1022-1027.
    [154]M. Shimamura, Y. Yamamoto, H. Ashino, T. Oikawa, T. Hazato, H. Tsuda, M. Ligo, Bovine lactoferrin inhibits tumor-induced angiogenesis, Int. J. Cancer 111 (2004)111-116.
    [155]K. Norrby, I. Mattsby-Baltzer, M. Innocenti, S. Tuneberg, Orally administered bovine lactoferrin systemically inhibits VEGF-mediated angiogenesis in the rat, Int. J. Cancer 91 (2001) 236-240.
    [156]M. Shimamura, Y. Yamamoto, H. Ashino, T. Oikawa, T. Hazato, H. Tsuda, M. Iigo, Bovine lactoferrin inhibits tumor-induced angiogenesis, Int. J. Cancer.111 (2004)111-116,doi:10.1002/ijc.20187.
    [157]T. Kozu, G. Iinuma, Y. Ohashi, Y. Saito, T. Akasu, D. Saito, D.B. Alexander, M. Iigo, T. Kakizoe, H. Tsuda, Effect of orally administered bovine lactoferrin on the growth of adenomatous colorectal polyps in a randomized, placebo-controlled clinical trial Takahiro Kozu, Cancer Prev Res 2 (2009) 975-983, doi:10.1158/1940-1011 6207.CAPR-08-0208.
    [158]K. Nakajima, Y. Kanno, M. Nakamura, X.D. Gao, A. Kawamura, F. Itoh, A. Ishisaki, Bovine milk lactoferrin induces synthesis of the angiogenic factors VEGF and FGF2 in osteoblasts via the p44/p42 MAP kinase pathway, BioMetals 23 (2011) 1-10, doi:10.1007/s10534-011-9439-0.
    [159]X.X. Xu, H.R. Jiang, H.B. Li, T.N. Zhang, Q. Zhou, N. Liu, Apoptosis of stomach cancer cell SGC-7901 and regulation of Akt signaling way induced by bovine lactoferrin, J. Dairy Sci.93 (2010) 2344-2350.
    [160]E. Damiens, I. Yazidi, J. Mazurier, I. Duthile, G. Spik, Y. Boilly-Marer, Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells, J. Cell. Biochem.74 (1999) 486-498.
    [161]N. Zemann, P. Klein, E. Wetzel, F. Huettinger, M. Huettinger, Lactoferrin induces growth arrest and nuclear accumulation of Smad-2 in HeLa cells, Biochimie 92(2010) 880-884.
    [162]Y.C. Yoo, R. Watanabe, Y. Koike, M. Mitobe, K. Shimazaki, S. Watanabe, I. Azuma, Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide:involvement of reactive oxygen species, Biochem. Biophys. Res. Commun.237 (1997) 624-628.
    [163]H. Ramaswamy, C.V. Swamy, M.R. Das, Purification and characterization of a high molecular weight ribonuclease from human milk, J. Biol. Chem.268 (1993) 4181-4187.
    [164]R.M. Bennett, M.M. Merrit, G. Gabor, Lactoferrin binds to neutrophilic membrane DNA, Br. J. Haematol.63 (1986) 105-117.
    [165]J. He, P. Furmanski, Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA, Nature 373 (1995) 721-724.
    [166]N. Brandl, A. Zemann, I. Kaupe, S. Marlovits, P. Huettinger, H. Goldenberg, M. Huettinger, Signal transduction and metabolism in chondrocytes is modulated by lactoferrin, Osteoarthr. Cartil.18 (2010) 117-125.
    [167]T.G. Kanyshkova, S.E. Babina, D.V. Semenov, N. Isaeva, A.V. Vlassov, K.N. Neustroev, A.A. Kulminskaya, V.N. Buneva, G.A. Nevinsky, Multiple enzymatic activities of human milk lactoferrin, Eur. J. Biochem.270 (2003) 3353-3361.
    [168]A.S. Devy, M.R. Das, M.W. Pandir, Lactoferrin contains structural motifs of ribonuclease, Biochem. Biophys. Acta 114 (1994) 299-306.
    [169]P. Furmanski, Z.P. Li, M.B. Fortuna, Multiple molecular forms of human lactoferrin, J. Exp. Med.170 (1989) 415-429.
    [170]W. Bellamy, M. Takase, H. Wakabayashi, Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin, J. Appl. Bacteriol.73 (1992) 472-479.
    [171]M.I. Van Der Kraan, K. Nazmi, W. Vant Hof, Distinct bactericidal activities of bovine lactoferrin peptides LFampin 268-284 and Lfampin 265-284; Asp-Leu-Ile makes a difference, Biochem. Cell Biol.84 (2006) 358-362.
    [172]J.L. Gifford, H.N. Hunter, H.J. Vogel, Lactoferricin:a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties, Cell. Mol. Life Sci.62 (2005) 2588-2598.
    [173]C.T. Teng, B.T. Pentecost, A. Marshall, A. Solomon, B.H. Bowman, P.A. Lalley, S.L. Nay lor, Assignment of the lactotransferrin gene to human chromosome 3 and to mouse chromosome 9, Somat. Cell Mol. Genet.13 (1997) 689-693.
    [174]C.T. Teng, C. Beard, W. Gladwell, Differential expression and estrogen response of lactoferrin gene in the female reproductive tract of mouse, rat, and hamster, Biol. Reprod.67 (2002) 1439-1449.
    [175]C.T. Teng, Lactoferrin gene expression and regulation:an overview, Biochem. Cell Biol.80(2002)7-16.
    [176]M.R. Green, J.V. Pastewka, Lactoferrin is a marker for prolactin response in mouse mammary explants, Endocrinology 103 (1978) 1510-1513.
    [177]P.L. Masson, J.F. Heremans, Lactoferrin in milk from different species, Comp. Biochem. Physiol. Biol.39 (1971) 119-129.
    [178]P.L. Masson, J.F. Heremans, C. Dive, An iron-binding protein common to many external secretions, Clin. Chim. Acta 14 (1966) 735-739.
    [179]J.F. Kang, X.L. Li, R.Y. Zhou, Bioinformatics analysis of lactoferrin gene for several species, Biochem. Genet.46 (2008) 312-322.
    [180]D. Liu, N. Yang, C.T. Teng, COUP-TF acts as a competitive repressor for estrogen receptor-mediated activation of the mouse lactoferrine gene, Mol. Cell. Biol. 13(1993)1836-1846.
    [181]S.E. Park, J. Xu, A. Frolova, L. Liao, B.W. O'Malley, B.S. Katzenellenboge, Genetic deletion of the repressor of estrogen receptor activity (REA) enhances the response to estrogen in target tissues in vivo, Mol. Cell. Biol.25 (2005) 1989-1999.
    [182]K. Geng, Y. Li, J. Bezault, P. Furmanskit, Induction of lactoferrin expression in marine cells by retinoic and estrogen, Exp. Cell Res.254 (1998) 214-220.
    [183]C.T. Teng, Factors regulating lactoferrin gene expression, Biochem. Cell Biol. 84 (2006) 263-267.
    [184]P.P. Ward, E. Paz, O.M. Conneely, Multifunctional roles of lactoferrin:a critical overview, Cell. Mol. Life Sci.62 (2005) 2540-2548.
    [185]H. Wakabayashi, K. Yamauchi, M. Takase, Lactoferrin research, technology and applications, Int. Dairy J.16 (2006) 1241-1251.
    [186]P. Manzoni, M. Rinaldi, S. Cattani, Italian Task Force for the Study and Prevention of Neonatal Fungal Infections, Italian Society of Neonatology. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates:a randomized trial, J. Am. Med. Assoc.302 (2009) 1421-1428.
    [187]U.M. Saarinen, M.A. Siimes, Iron absorption from infant milk formula and the optimal level of iron supplementation, Acta Paediatr. Scand.66 (1977) 719-722.
    [188]M.A. Siimes, L. Salmenpera, J. Perheentupa, Exclusive breast-feeding for 9 months:risk of iron deficiency, J. Pediatr.104 (1984) 196-199.
    [189]Y.Z. Wang, T.Z. Shan, Z.R. Xu, J. Liu, J. Feng, Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs, Anim. Feed. Sci. Technol.135 (2006) 263-272.
    [190]A. Tursi, W. Elisei, G. Brandimarte, G. Glorgetti, E. Modeo, F. Aiello, Effect of lactoferrin supplementation on the effectiveness and tolerability of a 7-day quadruple therapy after failure of a first attempt to cure Helicobacter pylori infection, Med. Sci. Monit.13 (2007) 187-190.
    [191]A.S. Naidu, J. Chen, C. Martinez, J. Tulpinski, B. Pal, R.S. Fowler, Activated lactoferrin's ability to inhibit Candida growth and block yeast adhesion to the vaginal epithelial monolayer, J. Reprod. Med.49 (2004) 859-866.
    [192]M. Kaito, M. Iwasa, N. Fujita, Y. Kobayashi, Y. Kojima, J. Ikoma, I. Imoto, Y. Adachi, H. Hamano, K. Yamauchi, Effect of lactoferrin in patients with chronic hepatitis C:combination therapy with interferon and ribavirin, J. Gastroenterol. Hepatol.22 (2007) 1894-1897.
    [193]K.M. Wilk, S.A. Hwang, J.K. Actor, Lactoferrin modulation of antigen-presentingcell response to BCG infection, Postepy. Hig. Med. Dosw.61 (2007)277-282.
    [194]L.C. Umuhumuza, N. Wei-min, X. Sun, Effect of bovine lactoferrin and casein peptide powder on microbial growth and glucose utilization by microorganisms in pork meat during storage at 4℃, Pak. J. Nutr.10 (2011) 208-213.
    [195]A.S. Naidu, Activated lactoferrin—a new approach to meat safety, Food Technol.56 (2002) 40-45.
    [196]I. Medina, I. Tombo, M.T. Satue-Gracia, J.B. German, E.N. Frankel, Effects of natural phenolic compounds on the antioxidant activity of lactoferrin in liposomes and oil-in-water emulsions, J. Agric. Food Chem.50 (2002) 2392-2399.
    [197]Y. Pann, G.A. Sonn, M.L.Y. Sin, K.E. Mach, M. Shih, V. Gau, P.K. Wong, J.C. Liao, Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis, Biosens. Bioelectron.26 (2010) 649-654.
    [198]R. Reghunathan, M. Jayapal, Y. Hsu, H.H. Chng, D. Tai, B.P. Leung, A.J. Melendez, Expression profile of immune response genes in patients with severe acute respiratory syndrome, BMC Immunol.6 (2005) 2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700