重组人白细胞介素-11的表达及其与多种细胞因子在小鼠急性放射损伤中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、重组人白细胞介素-11的表达、发酵、纯化及鉴定
     骨髓抑制是放、化疗治疗肿瘤过程中出现的最严重的并发症之一,其
    症状表现为威胁生命的全血细胞减少症(pancytopenia),常使抗肿瘤治
    疗无法正常进行,从而影响肿瘤治疗的效果。随着粒细胞集落刺激因
    子(G-CSF)、粒巨细胞集落刺激因子(GM-CSF)和红细胞生成素(EPO)
    等造血生长因子的基因工程产品化和商品化,为血细胞减少症
    (cytopenia)特别是贫血和中性粒细胞减少症的治疗开拓了新的途径,
    并获得巨大的成功。但是对血小板减少以及所致的出血目前尚无疗效
    确切的药,血小板减少症成为骨髓功能抑制或障碍的严重临床症状。虽
    然GM-CSF对巨核细胞的生长和分化有一定的生物学作用,但仍不能
    有效治疗血小板减少症;白细胞介素(IL)—6对血小板的升高具有明
    显的作用,但其产生的副作用是人体无法承受的。血小板生长因子
    (thrombopoietin, TPO)升高血小板的作用更加有效,但它可能在体内引
    起血栓,故尚需对其应用于体内的安全性作出进一步的评估。因此寻
    找升高血小板的特效药物便成为引人注目的重要课题。现已证实,IL-11
    在体外作为单一因子在无血清的甲基纤维素半固体培养系统中能刺激
    
     重组人白细胞介索1!的表达及其与多种细胞因子在小鼠急性放射损伤中的研究 摘要
     人巨核细胞集落形成细胞(CFU-Meg)的增殖,增加 CFU-Meg的体
     积和细胞内染色体的倍数。动物和人体临床实验表明,体内注射 IL八
     也可显著刺激巨核细胞和血小板的生成,且副作用小,。因此 IL上 作
     为目前唯一能运用于临床的特异性升高血小板药物得到广泛关注。采
     用基因工程方法生产 ILl 具有重要的开发价值。但是药效学研究表
     明,人重组人 IL* l)在体内的有效剂量为 50~75L。g/kg,远
     高于其它一些己经用于临床的重组细胞因子药物,所以高效表达具有
     高比活度的重组 rhILl 至关重要。
     我们首先根据文献报道的人ILq 基因和分泌型毕氏酵母系统信号
     肽口因子部分基因的序列,利用计算机分析其基因的分子势能,根据
     酵母密码子的偏爱性,在不改变 ILq 蛋白质氨基酸序列的前提下,人
     工合成了ILJ 的基因片段,并经基因重组技术获得用于酵母分泌表
     达 n刁 的载体 PPICZaA-IL*,然后将线形化的表达载体电转化毕
     氏酵母细胞,并筛选出获得可稳定且较高水平表达 rhILll的基因工程
     菌株 KMJ上424。其摇瓶内发酵时,72 h为最适诱导时间,表达量超
     过 60 mg/L。发酵上清经不同倍数稀释用于培养 IL刁 依赖的细胞株
     Bgq,以测定重组蛋白的生物学活性。结果表明毕氏酵母细胞表达的
     IL4 具有与 E.COlt表达的标准品相同的体外生物学活性,比活性达
     到 5.5 XIO’IU/Ing,显著高于几-11标准品的卜活性(2.2 XIO’iii/Ills)。
     应用全自动发酵装置进行菌体高密度发酵,并利用气相色谱仪监测发
     酵罐中甲醇含量,控制其浓度在1%以内。电泳结果显示,在甲醇诱
     导 96 h后,其表达量最高可达 175m叭。由于发酵罐内诱导时间的延
     长将导致重组蛋白的过度糖基化,阻碍蛋白质吸附至层析介质,从而增加
     下游纯化的难度,降低蛋白质的得率,因此我们认为 72 h为 ill.----l 较合
     IV
     6
    
     重组人白细胞介素-M的表达及其与多种细胞因子在小鼠急性放射损伤中的研究 摘要
     适佳的发酵罐内诱导时间。发酵液上清采用超滤、疏水层析、离子交
     换和凝胶过滤等分离方法进行了分离、纯化,获得纯度达99%的重组
     蛋白,经生物学活性分析显示其比活性较发酵原液提高了5石7倍。
     二、多种细胞因子在实验性急性放射损伤中的应用研究
     1.重组人白细胞介素刁 对小鼠辐射损伤的防治作用
     出血是急性放射病的主要体征之一,常表现为全身性、广泛性遍及
     各个脏器的小血管出血,可给机体造成十分复杂的严重后果,加重放
     射病的临床症状,而血小板在整个出血综合征的发生和发展中有着特殊
     重要的作用。呼吸系统特别是肺的放射敏感性虽较骨髓低,但肺的出
     血和感染,常成为影响机体预后的主要因素,同时由于胸部肿瘤的放
     射治疗也可引起局部急性放射性肺炎。因此研究细胞因子对肺辐射损
     伤的防治也具有重要意义。有报道体内预先注射 rhILJ 可改善小鼠胸
     部接受大剂量局部照射后所引起的肺损伤,而体内预先注射 rhILl 对
     受全身“C。Y 照射的小鼠的肺组织是否有保护作用,尚末见报道。
     因此本研究在成功表达 rMLJ 并?
~ Expression of recombinant human interleukin-11 in Pichiapastoris
    
     Myelosuppression is a serious complication of current chemotherapy and
     radiotherapy regimens, resulting in life-threatening neutropenia and
     thrombocytopenia and hampering full deployment of anticancer therapy.
     With the commercial availability of granulocyte-macrophage colony
     stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-C SF)
     and erythropoietin (EPO), cytokine treatment has become established
     therapeutics for alleviating cytopenia, in particular the anemia and
     neutropenia resulting from intensive cytoreductive treatment. Although GM-
     CSF has advantages in that it also stimulates megakaryocytopoiesis to a
     certain extent, thrombocytopenia can not be ameliorated satisfactorily. So it
     is pressing to establish an effective agent to improve the function and count
     of platelet for the cancer patients who would accept chemotherapy and
     radiotherapy. It has been found that a single dose of TPO might be sufficient
     for a clinically significant response of treatment on thrombocyte recovery.
    
    
     VIII
    
     Ic?
    
    
    
    
    
    
    
    
    
     Expression of recombinant human interleukin-I I in Pichia pastoris and the protective and
    
     therapeutic effects of cytokines on acute irradiation injury in a murine model Abstract
    
    
     But the clinical application of rhTPO is limited by the clinical trial results
     that TPO might cause thrombus in circulation vessel. Interleukin- 11 (IL-li)
     is a hematopoietic growth factor, which is cloned from hematopoietic
     microenvironment stromal cell line PU-34 in 1990. In vitro as a single agent,
     IL-il can stimulate the proliferation of the human megakaryoblastic cell
     lines in serum-free semisolid (methylcellulose) culture in a dose dependent
     manner. 11-11 does synergize with IL-3 to enhance the growth of both murine
     and human megaaryocyte colonies. IL-li also increases the size and DNA
     content (ploidy) of constituent megakaryocyte. Preclinical and clinical trial
     have shown it is an effective therapeutic for IL- 11 to ameliorate
     chemotherapy and radiation induced thrombocytopenia in vivo. IL-il was
     also shown to be well tolerated and could reduce the need of engraft of
     platelet. As a unique clinical agent to increase the platelet count, the
     effective dose of IL-li is about 50 --?5 ii g/kg/d, far exceeding the dose of
     other clinical applied cytokine such as GM-CSF,G-CSF or EPO. So it is
     critical to choose a proper expression system to obtain high yield of
     recombinant protein with high biological activity.
    
     Expression of rhIL-11 in Pichia pastoris As an eukaryote, Pichia
     pastoris has many advantages of eukaryotic expression systems such as
     protein processing, protein folding and posttranslational modification, while
     being as easy to manipulate as F. coli or Saccharomyces cerevisiae. So Pichia
     pastoris was selected as expression system candidate to express human IL
    
     11. In order to obtain a high level production of rhJL- 11, an artificial gene
     with the optimal codon usage of Pichia pastoris was synthesized. Twenty
    
    
     Ix
    
    
     11
    
    
    
    
    
    
    
    
     Expression of recombinant human interleukin-1 I in Pichia pastoris and the protective and
     therapeutic effects of
引文
1 Bennett F, Calvetti JA, et al. Molecular cloning of a cDNA encoding interleukin 11. A stromal cell-derived lymphopoietic and hematopoietic cytokine.
    
    Proc Natl Acad Sci USA. 1990; 87:7512
    2 Du X, Williams DA. Interleukin-11: review of molecular, cell biology, and clinical use. Blood. 1997; 89(11) :3897. Review.
    3 Fuhrer DK, Yang YC. Activation of Src-family protein tyrosine kinases and phosphatidylinositol 3-kinase in 3T3-L1 mouse preadipocytes by interleukin-11. Exp Hematol. 1996; 24(2) :195
    4 Heinrich PC, Behrmann I, Muller-Newen G, et al. Interleukin-6-type cytokine signalling through the gpl30/Jak/STAT pathway. Biochem J. 1998; 334:297
    5 Kawashima I, Ohsumi J, Mita-Honjo K, et al. Molecular cloning of cDNA encoding adipogenesis inhibitory factor and identity with interleukin-11. FEBS Lett. 1991; 283:199
    6 Mckinley D, Wu Q, Yang-Feng, et al. Genomic sequence and chromosomal location of human interleukin (IL)-11 gene. Genomics. 1992; 13:814
    7 Bilinski P, Hall MA, Neuhaus H, et al. Two differentially expressed interleukin-11 receptor genes in the mouse genome. Biochem J. 1996; 320:359
    8 Robb L, Hilton DJ, Brook-Carter PT, et al. Identification of a second murine interleukin-11 receptor alpha-chain gene (IL11Ra2) with a restricted pattern of expression. Genomics. 1997; 40(3) :387
    9 Mosley B, De Imus C, Friend D, et al. Dual oncostatin M (OSM) receptors. Cloning and characterization of an alternative signaling subunit conferring OSM-specific receptor activation. J Biol Chem. 1996; 271(51) :32635
    10 Wang XY, Fuhrer DK, Marshall MS, et al. Interleukin-11 induces complex formation of Grb2, Fyn, and JAK2 in 3T3L1 cells. J Biol Chem. 1995;
    
    270:27999
    11 Lutticken C, Wegenka UM, J Yuan, et al. Association of transcription factor APRF and protein kinase Jakl with the interleukin-6 signal transducer gp130. Science. 1994; 263:89
    12 Zhong Z, Z Wen, Darnell JE, et al. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994; 264:95
    13 Ihle JN. STATs: signal transducers and activators of transcription. Cell. 1996; 84:331
    14 Akira S. IL-6-regulated transcription factors. Int j Biochem Cell Biol. 1990; 29:1401
    15 Zhang X, Blenis XJ, Li HC, et al. Requirement of serine phosphorylation for formation of STAT-promotor complexes. Science. 1995; 267:1990
    16 Boulton TG, Zhong Z, Wen JE, et al. STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc Natl Acad Sci USA. 1995; 92:6915
    17 Kondo A, Mogi M, Koshihara Y, et al. Signal transduction system for interleukin-6 and interleukin-11 synthesis stimulated by epinephrine in human osteoblasts and human osteogenic sarcoma cells. Biochem Pharmacol. 2001; 61(3) :319-26
    18 Magrangeas F, Boisteau O, Denis S, et al. Negative cross-talk between interleukin-3 and interleukin-11 is mediated by suppressor of cytokine signalling-3 (SOCS-3) . Biochem J. 200; 353:223-30
    19 Olivier C, Auguste P, Chabbert M, et al. Identification of a gp 130 cytokine
    
    receptor critical site involved in oncostatin M response. J Biol Chem. 2000;275(8) :5648
    20 Barton VA, Hudson KR, Heath JK. Identification of three distinct receptor binding sites of murine interleukin-11. J Biol Chem. 1999; 274(9) :5755
    21 Teramura M, Kobayashi S, Hoshino S, et al. Interleukin-11 enhances human megakaryocytopoiesis in vitro. Blood. 1992; 79(2) :327
    22 Kobayashi S, Teramura M, Sugawara I, et al. Interleukin-11 acts as an autocrine growth factor for human megakaryoblastic cell lines. Blood. 1993; 81(4) :889
    23 Yonemura Y, Kawakita M, Masuda T, et al. Synergistic effects of interleukin 3 and interleukin 11 on murine megakaryopoiesis in serum-free culture. Exp Hematol. 1992; 20(8) : 1011
    24 Keller DC, Du XX, Srour EF, et al. Interleukin-11 inhibits adipogenesis and stimulates myelopoiesis in human long-term marrow cultures. Blood. 1993; 82(5) : 1428
    25 Brandt JE, Hoffman R. Interleukin-11 plays a pivital role in the in vitro expansion of human hematopoietic progenitor and stem cells. Blood. 1993; 82:368a(Suppl1)
    26 Tsuji K, Lyman SD, Sudo T, et al. Enhancement of murine hematopoiesis by synergistic interactions between steel factor (ligand for c-kit), interleukin-11, and other early acting factors in culture. Blood. 1992; 79(11) :2855
    27 Leary AG, Zeng HQ, Clark SC, et al. Growth factor requirements for survival in G0 and entry into the cell cycle of primitive human hemopoietic progenitors. Proc Natl Acad Sci USA. 1992; 89(9) :4013
    
    
    28 Schibler KR, Yang YC, Christensen RD. Effect of interleukin-11 on cycling status and clonogenic maturation of fetal and adult hematopoietic progenitors. Blood. 1992; 80(4) :900
    29 Anderson KC, Morimoto C, Paul SR, et al. Interleukin-11 promotes accessory cell-dependent B-cell differentiation in humans. Blood. 1992; 80(11) :2797
    30 Hirayama F, Shih JP, Awgulewitsch A, et al. Clonal proliferation of murine lymphohemopoietic progenitors in culture. Proc Natl Acad Sci USA. 1992; 89(13) :5907
    31 Quesniaux VF, Clark SC, Turner K, et al. Interleukin-11 stimulates multiple phases of erythropoiesis in vitro. Blood. 1992; 80(5) : 1218
    32 Burger R, Gramatzki,M. Responsiveness of the interleukin(IL)-6 dependent cell line B9 to IL-11. J Immunol Methods. 1993; 158:147
    33 Paul SR, Schendel P. The cloning and biological characterization of recombinant human interleukin 11. Int J Cell Cloning. 1992; 10(3) : 135. Review
    34 Hu JP, Cesano A, Santoli D, et al. Effects of interleukin-11 on the proliferation and cell cycle status of myeloid leukemic cells. Blood. 1993; 81(6) :1586
    35 Fukuda Y, Sassa S. Effect of interleukin-11 on the levels of mRNAs encoding heme oxygenase and haptoglobin in human HepG2 hepatoma cells. Biochem Biophys Res Commun. 1993; 193(1) :297
    36 Maier R, Ganu V, Lotz M. Interleukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases. J Biol Chem. 1993; 268(29) :21527
    
    
    37 Mehler MF, Rozental R, Dougherty M, et al. Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature. 1993; 362(6415) :62
    38 Neben TY, Loebelenz J, Hayes L, et al. Recombinant human interleukin-11 stimulates megakaryocytopoiesis and increases peripheral platelets in normal and splenectomized mice. Blood. 1993; 81(4) :901
    39 Mason L, Timony G, Perkin C, et al. Human recombinent interleukin-11 promotes maturation of bone marrow megakaryocytes in non-human primates: An electron microscopic study. Blood. 1993; 82:69a
    40 Hangoc G, Yin T, Cooper S, et al. In vivo effects of recombinant interleukin-11 on myelopoiesis in mice. Blood. 1993; 81(4) :965
    41 Du XX, Keller D, Maze R, et al. Comparative effects of in vivo treatment using interleukin-11 and stem cell factor on reconstitution in mice after bone marrow transplantation. Blood. 1993; 82(3) : 1016
    42 Goldman SJ. Preclinical biology of interleukin 11: a multifunctional hematopoietic cytokine with potent thrombopoietic activity. Stem Cells. 1995; 13(5) :462
    43 Gordon MS, McCaskill-Stevens WJ, Battiato LA, et al. A phase I trial of recombinant human interleukin-11 (neumega rhIL-11 growth factor) in women with breast cancer receiving chemotherapy. Blood. 1996; 87(9) :3615
    44 Schwertschlag US, Trepicchio WL, Dykstra KH, et al. Hematopoietic, immunomodulatory and epithelial effects of interleukin-11. Leukemia. 1999; 13(9) : 1307
    45 Booth C, Potten CS. Effects of EL-11 on the growth of intestinal epithelial cells in vitro. Cell Prolif. 1995; 28(11) :581
    
    
    46 Orazi A, Du X, Yang Z, et al. Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Invest 1996; 75(1) :33
    47 Sonis S, Edwards L, Lucey C. The biological basis for the attenuation of mucositis: the example of interleukin-11 . Leukemia. 1 999; 1 3(6) :83 1
    48 Potten CS. Protection of the small intestinal clonogenic stem cells from radiation-induced damage by pretreatment with interleukin 11 also increases murine survival time. Stem Cells. 1996; 14(4) :452
    49 Taki H, Sugiyama E, Kuroda A, Mino T, et al. Interleukin-4 inhibits interleukin-11 production by rheumatoid synovial cells. Rheumatology. 2000; 39(7) :728
    50 Trepicchio WL, Ozawa M, Walters IB, et al. Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in psoriasis lesions. JClin Invest. 1999; 104(11) :1527
    51 Bozza M, Bliss JL, Domer AJ, et al. Interleukin-11 modulates th1/th2 cytokine production from activated cd4+ T cells. J Interferon Cytokine Res. 2001 ; 21(1) :21
    52 Hill GR, Cooke KR, Teshima T, et al. Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest. 1998; 102(1) :1 15
    53 Dykstra KH, Rogge H, Stone A, et al. Mechanism and amelioration of recombinant human interleukin-11 (rhIL-11) -induced anemia in healthy subjects. J Clin Pharmacol. 2000; 40(8) :880
    54 Page C, Dawson P, Woollacott D, et al. Development of a lyophilization
    
    formulation that preserves the biological activity of the platelet-inducing cytokine interleukin-11 at low concentrations. J Pharm Pharmacol. 2000; 52(1) : 19
    55 Macvittie TJ. Therapy of radiation injury. Stem Cells. 1997; 15(suppl 2) :263
    56 Castelli MP, Black PL, Schneider M, et al. Protective, restorative, and therapeutic properties of recombinant human IL-1 in rodent models. J Immunol. 1988; 140(11) :3830
    57 Neta R, Perlstein R, Vogel SN, et al. Role of interleukin 6 (IL-6) in protection from lethal irradiation and in endocrine responses to IL-1 and tumor necrosis factor. JExp Med. 1992; 175(3) :689
    58 Uckun FM, Souza L, Waddick KG, et al. In vivo radioprotective effects of recombinant human granulocyte colony-stimulating factor in lethally irradiated mice. Blood. 1990; 75(3) :638
    59 Waddick KG, Song CW, Souza L, et al. Comparative analysis of the in vivo radioprotective effects of recombinant granulocyte colony-stimulating factor (G-CSF), recombinant granulocyte-macrophage CSF, and their combination. Blood. 1991;77(11) :2364
    60 Patchen ML, Macvittie TJ, Williams JL, et al. Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induction hematopoietic depression. Blood. 1991; 77:472
    61 Redlich CA, Gao X, Rockwell S, et al. IL-11 enhances survival and decreases TNF production after radiation-induced thoracic injury. J Immunol. 1996; 157(4) :1705
    62 Frasca D, Pioli C, Guidi F, Pucci S, et al. IL-11 synergizes with IL-3 in promoting the recovery of the immune system after irradiation, Int Immunol.
    
    1996; 8(11) : 1651
    63 Neta R, Stiefel SM, Finkelman F, et al. Interleukin-12 protects bone marrow from and sensitizes intestinal tract to ionizing radiation. J Immunol. 1994; 153:4230
    64 Gratwohl A, John L, Baldomero H, FLT-3 ligand provides hematopoietic protection from total body irradiation in rabbits. Blood. 1998; 92(3) :765
    65 Schuening FG, Appelbaum FR, Deeg HI, et al. Effects of recombinant canine stem cell factor, a c-kit ligand, and recombinant granulocyte colony-stimulating factor on hematopoietic recovery after otherwise lethal total body irradiation. Blood. 1993; 81:20
    66 Haimovitz, FA, Vlodavsky I, Chadhuri A, et al. Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res. 1991; 51:2552
    67 Borden EC, Sidky YA. Interferon(IFN) α /β and irradiation(XRT): protection against lethality and augmentation of antitumor effects. Proc Am Assoc Cancer Res. 1989; 30:387
    68 Neta R. Modulation of radiation damage by cytokines. Stem Cells. 1997; 15(suppl 2) 87:94
    69 Richter KK, Fink LM, Hughes BM, et al. Differential effect of radiation on endothelial cells function in rectal cancer and normal rectum. Am J Surg. 1998 ; 176(6) :642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700