重型再生障碍性贫血患者骨髓中T辅助细胞及I型树突状细胞亚群的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     1.测定重型再生障碍性贫血(SAA)患者在免疫抑制治疗(IST)前后骨髓中Th1细胞、Th2细胞数量及Th1细胞/Th2细胞比值的变化;
     2.测定发病期和IST后恢复的SAA患者血清中Th1型细胞因子—TNF-α的水平和Th2型细胞因子—IL-4的水平的变化;
     3.评价Th1型效应细胞及效应因子—CD~(2+)CD~(8+)细胞、TNF-α及Yh2型细胞因子—IL-4与造血功能的关系;评价Th1细胞及Th1/Th2细胞平衡与造血功能的关系;
     4.测定SAA患者在IST前后骨髓中树突状细胞1(DC1)亚群:CD_(1a)~+CD_(11c)~+细胞、CD_(11c)~+CD_(83)~+细胞的改变,探讨DC1与Th1细胞相关性及在SAA发病机制中的作用。
     研究方法:
     1.用流式细胞术检测24例发病期和15例IST后恢复的SAA患者骨髓中胞浆内表达IFN-γ的CD_4~+细胞(Th1细胞)和表达IL-4的CD_4~+细胞(Th2细胞)的数量和比例;并与16例正常对照组、30例病例对照组[免疫相关性血细胞减少症(IRP)组15例、骨髓增生异常综合症(MDS)组15例]比较;
     2.采用放射免疫法测定20例发病期SAA患者、12例IST后恢复
Purpose:
    1.To detect the quantity, ratio of Th1 cells and Th2 cells in bone marrow of severe aplastic anemia (SAA) patients at active and recovery phases;
    2. To measure the levels of IL-4, TNF-α in serum of patients with SAA
    at active and recovery phase;
    3. To evaluate the relationship between the cytokine of Thl type
    (TNF-a), effective cell of type Thl (CD_3~+CD_8~+ cell), the cytokine of Th2 type (IL-4) and reticulocytes (Ret), absolute number of neutrophils (ANC) of patients with SAA; the relationship between the numbers of Thl cells and TNF-α or CD_3~+CD_8~+ cells in bone marrow of patients with SAA; and explore the role of Thl cells and balance of Th1/Th2 in the pathogenic mechanism of SAA;
    4. To measure the percentage of CD_(1a)~+CD_(11c)~+, CD_(83)~+CD_(11c)~+ cells in bone
    marrow of patients with SAA at active and recovery phases and normal controls, and evaluate the relationship between the numbers of CD_(83)~+CD_(11c)~+ cells and Thl cells or CD_3~+CD_8~+ cell, to explore the role of CD_(83)~+CD_(11c)~+ cells in the pathogenic mechanism in SAA. Methods:
引文
1. Scope J, Baganara M, Gordon SEC, et al. Haematopoietic progenitor cells ars reduced in aplastic anemia. Br J Haematol, 1994, 2:427-430.
    2. Maciejewski JP, Selleri C, Stato T, et al. A severe and consistent deficit in marrow and circulating primitive hematopoietic cells (long term culture-initiating cells) in acquired aplastic anemia. Blood, 1996, 88: 1173-1991.
    3. Young NS. Hmatopoietic cell destruction by immune mechanism in acquired aplastic anemia. S emin Hematology, 2000,37:3-14.
    4. Nakao S. Immune mechanism of aplastic anemia. Int J Hematol, 1997,66:127-134.
    5. Young NS, Maciejewski JP. The pathophysiology of acquired aplastic anemia. N Eng J Med, 1997,336:1365-1372.
    6. Zonghong Shao, Yulin Chu, Yizhi Zhang, et al. Treatment of severe aplastic anemia with immunosuppressive agent plus recombinant human granulocyte-macrophage colony-stimulating factor. Am J Hematol, 1998, 59: 185-191.
    7.何广胜,邵宗鸿,张益枝等.序贯强化免疫抑制联合造血生长因子治疗重型再生障碍性贫血的研究.中华血液学杂志,2001,22:176-181.
    8.何广胜,邵宗鸿.再生障碍性贫血的免疫抑制治疗现状 中华血液??学杂志 2002, 11: 177-181.
    
    9. Viale M, Merli A, Baciglupo A. Analysis at the clonal level of T-cell phenotype and function in severe aplastic anemia. Blood, 1991, 78:1268-1274.
    
    10. Maciejewski JP, Hibbs JR., Anderson S, et al. Bone marrow and periphral blood lymphocyte phenotype in patients with bone marrow failure. Exp Hematol, 1994,22:1102-1110.
    
    11. Melenhorst JJ, van Krieken JHJM, Dreef, E, et al. T cells selectively infiltrate bone marrow areas with residual haemopoiesis of patients with acquired aplastic anemia. Bri J Haematol, 1997,99:517-519.
    
    12. Kook H, Zeng W, Guibin C, et al. Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia. Exp Hematol, 2001,29:1270-1277.
    
    13. Zoumbos, NC, Gascon F, Djeu JY, et al. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc Natl Acad Sci USA, 1985,82:188-122.
    
    14. Selleri C, Anderson S, Young NS, et al. Interon-γ and tumor necrosis factor-α suppressive both early and late stages of hematopoiesis and induced programmed cell death. J Cell Physiol, 1995,165:538-546.
    
    15. Selleri C, Maciejewski JP, Young NS, et al. Interon-y constitutively expressed in the stromal microenvironment of human marrow cultures mediated hematopoietic inhibition. Blood, 1996, 87:4149-4157.
    
    16. Liu H, Mihara K, Kimura A, et al. Induction of apoptosis in CD34+ cells by sera from patients with aplastic anemia. Hiroshima J Med Sci 1999,48:57-63.
    
    17. Maciejewski JP, Selleri C, Sato T, et al. Increasd expression of Fas antigen on CD34+ cells of patients with aplastic anemia. Br J Haematol, 1995,91:245-252.
    
    18. Nagafuji K, Shibuya T, Harada M, et al. Functional expression of Fas antigen (CD95) on hematopoietic progenitor cells. Blood, 1995,86:883-889.
    
    19. Killick SB, Cox CV, Marsh JCW, et al. Mechanisms of bone marrow progenitor cell apoptosis in aplastic anemia and the effect of antithymocyte globulin: examination of the role of the Fas-Fas-L nteraction. Br J Haematol, 2000, 111:1164-1169.
    
    20. Hinterberger W, Adolf G, Bettelheim P, et al. Lymphokine overproduction in SAA is not related to blood transfusion. Blood, 1989, 74:2712-2717.
    
    21. Tong J, Bacigalupo A, Piaggio, G, et al. In vitro response of T-cells from AA patients to ALG and PHA: colony stimulating activity and lymphokine production. Exp Hematol, 1991, 19: 312-316.
    
    22. NisticoA, Young NS. Gamma-interferon gene expression in the bone marrow of patients with aplastic anemia. Ann Inter Med, 1994,120:463-469.
    23. Nakao S, Yamaguchi M, Shiobara S, et al. Interferon-γ, gene expression in unstimulated vone marrow mononuclear cells predicts a good response to cyclosporine therapy in aplastic anemia. Blood, 1992, 79:2532-2535.
    24. Dufour C, Corcione A, Svahn J, et al. Interferon gamma and tumour necrosis factor alpha are overexpressed in bone marrow T lymphocytes from paediatric patients with aplastic anaemia. Br J Haematol 2001,115:1023-1031.
    25. Sloand E, Kim S, Maciejewski JP, et al. Intracellular interferon-gamma in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia. Blood, 2002,100:1185-1191.
    26.和虹,邵宗鸿,何广胜等.Th1 细胞在再生障碍性贫血发病机制中的作用.中华血液学杂志,2002,23:574-577.
    27. Kamrad T, Mitchison NA. Tolerance and autoimmunity. N Engl J Med, 2001, 344:655-664.
    28. Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control of T helper cell and dentritic cell differentiation. Science, 1999, 283: 1183-1186.
    29. Lanzavecchia A, Sallusto E Regulation of T cell immunity by dentritic cells. Cell, 2001, 106: 263-266.30. Jonulei H, Schmitt E, Schuler, G, et al. Induction of interleukine-10 production, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dentritic ceils. J Exp Med, 2000,1921213-1222.
    31. Steiman RM, Turley S, Mellman I, et al. The induction of tolerance by dentridic cells that have captured apoptotic cells. J Exp Med, 2000, 191: 411-416.
    32. Garza KM, Chan SM, Suri R, et al. Role of antigen-presenting cells in mediating tolerance and autoimmunity. J Exp Med, 2000, 191: 2021-2027.
    33.杨崇礼.再生障碍性贫血 见:《血液病诊断及疗效标准》张之南,沈悌主编.第二版,北京,科学出版社,1998年,第33-39页.
    34.和鸿,邵宗鸿,刘鸿等.与异常免疫相关的全血细胞减少症.中华血液学杂志,2001,22:79-82.
    35.付蓉,邵宗鸿,刘鸿等.与免疫相关的血细胞减少患者骨髓造血细胞自身抗体的研究.中华血液学杂志,2003,24:177-180.
    36.付蓉,邵宗鸿,和虹等.免疫相关性全血细胞减少症患者骨髓 B淋巴细胞数量及凋亡相关蛋白水平.中华血液学杂志,2002,236-238.
    37. Cammita BM. What is the definition of the cure for aplastic anemia? Acta Haematol, 2000, 103: 16-18.
    38. Gluckman E, Esperon-Bourdeau H, Baruchel A, et al. Multicenter??randomized study comparing cyclosporine A alone and antithymocyte globulin with prednisone for treatment of severe aplastic anemia. Blood, 1992, 79: 2540-2546.
    
    39. Frickhofen N, Rosenfeld SJ. Immunosuppressive treatment of aplastic anemia with antithymocyte globulin and cyclosporine. Semin Hematol, 2000, 37:56-68.
    
    40. Frickhofen N, Kaltwasser JP, Schrezenmeier H, et al. Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. N Eng J Med, 1991, 324: 1297-1304.
    
    41. Rosenfeld SJ, Kimball J, Vining D, et al. Intensive immunosuppression with antithymocyte globulin and cyclosporine as treatment for severe acquired aplastic anemia. Blood, 1995, 85: 3058-3065.
    1.邵宗鸿,陈桂彬,张泓等.再生障碍性贫血患者骨髓造血干/祖细胞c-kit受体的表达.中华血液学杂志,1999,20:532-534.
    2.陈桂彬,邵宗鸿,贾海蓉,等.再生障碍性贫血患者骨髓造血干/祖细胞体外增殖分化特征的研究.中华血液学杂志,1999,20:529-531.
    3. Kojima S. Hematopoietic growth factors and marrow stroma in aplastic anemia. Int J Hematol, 1998, 68:19-28.
    4. Scopes J, Daly S, Atkinson R, et al. Aplastic anemia: evidence for dysfunctional bone marrow progenytor cells and the corrective effect of granulocyte colonu-stimulating factor in vitro. Blood, 1996,87:3179-3185.
    5. Martinez-Jaramillo G, Flores-Figueroa E, Gomez-Morales E, et al. Tumor necrosis factor-alpha levels in long-term marrow cultures from patients with aplastic anemia: modulation by granulocyte-macrophage colony-stimulating factor. Am J Hematol, 2001,68:144-148.
    6.何广胜,邵宗鸿,刘鸿等.50例长期存活的重型再生障碍性贫血患者的随访.中华血液学杂志,2002,23:229-232.
    7. Holmberg L, Seidel, K, Leisenring W, et al. Aplastic anemia: Analysis of stromal cell function in long-term marrow cultures. Blood, 1994,84:3685-3690.8. Krieger-Slanika M, Nisen C, Wodnar-Filipowicz A, et al. Stem cell factor in aplastic anemia: in vitro expression in bone marrow stroma and fibroblast cultures. Eur J Haematol, 1995, 54:262-269.
    
    9. Kojima S, Matsuyama T, Kodera Y, et al. Hematopoietic growth factors released by marrow stroma cells from patients with aplastic anemia. Blood, 1992,79:2256-2261.
    
    10. Hotta T, Kato T, Maeda H, et al. Functional changes in marrow stroma cells in aplastic anemia. Acta Haematol, 1985, 74:65-69.
    
    11. Marsh JCW, Chang J, Testa NG, et al. The hematopoietic defect in aplastic anemia assessed by long-term maeeow culture. Blood, 1990,76:1748-1757.
    
    12. Chiu KM, Knospe WH. Immunologically mediated aplastic anemia mice: effecs of varying the soure and composition of donor cells. Exp Hematol, 1987,15:269-275.
    
    13. Wolk A, Simon-Stoos K, Nami I, et al. A mouse modelof immu-mediated aplastic anemia. Blood, 1998, 90:158a.
    
    14. Viale M, Merli A, Baciglupo A. Analysis at the clonal level of T-cell phenotype and function in severe aplastic anemia. Blood, 1991, 78:1268-1274.
    
    15. Young NS. Immune pathophysiology of acquired aplastic anemia. Eur J Haematol, 1996,57:55-59.
    
    16. Young NS. Hmatopoietic cell destruction by immune mechanism inacquired aplastic anemia. Semin Hematology, 2000,37:3-14.
    
    17. Maciejewski JP, Hibbs JR., Anderson S, et al. Bone marrow and periphral blood lymphocyte phenotype in patients with bone marrow failure. Exp Hematol, 1994,22:1102-1110.
    
    18. Kook H, Zeng W, Guibin C, et al. Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia. Exp Hematol, 2001,29:1270-1277.
    
    19. Melenhorst JJ, van Krieken JHJM, Dreef, E, et al. Tcells selectively infiltrate bone marrow areas with residual haemopoiesis of patients with acquired aplastic anemia. Br J Haematol, 1997,99:517-519.
    
    20. Mnaz CY, Dietrich PY, Schnuriger V, et al. T-cell receptor J3 chain variability in bone marrow and periphral blood in severe acquired aplastic anemia. Blood Cells Mol and Dis, 1997,23:110-122.
    
    21. Chapuis B, Von Fliedner VE, Jeannet M, et al. Increased frequency of DR2 in patients with aplastic anemia.and increased DR sharing in their parents. BR J Haematol, 1986,63:51-57.
    
    22. Nimer SD, Ireland P, Meshkinpour A, et al. An increased HLA DR2 frequency is seen in aplastic anemia patients. Blood, 1992,79:2532-2535.
    
    23. Nakao S, Yamaguchi M, Saito M, et al. HLA-DR2 predicts a favorable response to cyclosporine therapy in patients with bone marrow failure. Am J Hematol, 1992,40:239-240.
    24. Ilhan O, Beksac M, Koc H, et al. HLA-DR frequency in Turkish aplastic anemia patients and the impact of HLA-DR2 positivyty in response rate in patients receiving immuneosuppressive therapy. Blood, 1995, 86:2055.
    
    25. Kapustin SI, Popova TI, Lyshchov AA, et al. HLA-DR-Ala74β is associated with risk and poor outcome of severe aplastic anemia. Ann Hematol, 2001, 80: 66-71.
    
    26. Nakao S, Takami A, Takamastu H, et al. Isolation of a Tcell clone showing HLA-DRB 1*0405-restricted cytotoxicity for hematopoietic clls in a patient with aplastic anemia. Blood, 1997,89:3691-3699.
    
    27. Teramura M, Kobayashi S, Iwabe K, et al. Mechanism of action of antithymocyte globin in the treatment of aplastic anemia: in vitro evidence for the presence of immunosuppressive mechanism. Br J Heamatology, 1997, 96: 80-84.
    
    28. Zoumbos, NC, Gascon F, Djeu JY, et al. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc Natl Acad Sci USA, 1985,82:188-122.
    
    29. Mamus SW, Becker-Schroeder S, Zanjani ED. Suppression of normal human erythropoiesis by gamma interferon in vitro: role of monocytes and T-lymphocytes. J Clin Invest, 1985,75:1496-1502.
    
    30. Nakao S. Immune mechanism of aplastic anemia. Int J Hematol, 1997,66:127-134.
    31. NisticoA, Young NS. Gamma-interferon gene expression in the bone marrow of patients with aplastic anemia. Ann Inter Med, 1994, 120:463-469.
    
    32. Maciejewski JP, Selleri T, Young NS, et al. Fas antigen expression on CD34+ human marrow cells is induced by interferon-gamma and tumor necrosis factor-alpha and potentiates hematopoietic suppression in vitro. Blood, 1995,85:3183-3190.
    
    33. Nagafuji K, Shibuya T, Harada M, et al. Functional expression of Fas antigen (CD95) on hematopoietic progenitor cells. Blood, 1995,86:883-889.
    
    34. Maciejewski JP, Selleri C, Sato T, et al. Increasd expression of Fas antigen on CD34 cells of patients with aplastic anemia. Br J Haematol, 1995,91:245-252.
    
    35. Selleri C, Anderson S, Young NS, et al. Interon-γ and tumor necrosis factor-a suppressive both early and late stages of hematopoiesis and induced programmed cell death. J Cell Physiol, 1995,165:538-546.
    
    36. Selleri C, Maciejewski JP, Young NS, et al. Interon-y constitutively expressed in the stromal microenvironment of human marrow cultures mediated hematopoietic inhibition. Blood, 1996,87:4149-4157.
    
    37. Liu H, Mihara K, Kimura A, et al. Induction of apoptosis in CD34+ cells by sera from patients with aplastic anemia. Hiroshima J MedSci 1999,48:57-63.
    38. Hsu HC, Tsai WH, Chen LY, et al. Production of hematopoietic regulatory cytokines by peripheral blood mononuclear cells in patients with aplastic anemia. Exp Hematol, 1996,24:31-36.
    39. Nakao S, Takamasm H, Yachie A, et al. Establishment of a CD4+ T cell clone recognizing autologous hematopoietic progenitor cells from a patient with aplastic anemia. Exp Hematol, 1995,23:433-438.
    40. Romagnami S. Human Th1 and Th2 subsets: doubt no more. Immunol Today, 1991, 12: 256-257.
    41. Dufour C, Corcione A, Svahn J, et al. Interferon gamma and tumour necrosis factor alpha are overexpressed in bone marrow T lymphocytes from paediatric patients with aplastic anaemia. Br J Haematol 2001,115:1023-1031.
    42. Sloand E, Kim S, Maciejewski JP, et al. Intracellular interferon-gamma in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia. Blood, 2002,100:1185-1191.
    43.和虹,何广胜,邵宗鸿等.TH1 细胞在再生障碍性贫血发病机制中的作用.中华血液学杂志,2002,23:574-577.
    44. Frickhofen N, Rosenfeld S. Immunosuppressive treatment of aplastic anemia with antithymocyte globulin and cyclosporine. Semin Hematol, 2000, 37:56-68.45. Killick SB, Marsh JCW, Gordon-Smith E, et al. Effects of antithymocyte globulin on bone marrow CD_(34)~+ cells in aplastic anemia and myelodysplasia. Br J Haematol, 2000, 108: 582-591.
    46. Killick SB, Cox CV, Marsh JCW, et al. Mechanisms of bone marrow progenitor cell apoptosis in aplastic anemia and the effect of antithymocyte globulin: examination of the role of the Fas-Fas-L interaction. Br J Haematol, 2000, 111:1164-1169.
    47. Contractor NV, Bassiri H, Reya T, et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol, 1998, 386-394.
    48. Xanthoudakis S, Viola JPB, Shaw, KTY, et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science, 1996, 272: 892-895.
    49. Nabel GJ. A transformed view of cyclosporine. Nature, 1999, 397:471-472.
    50. Tisdale JF, Dunn DE, Maciejewski J. Cyclophosphamide and other new agents for the treatment of severe aplastic anemia. Semin Hematol, 2000, 37: 102-109.
    51. Gluckman E, Esperon-Bourdeau H, Baruchel A, et al. Multicenter randomized study comparing cyclosporine A alone and antithymocyte globulin with prednisone for treatment of severe??aplastic anemia. Blood, 1992, 79: 2540-2546.
    52. Frickhofen N, Kaltwasser JP, Schrezenmeier H, et al. Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. N Eng J Med, 1991, 324: 1297-1304.
    53. Rosenfeld SJ, Kimball J, Vining D, et al. Intensive immunosuppression with antithymocyte globulin and cyclosporine as treatment for severe acquired aplastic anemia. Blood, 1995, 85: 3058-3065.
    54.何广胜,邵宗鸿,张益枝等.序贯强化免疫抑制并用造血生长因子治疗重型再生障碍性贫血.中华血液学杂志,2001,22:177-181.
    55. Marsh J, Schrezenmeier H, Marrin P, et al. Prospective randomized multicenter study comparing cyclosporine alone versus the combination of antithymocyte globulin and cyclosporine for treatment of patients with nonsevere aplastic anemia: a report from the European Blood and Marrow Transplant (EBMT) Severe Aplastic Anemia Working Party. Blood, 1999, 93:2191-2195.
    56.邵宗鸿,郑以洲,张益枝,等.长效睾丸酮合并环孢霉素A治疗慢性再生障碍性贫血.中华血液学杂志,1998,19:175-177.
    57. Brodsky RA, Sensenbrenner LL, Jone RJ, et al. Complete remission in severe aplastic anemia after high-dose cyclophosphamide without??bone marrow transplantation. Blood, 1996, 87: 491-494.
    
    58. Tisdale JF, Dunn DE, Geller N, et al. High-dose cyclophosphamide in severe aplastic anemia: a randomized trival. Lancet, 2000, 356:1554-1559.
    
    59. Arpinati M, Green CL, Heimfeld S, et al. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood, 2000, 95: 2484-2490.
    
    60. Bacigalupo A, Bruno B, Saracco P, et al. Antilymphocyte globulin, cyclosporine, and granulocyte colony-stimulating factor for severe aplastic anemia: an update of the GITMO/EBMT study on 100 patients. Blood, 2000, 95: 1931-1934.
    
    61.Kojima, S, Hibi S, Kosaka Y, et al. Immunosuppressive therapy using antithymocyte globulin, cyclosporine and danazol with or without human granulocyte colony-stimulating factor in children with acquired aplastic anemia. Blood, 2000, 96: 2049-2054.
    
    62. Locasciulli A, Arcese W, Locateli F, et al. Treatment of aplastic anemia with granulocyte-colony stimulating factor and risk of malignancy. Lancet, 2001, 357:43-44.
    
    63. Podesta M, Piaggio G, Frassoni, F et al. The assessment of the hematopoietic reservoir after immunosuppressive therapy or bone marrow transplantation in severe aplastic anemia. Blood, 1998, 91:1959-1965.
    64. Brummendorf TH, Maciejewski JP, Mak J, et al. Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood, 2001, 97: 895-900.
    
    65. Kojima, S, Nakao S, Tomouaga M, et al. Consensus conference on the treatment of aplastic anemia. Int J Hematol, 2000, 72: 118-123.
    
    66. Socie G, Rosenfeld S, Frickhofen N, et al. Late clonal disease of treated aplastic anemia. Semin Hematol, 2000, 37:91-101.
    
    67. Cammita BM. What is the definition of the cure for aplastic anemia? Acta Haematol, 2000, 103: 16-18.
    1. Pfeiffer C, Stein J, Southwood S, et al. Altered peptide ligands can control CD_4~+ T lymphocyte differentiation in vivo. J Exp Med. 1995; 181: 1569-1573.
    2. Lappin MB, Campbell JDM. The Th1-Th2 classification of cellular immune responses: concepts, current thinking and application in haematological malignancy. Blood Rev. 2000, 14:228-239.
    3. Rogers PR, Crofe M. Peptide dose, affinity, and time of differentiation can contribute to the Th_1/Th_2 cytokine balance. J Immunol. 1999, 163: 1205-1213.
    4. Rulifson IC, Sperling AI, Fields PE, et al. CD_(28) costimulation promotes the production of Th2 cytokine. J Immunol. 1997, 158: 658-665.
    5. Webb LMC, Feldmann M. Critical role of CD28/B7 costimulation in the development of human Th2 cytokine-producing cells. Blood, 1995,86:3479-3486.
    6. Skapenko A, Lipsky PE, Kraetsch HG, et al. Antigen-independent Th2 cell differentiation by stimulation of CD28: regulation via IL-4 gene expression and mitogen-activated protein kinase activation. J Immunol. 2001, 166:4283-4292
    7. Shahinian A, Pfeffer K, Lee KP, et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science,??1993,261:609-612.
    8. Schafer PH, Wadsworth SA, Wang L, et al. p38α mitogen-activated protein kinase is activated by CD28-mediated signaling and is required for IL-4 production by human CD_4~+CD_(45)RO~+ T cell and Th2 effector cells. J Immunol. 1999, 162: 7110-7119.
    9. Kuchroo VK, Das MP, Brown JA, et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell, 1995,80:707-718.
    10. Lesage S, Goodnow CC. Et al. Organ-specific autoimmune disease: a deficiency of tolerogenic stimulation. J Exp Med, 2001, 194:F31-F36.
    11. Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, constimulates T-cell proliferation and interleukin-10 secretion. Nat Med, 1999, 5:1365-1369.
    12. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immnoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 2000,192:1027-1034.
    13. Collins M, Carreno BM. The B7 family ofligand and its receptors: new pathway for constimulation and inhibition of immune responses. Ann Rev Immunol, 2002,20:29-53.14. Dong C, Flaveell RA. Th1 and Th2 cells. Curr Opin Hematol, 2001, 8:47-51.
    
    15. Rogers PR, Crof M. CD_(28), OX-40, LFA-1, and CD_4 modulation of Th_1/Th_2 differentiation is directly on the dose of antigen. J Immunol.2000, 164: 2955-2963.
    
    16. Liu YJ. Dendritic cell subsets and lineages, and their function in innate and adaptive immuneity. Cell, 2001,106:259-262.
    
    17. Rogge L, Barberis-Maino L, Biffi M, et al. Selection expression of an interlrukin-12 receptor component by human T helper 1 cells. J Exp Med. 1997, 185: 825-831.
    
    18. Szabo SJ, Dighe AS, Gubber U, et al. Regulation of the interleukin 12 R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med. 1997, 185: 817-824.
    
    19. Murphy E, Shibuya K, Hosken N, et al. Reversibility of T helper 1 and 2 population is lost after long-term stimulayion. J Exp Med. 1996, 183: 901-913.
    
    20. Xu D, Chan WL, Leung BP, et al. Selective expression and function of interleukin 18 receptor on Thelper (Th) type 1 but not Th2 cells. J. Exp. Med. 1998; 188: 1485-92.
    
    21. Peins A, Gupta S, Gollb KJ, et al. Lack of interferon gamma receptor beta chain and the prevation of interferon gamma signaling in Th1 cells. Science, 1995; 269: 245-
    22. Tan GZ, vonderWeid T, Lu B, et al. Interferon γ signaling alters the function oft helper type 1 cells. J. Exp. Med. 2000, 192: 977-986.
    23. Kaplan, MH, Grusby MJ. Regulation of T helper cell differentiation by STAT molecules. J Leukoc Biol, 1998, 64:2-5.
    24. Szabo S J, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 2000, 100:655-669.
    25. Zheng WP, Flavell RA. The transcription factor GATA-3is necessary and sufficient for Th2 gene expression in CD_4~+T cells. Cell, 1997,89:587-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700