轮毂电机转矩优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源与环境问题日益突出,电动汽车开始成为未来汽车工业发展的主要方向,其驱动电机如同内燃机汽车的发动机一样是非常关键的动力执行部件,主要分为集中式电机驱动和轮毂电机驱动。与传统的集中电机驱动相比,使用轮毂电机轮驱动系统可以简化驱动系统和整车结构,减小机械效率损失,同时各轮毂电机的驱动力可独立控制,动力学控制非常灵活、方便。但轮毂电机受限于轮毂内有限的体积,驱动扭矩较小,目前还难以满足汽车对动力性的需求,因此本文对电机控制策略进行了研究,分析了影响转矩输出的影响因素,从而得出优化电机转矩输出的方法,使电机在现有技术条件下尽可能的输出其应有的转矩。
     目前电机控制理论的发展主要集中在降低电机参数时变特性对电机控制系统稳定性的影响,较少关注其导致的电机输出转矩下降问题。电机参数变化对磁场定向准确性的影响导致了电机无法完全获得其全部输出转矩,同时电机逆变器中PWM信号频率也会对转矩输出有所影响。因此本文从优化转矩输出的角度,对PWM变频频率策略和电机进角控制策略进行了深入研究:
     本文首先介绍了轮毂电机技术目前的研究状况和应用现状,对比分析了几种适用于轮毂电机的电机类型。由于永磁同步电机较高的功率密度,可在低速下获得较高的输出转矩等特性,在轮毂电机应用中具有明显优势,因此选择永磁同步电机作为本文研究对象。然后对电机控制理论的发展状况进行了阐述,在总结各种研究成果的基础上,提出了对轮毂电机应用的转矩优化思路。
     对永磁同步电机的空间矢量控制和直接转矩控制这两种基本的控制算法进行了对比分析,由于空间矢量的控制方法扭矩波动小,低速时可获得全负荷输出,更适合轮毂电机使用,因此本文基于矢量控制研究电机输出扭矩的优化算法。首先从PWM变频控制的角度研究了扭矩优化策略,通过对PWM开关频率对电机性能影响的分析,得出了较低的PWM频率可减小电机逆变器的损耗,同时利用了谐波扭矩,可在低速下获得更高的输出转矩,并由此设计了相应的变频控制策略以提高低速下电机性能。其次从进角控制的角度进行了扭矩优化策略的研究,对影响磁场定向准确度因素进行分析,主要包括三个方面:(1)位置传感器的测量精度影响(2)电机参数时变特性的影响(3)换向延迟角的影响。针对这种复杂的、非线性的外界干扰,提出了基于直轴电流反馈的控制策略和神经网络前馈的控制策略,通过对比可知,神经网络的控制策略要更适合进行进角控制,以直轴电流最小为控制目标进行设计,可以提升高速时电机输出转矩。
     通过Simulink商业化的工具箱Simscape建立了电机仿真模型,并根据实际的电机控制芯片工作原理,建立了PWM信号发生器和死区模块,以精确模拟实际的电机控制过程。对本文提出的转矩优化策(PWM变频控制策略和进角控制策略)进行了设计并建立了相应的控制模型。对这两种控制策略分别进行了仿真验证,仿真结果表明PWM变频控制利用谐波扭矩增加了低速下电机输出扭矩,进角控制则通过神经网络控制算法减小了换相延迟角从而增加了高速下电机输出扭矩。最后综合运用这两种控制模块进行了仿真,仿真结果表明该控制策略提高了整体的电机输出扭矩,电机的性能得到提高。
     为了快速进行实物验证,搭建了基于Simulink的电机控制器快速原型开发平台。通过对Matlab的快速原型技术机制进行研究,得出了广泛适用于各种微控制器芯片的快速原型设计方法,该方法通过对系统目标文件的编写,使Matalb的自动代码生成功能可支持多种微控制器芯片型号,不再受其芯片型号的限制。该方法是对Matlab原有快速原型技术的一种扩充,使Matlab快速原型技术不再局限在常用的芯片平台,对于任何一种控制器芯片,均可采用该方法使Matlab快速原型技术支持该芯片,从而使科研人员能够集中更多精力在控制算法的研究上,而不是嵌入式代码的编写。应用该方法对轮毂电机控制器的快速原型进行了设计,硬件基于TI公司C2000系列DSP的电机控制器解决方案,搭建了针对该解决访案的快速原型平台,采用AD2S1210对位置传感器进行解码,AD7606检测电流传感器的信息。对已经通过仿真验证的矢量控制算法模型生成了对应的嵌入式C代码,实现了轮毂电机控制器的快速原型。
     基于所设计的电机控制器,搭建了电机试验台架,对电机的参数进行了试验,并根据本文提出的方法得出了相应的转矩优化策略。对所设计的优化策略进行了相关试验和对比分析,通过实验数据可以看出,所设计的转矩优化策略提高了电机矢量控制时磁场定向的准确性,从而提高了电机性能。
     本文对影响电机输出转矩的因素进行了分析,并针对这些影响因素设计了相应的转矩优化策略,通过仿真和台架的试验验证,证实了该优化策略可提高电机输出转矩,为轮毂电机在电动汽车上的应用奠定了基础。
With the energy and environment issues becoming more prominent, the electric vehiclebecomes the main development direction of automobile industry in the future. Its drivingmotor, which is divided into centralized driving motor and in-wheel motor, is the key poweroutput part, just as the engine in the traditional vehicle. Comparison with traditionalcentralized driving motor, the transmission system can be simplified and the mechanicalefficiency losses are deduced with the in-wheel motor. Meanwhile, each wheel can be drivenindependently and thus the dynamic control is easy to achieve. But the output torque islimited by the space in the wheel and is hard to meet the torque demands of vehicle. So inthis paper, the motor control strategy is researched in the aspect of torque optimization. Theinfluences on output torque are analyzed and the strategy of torque optimization is obtained.With the optimization, the proper torque of motor is generated as more as possible on thecurrent technology condition.
     For now, the motor control theories are focusing on the influence reducing on thecontrol system stability by the varying characteristics of motor parameters. But the motortorque decline problem caused by the varying motor parameters is less concerned. The motorcan’t generate the whole torque because of the inaccuracies field orientation which could becaused by varying motor parameters. In addition, the motor output torque is also affected bythe Pulse Width Modulation (PWM) signal frequency in the motor inverter. So from theperspective of optimizing the torque output, the variable PWM frequency control strategyand motor timing control strategy is researched in the paper.
     At first, the present research and application situation of in-wheel motor are introduced,and the types of in-wheel motor are analyzed comparatively. Finally the Permanent MagnetSynchronous Motor (PMSM) is chosen in the paper. Because the PMSM has higher powerdensity and higher torque at low speed which are the obvious advantages in the in-wheelmotor application. Then the motor theory development situation is elaborated, and based on the summarization of various research results, the torque optimization methods for in-wheelmotor are proposed.
     The two basic control algorithms of PMSM, the space vector modulation control andthe direct torque control, are analyzed comparatively. As the space vector modulation controlhas small torque ripple and could get full load output, which is more suitable for thein-wheel motors. The motor torque optimization algorithm is researched based on spacevector modulation control in the paper. Firstly, the torque optimization strategy is studiedthrough variable PWM frequency control. Based on analyzing the influence of PWMfrequency on motor performance, the conclusion that lower PWM frequency decreases thelosses on the motor inverter and getting higher output torque at low speed by utilizingharmonic torque is obtained. Then the corresponding variable frequency control strategy isdesigned to improve motor performance at low speed. Secondly, the torque optimizationstrategy is studied through timing control. The influences on field orientation accuracy areanalyzed, which include the influence of position sensor accuracy, varying motor parametersand commutation delay angle. For the complex and nonlinear disturbance, the controlstrategies based on direct-axis current feedback and neural network feedforward areproposed. By comparing the strategies, the neural network control is more suitable for timingcontrol, and the motor torque output is improved at high speed with the design purpose ofzero direct-axis current.
     A motor simulation model is built with Simscape, a commercial toolbox in Simulink.And a PWM signal generator with dead band module is built based on actual operatingprinciple of Motor control chip to simulate actual motor control process accurately. Thetorque optimization strategy, PWM frequency conversion control strategy and angle timingcontrol strategy, is proposed in this paper. The two strategies are verified in the simulationand the result shows that the low speed output torque of motor is increased with PWMfrequency conversion control by utilizing harmonic torque, and the high speed output torqueof motor is increased with timing control by decreasing commutation delay angle throughneural network Control algorithm. Finally, the torque optimization control combined with the two control strategy is simulated, and the result shows that the optimization strategyincreases the motor output torque in the whole speed range and the performance of the motoris improved.
     In order to verify physical model quickly, a rapid prototyping development platform formotor controller based on Simulink is built. Through the study of the mechanism of rapidprototyping technology in Matlab, a rapid prototyping method is obtained that can be usedwidely in all kinds of micro controller chip. This method, based on writing the system targetfile, can make various micro controller chip supported by the automatic code-generationfunction of Matlab, no longer will it be restricted by the type of chip. The method is anextension to the original Matlab rapid prototyping technology, to make the Matlab rapidprototyping technology no longer confined to the common chip platform. For any kind ofcontroller chip, this method can be used to make the chip supported by the Matlab rapidprototyping technology, which enables researchers to focus more energy on the research ofcontrol algorithm, instead of writing embedded codes. Based on the motor controllersolutions of Texas Instruments (TI) Company’s C2000series, the rapid prototyping design ofin-wheel motor controller is accomplished with the method, and rapid prototyping platformis set up aiming at the solution. The AD2S1210chip is used to decode the position sensorand the AD7606chip is used to measure current sensor output. Using the model of vectorcontrol algorithm which has been validated by computer simulation, the correspondingembedded C code is generated, and the rapid prototyping of in-wheel motor controller isachieved.
     Based on the motor controller designed, a motor test bench is built. The characteristic ofmotor is tested in this bench and the corresponding torque optimization strategy is proposedin this paper. Tests are also carried out to validate the optimization strategy. The Resultshows that the designed torque optimization strategy promotes the accuracy of fieldorientation of vector control and so the performance of motor.
     The factors that can affect the output torque of motor are analyzed, and thecorresponding torque optimization strategy is designed aiming at the factors. The Results of simulation and test show that the optimization strategies can promote the output torque andlay foundations for the applying of in-wheel motor in electric vehicles.
引文
[1]宫海龙.高转矩永磁轮毂电机磁系统的研究[D]:哈尔滨工业大学,2011.
    [2]刘金峰,张学义,扈建龙.电动汽车驱动电机发展展望[J].农业装备与车辆工程,2012,(10):35-37+57.
    [3]褚文强,辜承林.国内外轮毂电机应用概况和发展趋势[J].微电机,2007,(09):77-81.
    [4]李乐.四轮独立驱动电动车控制系统的设计[D]:武汉理工大学,2010.
    [5]蒋振江.四轮独立驱动电动汽车驱动控制策略的研究[D]:重庆理工大学,2012.
    [6] Tahara Y, Mizutani R, Tojima Y et al. Development of an in-wheel motor system[J].Review of Automotive Engineering,2007,28(3):371-376.
    [7]喻凡,张勇超,张国光.车辆电磁悬架技术综述[J].汽车工程,2012,(07):569-574.
    [8] Kaneko Y, Hirano H, Shishido K et al. Development of compact and high outputin-wheel-motor unit[J]. Review of Automotive Engineering,2010,31(FINAL):140-143.
    [9]宁国宝,万钢.轮边驱动系统对车辆垂向性能影响的研究现状[J].汽车技术,2007,(03):21-25.
    [10]王桂姣.电动汽车轮毂电机驱动系统的运动特性与能量分配[D]:武汉理工大学,2009.
    [11]褚文强,辜承林.电动车用轮毂电机研究现状与发展趋势[J].电机与控制应用,2007,(04):1-5.
    [12]易将能,韩力.电动车驱动电机及其控制技术综述[J].微特电机,2001,(04):36-38.
    [13] Yun S-Y, Lee J. Implementation of in-wheel motor driving system for electricvehicle[J]. Transactions of the Korean Institute of Electrical Engineers,2013,62(6):750-755.
    [14]崔纳新,张承慧,孙丰涛.异步电动机的效率优化快速响应控制研究[J].中国电机工程学报,2005,(11):118-123.
    [15]刘旭.异步电动机无速度传感器矢量控制系统研究[D]:上海大学,2010.
    [16]张娟萍.无刷直流电机在电动汽车中的应用研究[J].汽车工程师,2010,(10):57-58.
    [17]莫会成.永磁无刷电动机系统发展现状[J].电气技术,2007,(10):16-23.
    [18]钱苗旺,谭国俊,马秀丽等.电动车用永磁无刷电动机比较综述[J].微特电机,2008,(11):56-60.
    [19]聂兵.开关磁阻电机的工作原理分析[J].工业控制计算机,2011,(05):105-107.
    [20]孙振兴.开关磁阻电动机调速技术的研究[D]:山东大学,2010.
    [21]郑洪涛.开关磁阻电动机驱动系统建模及其控制策略研究[D]:浙江大学,2003.
    [22] Bai L. The design and research of permanent magnet synchronization electric machinevector control system:2011International Conference on Mechatronic Science, ElectricEngineering and Computer, MEC2011, August19,2011-August22,2011,2011[C].IEEE Computer Society,2011.
    [23]谷峪.电动汽车用永磁同步电机控制系统研究与设计[D]:武汉理工大学,2007.
    [24] Lin W, Liu D, Wu Q. A modified vector control of PMSM based on matrix converter:2nd International Conference on Digital Manufacturing and Automation,2011[C].Zhangjiajie: IEEE Computer Society,2011.
    [25] Xuan H, Yu H. Modeling and simulation of vector control and variable-frequencyregulating speed system of asynchronous motor based on Matlab:2011InternationalConference on Consumer Electronics, Communications and Networks,2011[C].XianNing: IEEE Computer Society,2011.
    [26] Jiefan C, Yue F, Xia Y. Improved direct torque control of permanent magnetsynchronous motor:4th IEEE Conference on Industrial Electronics and Applications,2009[C]. Xi'an: IEEE Computer Society,2009.
    [27] Liao Y, Feng X, Zhao X et al. Research and simulation on constant switchingfrequency of direct torque control(DTC):11th International Conference on ElectricalMachines and Systems,2008[C]. Inst. of Elec. and Elec. Eng. Computer Society,2008.
    [28] Sheng Y, Yu S, Hong Z. A novel control method for permanent magnetismsynchronous motor direct torque control system:27th Chinese Control Conference,July16-July18,2008[C]. Kunming: Inst. of Elec. and Elec. Eng. Computer Society,2008.
    [29]张颖.基于DSP的高速无刷直流电机智能控制系统的研究与实现[D]:东华大学,2010.
    [30]朱鹤树.基于DSP2812的无刷直流电机智能控制系统的设计[D]:东华理工大学,2012.
    [31]蔡自兴,陈海燕,魏世勇.智能控制工程研究的进展[J].控制工程,2003,(01):1-5+10.
    [32]孙增圻,张再兴.智能控制的理论与技术[J].控制与决策,1996,(01):1-8.
    [33] Hakiki K, Meroufel A, Cocquempot V et al. A new adaptive fuzzy vector control forpermanent magnet synchronous motor drive:18th Mediterranean Conference onControl and Automation, June23-June25,2010[C]. Marrakech: IEEE ComputerSociety,2010.
    [34] Tlemcani A, Chekireb H, Boucherit MS et al. Decentralized direct adaptive fuzzycontrol of permanent magnet synchronous motor[J]. Mediterranean Journal ofMeasurement and Control,2008,4(1):33-43.
    [35] Kadjoudj M, Taibi S, Benbouzid MEH et al. Permanent-magnet-synchronous-motorspeed control using fuzzy adaptive controller[J]. Advances in Modelling and AnalysisC,2007,62(3-4):43-55.
    [36] Soliman HFE, Elbuluk ME. Improving the torque ripple in DTC of PMSM using fuzzylogic:2008IEEE Industry Applications Society Annual Meeting, October5-October9,2008[C]. Edmonton: Institute of Electrical and Electronics Engineers Inc.,2008.
    [37] Butt C, Rahman MA. Untrained artificial neuron based speed control of interiorpermanent magnet motor drives over full operating speed range:201146th IEEEIndustry Applications Society Annual Meeting, October9-October13,2011[C].Orlando: Institute of Electrical and Electronics Engineers Inc.,2011.
    [38] Butt CB, Azizur Rahman M. Untrained artificial neuron-based speed control of interiorpermanent-magnet motor drives over extended operating speed range[J]. IEEETransactions on Industry Applications,2013,49(3):1146-1153.
    [39] Benchabane F, Titaouine A, Bennis O et al. Systematic fuzzy sliding mode approachcombined with extented Kalman filter for permanent magnet synchronous motorcontrol:2010IEEE International Conference on Systems, Man and Cybernetics,October10-October13,2010[C]. Istanbul: Institute of Electrical and ElectronicsEngineers Inc.,2010.
    [40] Benchabane F, Titaouine A, Bennis O et al. Systematic fuzzy sliding mo de approachcombined with extended kalman filter for permanent magnet synchronous motorcontrol[J]. Mediterranean Journal of Measurement and Control,2011,7(1):183-189.
    [41]尚喆.永磁同步电动机磁场定向控制的研究[D]:浙江大学,2007.
    [42]陈永军.低速大转矩永磁同步电机直接转矩控制研究[D]:华中科技大学,2008.
    [43]徐艳平,钟彦儒,杨惠.永磁同步电机矢量控制和直接转矩控制的研究[J].电力电子技术,2008,(01):60-62.
    [44]杨建飞.永磁同步电机直接转矩控制系统若干关键问题研究[D]:南京航空航天大学,2011.
    [45]张彩霞.大型省级电网企业数据中心的研究与建设[J].硅谷,2011,(19):92-93+112.
    [46]汤新舟.永磁同步电机的矢量控制系统[D]:浙江大学,2005.
    [47] Shinnaka S. New dynamic mathematical model and new dynamic vector simulators ofhybrid-field synchronous motors:2005IEEE International Conference on ElectricMachines and Drives, May15,2005[C]. San Antonio: Institute of Electrical andElectronics Engineers Computer Society,2005.
    [48] Tobari K, Endo T, Iwaji Y et al. Examination of new vector control system ofpermanent magnet synchronous motor for high-speed drives[J]. IEEJ Transactions onIndustry Applications,2009,129(1):36-45+35.
    [49]银英君,林荣文.基于Simulink永磁同步电机矢量控制系统仿真[J].东方电气评论,2010,(02):55-58.
    [50]徐艳平,钟彦儒.基于占空比控制的永磁同步电机新型直接转矩控制策略[J].电工技术学报,2009,(10):27-32.
    [51] Yang J, Zheng J, Yang M et al. Direct torque control system without speed sensor ofdoubly fed generator based on mras[J]. Taiyangneng Xuebao/Acta Energiae SolarisSinica,2011,32(8):1222-1229.
    [52]谢哲锋.基于电流矢量和开关表控制的电机调速系统[D]:广西大学,2010.
    [53]王成元,夏加宽,孙宜标.现代电机控制技术[M].机械工业出版社,2008.
    [54] Cheng W, Xu G, Feng J et al. Study of torque angle control based on BP neuralnetwork for brushless DC motor applied to electric vehicles[J]. Diangong JishuXuebao/Transactions of China Electrotechnical Society,2006,21(3):62-66.
    [55] Dost P, Jarzabek SR, Sourkounis C. Optimization of D-Q-hysteresis controller:201315th European Conference on Power Electronics and Applications, September2-September6,2013[C]. Lille: IEEE Computer Society,2013.
    [56] Qu C-M, Shi S-J, Xue S-G et al. Research on hysteresis bandwidth adaptivealgorithms in DTC systems[J]. Dianzi Keji Daxue Xuebao/Journal of the University ofElectronic Science and Technology of China,2013,42(1):75-80.
    [57]任志斌.电动机的DSP控制技术与实践[M].中国电力出版社.2012.
    [58]马欣,刘卫国,吴转峰.改进滞环比较器的永磁同步电动机直接转矩控制[J].微电机(伺服技术),2006,(01):6-8+12.
    [59]李晓峰.变频调速系统在起重机上的应用[J].科技咨询导报,2007,(16):48-49.
    [60]苏建徽,陈梅.矢量控制系统电流调节器设计及补偿控制方式[J].合肥工业大学学报(自然科学版),1997,(05):109-114.
    [61]桂林.永磁同步电机直接转矩控制算法仿真研究[D]:武汉理工大学,2012.
    [62]吴茂刚.矢量控制永磁同步电动机交流伺服系统的研究[D]:浙江大学,2006.
    [63] Li B, Lin H. Direct control of current vector for surface-mounted permanent magnetsynchronous motor[J]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of theChinese Society of Electrical Engineering,2011,31(SUPPL.1):288-294.
    [64] Yang W, Xu W, Xiao X. Torque ripple reduction strategy of model based predictivetorque control for doubly salient permanent magnet synchronous machines:4th AnnualIEEE Energy Conversion Congress and Exposition, September15-September20,2012[C]. Raleigh: IEEE Computer Society,2012.
    [65] Zhang Y, Ge J, Wang S. Energy-consumed braking phase trajectory of induction motorbased on Bang-Bang optimal theory[J]. Diangong Jishu Xuebao/Transactions of ChinaElectrotechnical Society,2011,26(2):74-80.
    [66]梁振鸿. PWM过调制技术在电动汽车用永磁同步电机控制中的应用[D]:中国科学院研究生院(电工研究所),2002.
    [67]袁永春.永磁无刷电机控制器研制及控制算法研究[D]:杭州电子科技大学,2012.
    [68] Maswood AI. A switching loss study in spwm igbt inverter:2008IEEE2ndInternational Power and Energy Conference, December1-December3,2008[C].Johor Baharu: Inst. of Elec. and Elec. Eng. Computer Society,2008.
    [69] Turner RW, Walton S, Duke R. Technique to improve IGBT converter efficiency andtransient response:200813th International Power Electronics and Motion ControlConference, September1-September3,2008[C]. Poznan: Inst. of Elec. and Elec. Eng.Computer Society,2008.
    [70] Wei L, McGuire J, Lukaszewski RA. Analysis of PWM frequency control to improvethe lifetime of PWM inverter[J]. IEEE Transactions on Industry Applications,2011,47(2):922-929.
    [71] Kim L-H, Hahm N-K, Lee W-C et al. Analysis of a new PWM method for conductedEMI reduction in a field oriented controlled induction motor:21st Annual IEEEApplied Power Electronics Conference and Exposition, March19-March23,2006[C].Dallas: Institute of Electrical and Electronics Engineers Inc.,2006.
    [72] Sahoo SK, Bhattacharya T, Aravind M. A synchronized sinusoidal PWM based rotorflux oriented controlled induction motor drive for traction application:28th AnnualIEEE Applied Power Electronics Conference and Exposition, March17-March21,2013[C]. Long Beach: Institute of Electrical and Electronics Engineers Inc.,2013.
    [73]曾聪,刘涤尘.空间矢量脉宽调制技术的算法及其仿真研究[J].电力科学与工程,2009,(08):5-9.
    [74]郎宝华,刘卫国,周熙炜等.空间矢量脉宽调制的仿真研究及应用[J].电机与控制应用,2007,(08):6-9+29.
    [75] Cui H, Wang F, Liang Z et al. Current harmonics reduction of square wave inverter byusing adjustable filter for high speed motor power supply:11th InternationalConference on Electrical Machines and Systems,, October17-October20,2008[C].Wuhan: Inst. of Elec. and Elec. Eng. Computer Society,2008.
    [76] Hwang J-C, Wei H-T. The current harmonics elimination control strategy for six-legthree-phase permanent magnet synchronous motor drives[J]. IEEE Transactions onPower Electronics,2014,29(6):3032-3040.
    [77] Li Y, Lu H, Qu W et al. PMSM current harmonics suppression based on feedforwardcompensation[J]. Qinghua Daxue Xuebao/Journal of Tsinghua University,2012,52(3):362-366.
    [78] Li H, Wang C. A method for getting optimum commutation advance angle in BrushlessDC motor:2nd World Congress on Computer Science and Information Engineering,June17-June19,2012[C]. Changchun: Springer Verlag,2012.
    [79] Sue S-M, Wu K-L, Syu J-S et al. A phase advanced commutation scheme forIPM-BLDC motor drives:20094th IEEE Conference on Industrial Electronics andApplications, May25-May27,2009[C]. Xi'an: IEEE Computer Society,2009.
    [80] Abu-Rub H, Guzinski J, Krzeminski Z et al. Advanced Control of Induction MotorBased on Load Angle Estimation[J]. IEEE Transactions on Industrial Electronics,2004,51(1):5-14.
    [81] Holling GH. Novel approach to controlling the phase angle of a variable switchedreluctance motor for electric vehicle propulsion using the statistic matrix norm:Proceedings of the2nd IEEE International Symposium on Requirements Engineering,March27-March29,1994[C]. York: IEEE,1994.
    [82] Sharma VK, Akhter HE. Performance analysis of switched reluctance motor operatingwith fixed advance angle control scheme[J]. Journal of the Institution of Engineers(India): Electrical Engineering Division,2002,82(MAR):281-287.
    [83]吴红星,洪俊杰,李立毅.基于旋转变压器的电动机转子位置检测研究[J].微电机,2008,(01):1-3+9.
    [84]吕娜.基于旋转变压器的电机转子位置检测电路设计[J].机械制造与自动化,2012,41(1):153-155.
    [85]滑莎.功率电感磁饱和电流测试电路的研究[D]:河北科技大学,2011.
    [86]徐丽娜.神经网络控制(第三版)[M].北京:电子工业出版社,2009.
    [87]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [88]施彦,韩力群,廉小亲.神经网络设计方法与实例分析[M].北京:北京邮电大学出版社,2009.
    [89]杨立永,付严伟.表贴式永磁同步电机的抗饱和弱磁控制研究[J].电气传动,2013,43(2):27-30.
    [90]李强,王民钢,杨尧.快速原型中Simulink模型的代码自动生成[J].电子测量技术,2009,(02):28-31.
    [91]高兴泉,王立国.基于SIMULINK/SIMSCAPE的计算机控制系统仿真实验平台[J].实验技术与管理,2013,(09):88-92.
    [92] Ji J-K, Yong-Seok L, Cha G-S. Implementation of vector control for SPMSM usingmodel based controller design in MATLAB/SIMULINK[J]. Transactions of the KoreanInstitute of Electrical Engineers,2008,57(8):1383-1391.
    [93]于泳,魏彦江,王高林. IGBT的死区补偿方法研究[J].电力电子技术,2007,(12):126-128.
    [94]高豪,穆帅.基于DSP的PWM波形产生方法[J].电脑与信息技术,2008,(06):79-81.
    [95]郝继飞,邢青青,张琳.基于S-Function的PWM控制系统仿真[J].电力自动化设备,2007,(01):50-52.
    [96]薛毓强,刘斌.基于空间矢量PWM技术的零矢量分配问题分析[J].电机与控制学报,2010,(08):93-97.
    [97]杨阳.汽车用电机驱动器逆变器关键技术[D]:吉林大学,2013.
    [98]汤筱飞.基于DSP的PWM变频器的研究[D]:湖南大学,2005.
    [99]郭利辉,周雅.基于MATLAB神经网络工具箱的BP网络设计[J].信息技术与信息化,2009,(03):20-22.
    [100] Hecht-Nielsen R. Neurocomputing[M]. Addison-Wesley,1990.
    [101]蔡兵. BP神经网络隐层结构的设计方法[J].通化师范学院学报,2007,(02):18-19.
    [102]饶莹,郑建勇.一种基于最速下降算法的基波提取自适应滤波器[J].电力自动化设备,2006,(08):19-22+44.
    [103]王益群,唐勇,姜万录等.神经网络软测量模型中全共轭梯度算法[J].机械工程学报,2005,(06):97-101.
    [104]陈小磊.分数阶理论在BP神经网络中的应用[D]:南京林业大学,2013.
    [105]郑明文.径向基神经网络训练算法及其性能研究[D]:中国石油大学,2009.
    [106]夏玫. BP神经网络泛化能力改进研究[D]:太原科技大学,2009.
    [107]柳小桐. BP神经网络输入层数据归一化研究[J].机械工程与自动化,2010,(03):122-123+126.
    [108]杨明,张冰,王子才.建模与仿真技术发展趋势分析[J].系统仿真学报,2004,(09):1901-1904+1913.
    [109]张慧杰,胡国清,刘文艳等.快速原型技术研究综述[J].机械,2004,(06):1-3+7.
    [110]邱宝梅,左文英,王凤娟.基于Simulink/RTW的汽车电子控制系统的研究[J].计算机测量与控制,2011,(05):1086-1088.
    [111]翁公羽,刘杰.基于模型的嵌入式代码快速生成[J].单片机与嵌入式系统应用,2011,(03):12-14.
    [112]王巍.一种DSP建模调试及代码生成工具的设计与实现[D]:西安电子科技大学,2010.
    [113]周锦峰,苏春艳.使用autoconf和automake生成Makefile文件[J].云南大学学报(自然科学版),2006,(S2):157-163.
    [114]卞学飞.基于DSP的RTW代码自动生成技术研究[D]:电子科技大学,2012.
    [115]王洪斌,吴健珍,杨香兰等. Simulink(S-function)在复杂控制系统仿真中的应用[J].系统仿真学报,2001,(S1):131-132+167.
    [116]侯浩亮,姚新宇,冯晓梅等. C MEX S函数在Simulink中的应用[J].微计算机信息,2010,(19):140-141+180.
    [117]沈艳霞,纪志成.基于C MEX S-函数永磁同步电机控制系统仿真建模研究[J].系统仿真学报,2005,(08):1820-1825.
    [118]郭捷.基于TMS320F28335的交流伺服电机控制系统研究[D]:华中科技大学,2012.
    [119]梁家威,钟汉如.基于AD2S1210的转子位置转速检测方法研究[J].微电机,2013,(05):48-50+69.
    [120]王玉珏,翁浩宇,张海勇等.基于AD2S1210的电机解码系统设计[J].电子技术应用,2013,(02):48-51.
    [121]陶海军,张一鸣,曾志辉.基于AD7606的多通道数据采集系统设计[J].工矿自动化,2013,(12):110-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700