空间大型机械臂关节控制系统及轨迹规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对空间探索的深入,空间机器人系统逐渐成为开发太空资源的有效工具,尤其是空间大型机械臂在国际空间站的建设和维护中发挥了不可替代的作用。空间大型机械臂具有输出力矩大、工作空间大、控制精度高、设计寿命长、可靠性要求高等特点,因此,与其相关的各种设计和控制技术都具有很大的挑战性。随着我国载人空间站建设步伐的推进,空间大型机械臂技术受到了国家相关部门的高度重视,已经成为国内航天领域的一大研究热点。本文在“空间大型机械臂地面原理样机的研制”项目支持下,着重对该系统的关键部件——关节控制系统进行了深入研究,旨在研制出一种具有高可靠性、高精度、强容错能力等特点的关节控制系统,并在此基础上围绕机械臂关节高精度位置控制技术、振动抑制策略,以及机械臂笛卡尔空间的轨迹规划方法等问题展开深入研究。
     针对空间大型机械臂寿命长和可靠性要求高,但在轨维护困难等特点,提出了一种基于FPGA-FPGA的可重构关节控制系统。该系统在FPGA内嵌的微处理器支持下,利用软硬件结合的方法实现了CAN通讯管理、传感器信息采集与处理、电机驱动、运动控制、轨迹规划等复杂功能,兼具冷备份和热备份两种控制结构的优点,且能够在主份和备份子控制系统之间发生多个不重合故障的情况下,通过重组优质资源来维持关节功能的完备性。在同样计算假设条件下,相对于传统冷备份控制结构,电机伺服单元的可靠性从92.25%提高到了95.9%。在此基础上,针对空间环境特点,设计了电源管理系统和温度控制系统,并采取相应的抗辐射措施,从设计角度尽可能地提高了关节控制系统的可靠性。
     为了实现双绕组永磁同步电机的高效、容错控制,本文以单绕组工作情况为基础,利用VHDL语言在FPGA控制器上通过硬件逻辑实现了电机电流的抗饱和矢量闭环控制。控制周期小于50μs,有利于提高系统的响应速度和抗干扰能力,进而提出了一种新的双绕组永磁同步电机容错矢量控制方法,既实现两套绕组电流均衡控制,又能够在单个控制器发生故障的情况下维持电机的不间断运行,从而使电机伺服系统的容错能力得到进一步的提高。同时,本文设计了贯穿关节控制器、机械臂中央控制器、宇航员三个层次的故障检测与容错策略,实现了故障的实时检测和容错处理,从运行控制的角度保证了机械臂工作的安全性。
     为了提高柔性关节输出端的位置控制精度,本文设计了一种级联型非线性抗饱和全闭环控制器,由带速度前馈的非线性位置环、二自由度抗饱和速度环以及抗饱和电流环构成,具有全局渐进稳定性。实验结果表明,该控制器能够在关节发生较大柔性变形的情况下保证关节输出端的位置控制精度。此外,本文利用机械臂名义计算力矩信息,从力矩传感器反馈信息中分离出由振动引起的力矩分量,然后将该分量用于关节振动的负反馈控制。实验结果表明,此项措施能够快速抑制关节的柔性振动,且基本不影响轨迹跟踪精度。
     由于空间机械臂与其载体之间存在动力学耦合,利用逆广义雅可比矩阵的方法虽然可以实现自由漂浮空间机械臂末端位姿的规划,但无法约束机械臂运动对载体姿态产生的扰动影响。为解决这一问题,实现机械臂末端在笛卡尔空间多位置点约束条件下运动路径的优化设计,本文首先利用改进三次样条函数对机械臂末端运动轨迹进行参数化,将机械臂运动对载体姿态的扰动量表达为关于样条函数插值点以及相邻约束位姿之间运动时间的目标函数,继而采用遗传算法实现目标函数全局优化处理。仿真结果表明,该方法能够在多个目标位姿约束条件下,有效减小空间机械臂运动对载体姿态产生的扰动影响。
In the wake of developments in space exploration, robotic system has graduallybecome a useful tool of opening up space resources, especially are the space largemanipulators playing an irreplaceable role in the construction and maintenance of theinternational space station. The space large manipulators are characterized by highoutput torque, wide working space, high control accuracy, long design life-span, andhigh reliability; thus the design and control techniques related to the space largemanipulator are extremely challenging. With the development of manned space stationin China, the space large manipulator technique has attracted much attentions of therelevant departments of the government, and been becoming a research hotspot in thedomestic space field. Supported by the project titled Development of Ground PrinciplePrototype for Space Large Manipulator, my doctoral work was devoted to developing ajoint control system (a key component of the space large manipulator system) with highreliability, high precision, and strong fault tolerance. On the basis of it, the workfocusing on the high-precision position control and vibration suppression strategy forthe robotic joint, and the trajectory planning method in the Cartesian space for themanipulator was conducted for a further investigation.
     On-orbit maintenance for the space large manipulator system is difficult to becarried out, whereas the mission of the space large manipulator system demands longlife-span and high reliability. A reconfigurable joint control system was thereforedeveloped on the basis of FPGA-FPGA to resolve the contradictions. Supported by theembedded microprocessor of FPGA, the design methodology combining hardware andsoftware was adopted to realize some specific functions, such as CAN communicationmanagement, sensor information collection and processing, motor drive, motion controland trajectory planning, etc. The merits of both cold-backup and hot-backup structureswere integrated into the newly proposed joint control system. Moreover, thecompleteness of joint function can be maintained via reorganization of fine resources incase of multiple misalignment faults between the master and slave control sub-systems.Compared to the traditional cold-backup structure of the controller, the reliability of themotor servo unit was raised from92.25%to95.90%. Furthermore, a powermanagement system and a temperature control system were designed with the corresponding anti-radiation measures, aiming to make the joint control system adapt tothe space environment. Thus the reliability of the joint control system can be improvedfrom the view of design as much as possible.
     To achieve the effective and fault-tolerant control of the servo system of dual-winding PMSM, the anti-windup vector closed-loop control of motor current with thecycle shorter than50μs was realized by means of hardware logic of FPGA using VHDLlanguage, when only single winding of the motor was at work. The response speed andanti-jamming ability of the motor servo system were therefore improved. A fault-tolerant vector control method for dual-winding PMSM was also presented, which wascapable of keeping current balance between the two windings of PMSM andmaintaining continuous operation of the motor even if one of the joint controllers failedto work. As a consequence, the fault-tolerant ability of motor servo system would befurther improved. Meanwhile, the real-time fault detection and the corresponding fault-tolerant solution were performed throughout the joint controller, the central controller ofrobotic arm, and the astronaut. That is, the security of manipulator can be guaranteedfrom the view of operation control.
     A cascade non-linear global close-loop anti-windup controller, composed of non-linear position control loop with speed feedforward,2-dof anti-windup speed controlloop and anti-windup current loop, was developed to improve the position controlaccuracy of the flexible joint’s output port. The controller exhibited global asymptoticstability. The experimental results indicated that the newly proposed controller was ableto guarantee the position control accuracy of the output port, even when a relativlylarger plastic deformation existed in the joint. In addition, the nominal calculated outputtorque of the joint was used to decompose the torque components, which were causedby the joint vibration, from the feedback information provided by the torque sensor. Thedecomposed torque components would be used for the negative feedback control ofjoint vibration. The experimental results showed that the approach was capable ofsuppressing the vibration of the joint rapidly, exerting little influence on the precision oftrajectory tracking.
     The terminal position and attitude of the free-floating space manipulator systemcan be planned using the inverse generalized Jacobian matrix method. However, theattitude disturbance of basement arising from the motion of manipulator cannot berestrained, as a result of the dynamic coupling between the space manipulator and its basement. To optimize the path of the space manipulator tip under the condition ofmulti-position restraint in the Cartesian space, the motion trajectory was parameterizedon the basis of revised cubic spline. The disturbance of basement arising from themotion of manipulator was thus expressed by the objective function about theinterpolating point of the spline and the migration time between two adjacent restrainedpositions. The global optimization of the objective function was realized using thegenetic algorithm. The simulation results indicated that the presented approach caneffectively reduce the influence of disturbance on the attitude of basement, which wascaused by the motion of manipulator, under the condition that the restraints wereexerted on multiple objective positions and attitudes of the manipulator tip.
引文
[1]于登云,孙京,马兴瑞.空间机械臂技术及发展建议[J].航天器工程,2007,6(4):1-8.
    [2]张凯锋,周晖,温庆平,等.空间站机械臂研究[J].空间科学学报,2010,30(6):612-619.
    [3]秦文波,陈萌,张崇峰,等.空间站大型机构研究综述[J].上海航天,2010,(4):32-42.
    [4] Piedboeuf J C, Dupuis E. Recent Canadian Activities in Space Automation&Robotics-An Overview[C]//7th ESA Workshop on Advanced Space Technologiesfor Robotics and Automation, Noordwijk,2002:1-10.
    [5] Doctor F, Glas A, Pronk Z. Mission Performance Preparation Support of theEuropean Robotic Arm(ERA)[C]//Proceedings of the7th ESA Workshop onAdvanced Space Technologies for Robotics and Automation, ESTEC, Noordwijk,2002:1-8.
    [6] Heemskerk C, Petersen H, Aris L, et al. ERA Operations Verification Results andLessons Learned[C]//Proceedings of the8th ESA Workshop on Advanced SpaceTechnologies for Robotics and Automation, Noordwijk,2004:1-8.
    [7] Patten L, Evans L, Oshinowo L, et al. International Space Station Robotics: AComparative Study of ERA, JEMRMS and MSS[C]//7th ESA Workshop onAdvanced Space Technologies for Robotics and Automation, Noordwijk, TheNetherlands,2002:1-8.
    [8] Nguyen P K, Ravindran R, Carr R, et al. Structural Flexibility of the Shuttle RemoteManipulator System Mechanical Arm[C]//Guidance and Control Conference, AIAA(Series),82-1536:246-256.
    [9] Bos J F T, Oort M J A. Failure Detection, Isolation and Recovery System Conceptfor the European Robotic Arm[C]//The International Conference on Safety andReliability ESREL'97, Lisbon, Portugal,1997.
    [10] Matsueda T, Naoki S, Takahisa S, et al. Safty Approach of Japenese ExperimentModule Remote Manipulator System[C]//Proceedings of5th InternationalSymposium on Artificial Intelligence. Robotics and Automation in Space.
    [11]潘博,于登云,孙京.大型空间机械臂关节动力学建模与分析研究[J].宇航学报,2011,31(11):2448-2455.
    [12]潘博,孙京,于登云.大型空间机械臂容错关节设计与控制[J].机械传动,2010,34(9):1-5.
    [13]谭益松,刘伊威,介党阳,等.空间大型末端执行器柔性钢丝绳的建模与捕获动力学[J].机器人,2011,33(1):434-439.
    [14]谭益松,刘伊威,刘宏,等.大型空间末端执行器在轨操作运输舱策略[J].机械工程学报,2011,47(3):110-115.
    [15]介党阳,倪风雷,谭益松,等.基于分布式控制系统的空间大型末端执行器抓捕策略[J].机器人,2011,33(4):435-439.
    [16]谭春林,刘新建.大型挠性空间机械臂动力学与减速比对振动抑制影响[J].国防科技大学学报,2009,31(4):102-106.
    [17]谭春林.大型挠性空间机械臂振动抑制的一种关节控制策略[J].动力学与控制学报,2009,7(3):275-278.
    [18]张晓东.空间柔性机械臂控制策略研究[D].北京:北京邮电大学,2008:49-54.
    [19] Yohsuke F, Noriyasu I, Mitsushige O. Capture and berthing experiment of a massiveobject using ETS’s-Ⅶ's space robot[J]. AIAA-2000-4537:634-638.
    [20] Albu-Schaffer A, Bertleff A, Rebele W, et al. ROKVISS-Robotics ComponentVerification on ISS, Current Experimental Results on Parameter Identification[C]//Proceedings of the IEEE International Conference Robotics and Automation.Orlando, Florida,2006:3879-3885.
    [21] Wu E C, James C H, Jonhn T C. Fault-tolerant Joint Development for the SpaceShuttle Remote Manipulator System: Analysis and Experiment[J]. IEEETransactions on Robotics and Automation,1993,9(5):675-684.
    [22] Eugene W, Myron D, James H. A Fault Tolerant Joint Drive System for the SpaceShuttle Remote Manipulator System [C]//Proceedings of the1991IEEEIntemational Conference on Robotics and Automation. Sacramento, California,1991:2504-2509.
    [23] Rajnish Kumar, Robert Hayes. System Requirements and Design Features of SpaceStation Remote Manipulator System Mechanisms[C]//25th Aerospace MechanismsSymposium. NASA,Washington D.C.,1991:337-351.
    [24] Baker F C, Favre E. European Robotic Arm (ERA) Manipulator Joint System MotorUnit and Tribological Brake[C]//Proceedings of the8th European Symposium,Toulouse, France(ESASP),1999:111-118.
    [25] Nguyen P K, Ravindran R, Carr R, et al. Structural Flexibility of the Shuttle RemoteManipulator System Mechanical Arm.
    [26] Ballantyne W J. Joint Drive Development for the Space Station RemoteManipulator System[C]//Canadian Conference on Electrical and ComputerEngineering, Ottawa, Ontario, Canada,1990:50.4.1-50.4.5.
    [27] Mugnuolo R, Pippo S D, Magnani P G. The SPIDER Manipulation System (SMS):The Italian Approach to Space Automation[J]. Robotics and Autonomous Systems,1998,23:79-88.
    [28] Ananthakrishnan S, Wahbah M M. Control of Flexible Space Station RemoteManipulator Training System[C]//The Second IEEE Conference on ControlApplications, Vancouver, B C,1993:15-20.
    [29] Heemskerk C J M. Overview of Software Engineering Applications in the EuropeanRobotic Arm[C]//Proceedings of the DASIA Conference on Data Systems inAerospace. Sevilla, Spain,1997:26-29.
    [30]倪风雷.空间机械臂关节驱动及控制系统的研究[D].哈尔滨:哈尔滨工业大学.2006:34-37,69-72.
    [31] Matsueda T, Naoki S, Takahisa S, et al. Safety Approach of Japanese ExperimentModule Remote Manipulator System[C]//Proc. Fifth International Symposium onArtificial Intelligence, Robotics and Automation in Space,1990(ESA SP-440):531-537.
    [32] Bos J F T, Bosman R A. Control of the Joint Runaway Hazard for the EuropeanRobotic Arm[C]//International Conference on Safety and Reliability ESREL’98,Trondheim, Norway,1998:16-19.
    [33] Mozzon J M, Crausaz A, Favre E, et al. Torque Control of the European RoboticArm(ERA)[C]//Proceedings of the Fifth European Space Power Conference,Tarragona, Spain,1998:335-342.
    [34]朱耀忠,王自强.飞行控制用无刷直流电动机的电磁设计[J].北京航空航天大学学报,2000,26(3):58-61.
    [35]郝振洋,胡育文,黄文新.电力作动器中永磁容错电机及其控制系统的发展[J].航空学报,2008,29(1):149-158.
    [36]王自强,朱耀忠,陈杰峰.飞行控制用无刷直流电动机的结构设计[J].北京航空航天大学学报,2003,29(9):779-782.
    [37]李榕,刘卫国,马瑞卿.双余度无刷直流电动机伺服系统电流均衡性研究[J].电工技术学报,2005,20(9):77-81.
    [38] Hirzinger G, Landzettel K, Reintsema D, et al. ROKVISS–Robotics componentVerification on ISS[C]//Proc of the8th International Symposium on ArtificalIntelligence, Robotics and Automation in Space, Munich, Germany,2005.
    [39]胡跃明.非线性控制系统理论与应用[M].国防工业出版社,2002:89-111.
    [40] Spong M W. Modeling and Control of Elastic Joint Robots[J]. Journal of DynamicsSystems, Measurement, and Control,1987,109:310-319.
    [41] Albu-Schaeffer A, Hirzinger G. State Feedback Controller for Flexible Joint Robots:A Globally Stable Approach Implemented on DLR's Lightweight Robots[C]//IEEEInternational Conference on Intelligent Robotic Systems,2000:1087-1093.
    [42] De Luca A, Lucibello P. A General Algorithm for Dynamic Feedback Linearizationof Robots with Elastic Joints [C]//Proceedings of the IEEE InternationalConference of Robotics and Automation. Leuven, Belgium: IEEE,1998:504~510.
    [43] Palli G, Melchiorri C, De Luca A. On the Feedback Linearization of Robots withVariable Joint Stiffness [C]//2008IEEE International Conference on Robotics andAutomation Pasadena, CA, USA,2008:1753-1759.
    [44] Tian L, Goldenberg A A. Robust Adaptive Control of Flexible Joint Robots withJoint Torque Feedback[C]//ICRA,1995, RA-3(4):1229-1234.
    [45] Abdollahi F, Talebi H A, Patel R V. A Stable Neural Network-Based Observer withApplication to Flexible-Joint Manipulators[J]. IEEE Transactions on NeuralNetworks,2006,7(1):118-129.
    [46] Shi J X, Albu-Schaeffer A, Hirzinger G. Key Issues in Dynamic Control ofLightweight Robots for Space and Terrestrial Applications[C]//IEEE InternationalConference of Robotics and Automation,1998:490-498.
    [47] Shi J X, Hirzinger G. Robust Torque Control for Robot Joints With Flexibility[C]//IFAC Workshop on Motion Control, Grenoble, France,1998:21-23.
    [48] Yaun J, Stepanenko Y. Composite Adaptive Control of Flexible Joint Robots[J].Automatica,1993,29(3):609-619.
    [49] Colbaugh R, Glass K. Adaptive Task-Space Control of Flexible-JointManipulators[J]. Journal of Intelligent and Robotic Systems,1997,20(2-4):225-249.
    [50] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive ControlDesign[M]. Wiley, New York,1995.
    [51] Zhu W H,Doyon M. Adaptive control of harmonic drives[C]//Proc. of43rd IEEEConference on Decision and Control, The Atlantis, Bahamas, December2004:2602-2608.
    [52] Arimoto S. State-of-the-art and Future Research Direction of Robot Control, IFACSymposium on Robot Control, Capri, Italy,1994:3-14.
    [53] Tomei P. A Simple PD Controller for Robots with Elastic Joints[J]. IEEETransactions on Automatic Control,1991,36(10):1208-1213.
    [54] Zhang G G, Furusho J J. Control of Robots Arms Using Joint Torque Sensors[C]//International Conference on Robotics and Automation.1997:3148-3153.
    [55] Albu-Schaeffer A, Hirzinger G. State Feedback Controller for Flexible Joint Robots:A Globally Stable Approach Implemented on DLR's Lightweight Robots[C]//IEEEInternational Conference on Intelligent Robotic Systems,2000:1087-1093.
    [56] Kelly R. Global Positioning of Robot Manipulators via PD Control Plus a Class ofNonlinear Integral Actions[J]. IEEE Transactions on Automatic Control,43(7),1998:934-938.
    [57] Alvarez-Ramirez J, Santibanez V, Campa R. Stability of Robot Manipulators UnderSaturated PID Compensation[J]. IEEE Transactions on Control Systems Technology,16(6),2008:1333-1341.
    [58] Liu B S, Chen Z P. A Set of Globally Stable Output Feedback N-PID Regulators forRobotic Manipulators[C]//2009Second International Conference on IntelligentComputation Technology and Automation,2009:388-393.
    [59] Huang C, Peng X F. Output-Feedback PID Controllers for Robot Manipulators withJacobian Uncertainty[C]//Eighth International Conference on Intelligent SystemsDesign and Applications,2008:329-334.
    [60] Xie H P. Flexible Dynamic Modeling and Control for the Remote ManipulatorSystem[D]. Montreal, Quebec, Canada,1996:7-8.
    [61] Dubowsky S, Papadopoulos E.The Kinematics, Dynamics and Control of Free-Flying and Free-Floating Space Robotic Systems[J]. IEEE Transactions on Roboticsand Automation.1993,9(5):531-543.
    [62] Nakamura Y, Mukherjee R. Nonholonomic Path Planning of Space Robots via aBidirectional Approach[J]. IEEE Transactions on Robotics and Automation,1991,7(4):500-514.
    [63]戈新生,孙鹏伟.自由漂浮空间机械臂非完整运动规划的粒子群优化算法[J].机械工程学报,2007,43(4):34-38.
    [64]税海涛,彭胜军,马宏绪.自由飘浮空间机器人运动规划研究综述[J].自动化技术与应用,2009,28(11):1-6.
    [65]徐文福,强文义,李成,等.自由漂浮空间机器人路径规划研究进展[J].哈尔滨工业大学学报,2009,41(11):1-12.
    [66] Vafa Z. On the Dynamics of Manipulators in Space using the Virtual ManipulatorApproach[C]//Proceedings of the IEEE International Conference on Robotics andAutomation, NC.1987:579-585.
    [67] Fernandes C, Gurvits L, Li Z X. Near-optimal Nonholonomic Motion Planning for aSystem of Coupled Rigid Bodies[J]. IEEE Transactions on Automatic Control.1994,39(3):450-463.
    [68] Dubowsky S, Torres M. Path Planning for Space Manipulators to MinimizeSpacecraft Attitude Disturbances[C]//Proceedings of the IEEE InternationalConference on Robotics and Automation, Sacramento, California, USA,1991:2522-2528.
    [69] Yoshida K, Kurazume R, Umetani Y. Dual Arm Coordination in Space Free-flyingRobot[C]//Proceedings of the IEEE International Conference on Robotics andAutomation, Piscataway,1991:2516-2512.
    [70] Nenchev D, Umetani Y, Yoshida K. Analysis of a Redundant Free-flying Spacecraft/Manipulator System[J]. IEEE Transactions on Robotics and Automation,1992,8(1):1-5.
    [71]何光彩.自由飞行空间机器人姿态控制研究[D].哈尔滨:哈尔滨工业大学,1999:41-43.
    [72] Yamada K. Arm Path Planning for a Space Robot[C]//Proceedings of the IEEE/RSJInternational Conference on Intelligent Robots and Systems, Yokohama, Japan,1993:2049-2055.
    [73]徐文福,强文义,梁斌,等.自由漂浮空间机器人笛卡尔空间连续路径规划方法的研究[J].控制与决策.2008,23(3):278-282.
    [74] Chen G, Jia Q X, Sun H X, et al. Non-holonomic Path Planning of Space RobotBased on Newton Iteration [C]//Proceedings of the8th World Congress onIntelligent Control and Automation, Jinan, China,2010:6534-6538.
    [75] Suzuki T, Nakamura Y. Planning Spiral Motion of Nonholonomic SpaceRobots[C]//Proceedings of the IEEE International Conferences on Robotics andAutomation, Minneapolis, Minnesota,1996:718-725.
    [76] Papadopoulos E, Tortopidis I, Nanos K. Smooth Planning for Free-floating SpaceRobots Using Polynomials[C]//Proceedings of the IEEE International Conferenceon Robotics and Automation Barcelona, Spain,2005:4272-4277.
    [77]吴剑威,史示财,刘宏,等.空间机器人目标捕获过程中的载体姿态扰动优化[J].机器人,2011,33(1):16-27.
    [78]谭益松.空间大型末端执行器研制及其操作策略研究[D].哈尔滨:哈尔滨工业大学,2011:16-35.
    [79] Verzijden P, Petersen H, Visser M. ERA Performance Measurements TestResults[C]//7th ESA Workshop on Advanced Space Technologies for Robotics andAutomation 'ASTRA2002' ESTEC, Noordwijk, The Netherlands,2002:1-8.
    [80]黄建斌.人机碰撞环境中机械臂的笛卡尔阻抗控制系统研究[D].哈尔滨:哈尔滨工业大学,2008:25-26.
    [81]杨世宇,曹洲,薛玉雄.空间单粒子锁定及防护技术研究[J].核电子学与探测技术,2007,27(3):567-570.
    [82]陈乾宏,阮新波,严仰光.开关电源中磁集成技术及其应用[J].电工技术学报,2004,19(3):1-8.
    [83]陈佳果,王卫国.单端正激型开关电源的谐振去磁技术[J].电力电子技术,2007,41(8):60-62.
    [84] Bedingfield K, Leach R, Alexander M. Spacecraft System Failures and AnomaliesAttributed to the Natural Space Environment[M/OL]. NASA Reference Publication1390,1996.[2011-2-11]. http://maelabs.ucsd.edu/mae155/classes/wi05/space%0envt_nasa%20rp1390.pdf.
    [85]王同权,沈永平,王尚武,等.空间辐射环境中的辐射效应[J].国防科技大学学报,1999,21(4):36-39.
    [86] Robert T, Andre K, Chiaki M, et al. The Space-Flight Environment: TheInternational Space Station and Beyond[J]. Canadian Medical Association Journal.2009,180(12):1216-1220.
    [87]祁章年.中倾角近地轨道载人航天辐射危险性分析[J].航天医学与医学工程,1997,10(6):405-408.
    [88] Chan S. Architectures for a Space-Based Information Network with Shared On-Orbit Processing[D]. Massachusetts, USA: MIT,2000:42-44.
    [89]冯彦君,华更新,刘淑芬.航天电子抗辐射研究综述[J].宇航学报,2007,28(5):1071-1080.
    [90] Shaneyfelt M, Schwank J, Fleetwood D, et al. Annealing Behavior of LinearBipolar Devices with Enhanced Low-dose-rate Sensitivity[J]. IEEE Transactions onNuclear. Science,2004,51(6):3172-3177.
    [91]刘必鎏,杨平会,蒋孟虎,等.航天器单粒子效应的防护研究[J].航天器环境工程,2010,27(6):693-697.
    [92]刘征.单粒子效应电路模拟方法研究[D].合肥:国防科技大学,2006:6-13.
    [93]赖祖武.抗辐射电子学-辐射效应及加固原理[M].北京:国防工业出版社,1998:10-15.
    [94] Shamsi-Nejad M, Nahid-Mobarakeh B, Pierfederici S, et al. Fault Tolerant andMinimum Loss Control of Double-Star Synchronous Machines Under Open PhaseConditions[J]. IEEE Transactions on Industrial Electronics,2008,55(5):1956-1958.
    [95]陈荣.永磁同步电机伺服系统研究[D].南京:南京航空航天大学,2004:18-22.
    [96]倪风雷.空间机械臂关节驱动及控制系统的研究[D].哈尔滨:哈尔滨工业大学,2006:30-55.
    [97]李峰.矢量控制系统中优化PWM控制策略[D].天津:天津大学,2003:18-32.
    [98]杨明,李钊,胡浩,等.永磁同步伺服系统速度调节器抗饱和补偿器设计[J].电机与控制学报,2011,15(4):46-51.
    [99] Phil M, Matthew C. T. Anti-Windup Compensator Designs for NonsalientPermanent-Magnet Synchronous Motor Speed Regulators[J]. IEEE Transactions onIndustry Applications,2009,45(5):1598-1609.
    [100]窦丽华,董领逊,冯贺平.考虑饱和的PMSM速度调节的混杂MPC设计[J].电机与控制学报.2008,12(5):598-602.
    [101]Khan M A S K, Azizur Rahman M. Development and Implementation of a NovelFault Diagnostic and Protection Technique for IPM Motor Drives[J]. IEEETransactions on Industrial Electronics,2009,56(1):85-92.
    [102]Lu B, Sharma S. A Survey of IGBT Fault Diagnostic Methods for Three-PhasePower Inverters[C]//2008International Conference on Condition Monitoring andDiagnosis, Beijing, China,2008.
    [103]张兰红,胡育文,黄文新.三相变频驱动系统中逆变器的故障诊断与容错技术[J].电工技术学报,2004,19(12):1-9.
    [104]Lu B, Santosh K S. A Literature Review of IGBT Fault Diagnostic And ProtectionMethods for Power Inverters[J]. IEEE Transactions on Industry Applications,2009,45(5):1770-1777.
    [105]Fernando B, Michael W. D, Juan M. G, et al. Stator Windings Fault Diagnostics ofInduction Machines Operated from Inverters and Soft-Starters Using High-Frequency Negative-Sequence Currents[J]. IEEE Transactions on IndustryApplications,2009,45(5):1637-1646.
    [106]刘振兴.电机故障在线监测诊断新原理和新技术研究[D].武汉:华中科技大学,2004:62-86.
    [107]安群涛.三相电机驱动系统中逆变器故障诊断与容错控制策略研究[D].哈尔滨:哈尔滨工业大学,2011:2-12.
    [108]Peuget R, Courtine S, Rognon J P. Fault Detection and Isolation on a PWM Inverterby Knowledge-Based Model[J]. IEEE Transactions on Industry Applications,1998,34(6):1318-1326.
    [109]Tonshoff H K, Kummetz J. Active Compensation of Kinematic Errors in ServoDrives for Machine Tools and Robots[C]//American Control Conference, SanDiego, CA, June1999.
    [110]Dubowsky S. Dealing with Vibrations in the Deployment Structures of SpaceRobotic Systems[C]//Fifth International Conference on Adaptive Structures, SendaiInternational Center, Sendai, Japan,1994:5-7.
    [111]Adenilson R, Luiz C G, Bernd S. Joint Dynamics Modeling and ParameterIdentification for Space Robot Applications[J]. Mathematical Problems inEngineering, Hindawi Publishing Corporation,2007:1-19.
    [112]Le S w, Li G S. Study of Resolution for Harmonic Drives Controller with Frictionin Precision Robotic System[C]//2011Eighth International Conference on FuzzySystems and Knowledge Discovery (FSKD),2011:2404-2407.
    [113]Mostefai L, Denai M, Hori Y. Robust Tracking Controller Design With UncertainFriction Compensation Based on a Local Modeling Approach[J]. IEEE/ASMETransactions on Mechatronics,2010,15(5):746-756.
    [114]Freidovich L, Robertsson A, Shiriaev A, et al. LuGre-Model-Based FrictionCompensation [J]. IEEE Transactions on Control Systems Technology,2010,18(1):194-200.
    [115]Wang Y F, Wang D H, Chai T Y. Extraction and Adaptation of Fuzzy Rules forFriction Modeling and Control Compensation[J]. IEEE Transactions on FuzzySystems,2011,19(4):682-693.
    [116]Kennedy C W, Desai J P. Modeling and Control of the Mitsubishi PA-10Robot ArmHarmonic Drive System [J]. IEEE/ASME Transactions on Mechatronics,2005,10(1):263-274.
    [117]Zhang G, Junji F. Control of Robot Arms using Joint Torque Sensors [J]. IEEEControl Systems Magazine,1998,18(1):48-55.
    [118]Luh J Y S. Conventional Controller Design for Industrial Robots-A Tutorial [J].IEEE Transactions on Systems, Man and Cybernetics,1983, SMC-13(3):298-316.
    [119]Alvarez-Ramirez J, Kelly R, Cervantes I. Semiglobal Stability of saturated LinearPID Control for Robot Manipulators[J]. Automatica,2003,39(6):989-995.
    [120]张井岗,刘志远.交流伺服系统的二自由度内模控制[J].电工技术学报,2002,(8):45-48.
    [121]郑时雄,谢存禧译,理查德P保罗著.机器人操作手:数学、编程和控制[M].北京:机械工业出版社,1991:130-134.
    [122]Yao B, Al-Majed M, Tomizuka M. High Performance Robust Motion Control ofMachine Tools: An Adaptive Robust Control Approach and ComparativeExperiments [J]. IEEE/ASME Transactions on Mechatronics,1997,2(1):63-76.
    [123]Kenji K, Kondo S, Ohishi K. A Motion Control of Flexible Joint Based on VelocityEstimation [C]//Proceedings of the16th Annual Conference on IndustrialElectronics Society. USA,1990:279-284.
    [124]史也,梁斌,王学谦,等.基于量子粒子群优化算法的空间机器人非完整笛卡尔路径规划[J].机械工程学报,2011,47(23):65-73.
    [125]Michael A. Scott, Michael G. Gilbert. Active Vibration Damping of the SpaceShuttle Remote Manipulator System[J]. AIAA-91-2621-CP:194-204.
    [126]Papadopoulos E. Teleoperation of Free-floating Space Manipulator Systems[J].SPIE OE/Technology, Boston, MA.1992:122-133.
    [127]Papadopoulos E, Dubowsky S. On the Nature of Control Algorithms for Free-floating Space Manipulators[J]. IEEE Transactions on Robotics and Automation,1991,7(6):750-758.
    [128]Umetani Y, Yoshida K. Resolved Motion Rate Control of Space Manipulators withGeneralized Jacobian Matrix[J]. IEEE Transactions on Robotics and Automation.1989,5(3):303-314.
    [129]Traira Y, Sagara S, Katoh R. Digital Adaptive Control of Space Robot ManipulatorsUsing Transpose of Generalized Jacobian Matrix[C]//The IEEE InternationalConference on Intelligent Robots and Systems, Takamatsu, Japan,2000:1553-1558.
    [130]张小江,高秀华.三次样条插值在机器人轨迹规划应用中的改进研究[J].机械设计与制造,2008,(9):170-171.
    [131]李岩蔡远文.基于遗传算法的空间自由漂浮机械臂系统运动规划[J].航天控制,2012,30(1):40-53.
    [132] Papadopoulos E, Dubowsky S. Dynamic Singularities in the Control of Free-floating Space Manipulators[J]. ASME Journal of Dynamic Systems, Measurementand Control,1993,115(1):44-52.
    [133]Wampler C W. Manipulator Inverse Kinematic Solutions Based on VectorFormulations and Damped Leastsquares Methods[J]. IEEE Transactions on Systems,Man, and Cybernetics,1986,16(1):93-101.
    [134]Nenchev D N, Tsumaki Y, Uchiyama M. Singularity-consistent Parameterization ofRobot Motion and Control[J]. Internation Journal of Robotic Research.2000,19(2):159-182.
    [135]Senft V, Hirzinger G. Redundant Motions of Non-redundant Robots: A NewApproach to Singularity Treatment[C]//IEEE lnternational Conference on Roboticsand Automation, Nagoya, Japan,1995:1553-1558.
    [136]张福海.面向在轨维护的自由漂浮空间机器人运动规划与控制研究[D].哈尔滨:哈尔滨工业大学,2010:55-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700