挠性驱动单元及其在仿人双足步行机器人应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双足步行机器人的研究开始于上世纪60年代,经过50多年的发展已成为机器人技术领域的一个主要研究方向。人类常速步行着地冲击力为体重的3.5倍,跑步着地冲击为5倍,最大为7倍,人类肌肉具有缓冲减振作用,可在具有外界冲击时有效保护人体关节,而仿人机器人大多采用减速器等传动装置驱动,缺乏人类肌腱挠性,无法承受如此大冲击载荷;此外,人们对双足机器人的要求已不是实现步行运动这个单一指标,还希望让机器人从生物学角度更加与人相似,并且最大程度上节省能耗,因此需要一种轻型小巧、安装方便、挠性输出的驱动单元用于机器人步行研究。尽管挠性驱动可以缓冲减振,然而由于钢丝绳的粘弹性,驱动单元存在回差和滞后,难以实现机器人步行,研究基于挠性驱动单元的仿人双足步行机器人具有重要现实意义。
     本文对绳驱动挠性驱动单元及其在双足机器人上的应用进行了深入、系统的研究。主要研究了以下几方面内容:
     基于粘弹性动力学建立挠性驱动单元动力学模型,对钢丝绳连续介质进行离散化,将其模拟成微观下由多个弹簧和阻尼构成的粘弹性体,推导挠性驱动单元输出角度与输入角度以及关节两侧张力的关系,方便进行单元的力控制,算例验证该模型理论正确性;基于三维可变多义线用宏命令建立“钢丝绳-动滑轮”仿真模型,挠性驱动单元动力学仿真验证该方法有效性。
     为解决挠性驱动单元存在回差和滞后从而难以控制的问题,提出基于张力反馈和关节全闭环的控制方法。关节位置误差与速度误差反馈是在电机内部位置环与速度环的基础上引入关节的位置环与速度环,而对弹性变形的速度与加速度前馈,则是通过弹性变形公式求得钢丝绳伸长量,再根据伸长量求得需要前馈的速度与加速度,通过实时修改速度前馈系数与加速度前馈系数来达到补偿钢丝绳伸长量的目的,根据该控制策略设计挠性驱动单元控制器,该控制器实现对挠性驱动单元的误差补偿。研制挠性驱动单元样机,搭建驱动单元控制系统,通过性能测试实验验证该单元的驱动能力及控制器有效性。
     进行步行样本生成的研究。针对现有机器人步行稳定性判据的约束条件过于严格的问题,补充滑动及转动约束,并分析滑动及转动对机器人步行稳定判据的影响;由于钢丝绳的粘弹性特性,导致挠性驱动关节存在回差和滞后,因此对双足机器人步态产生一定影响,讨论挠性驱动的回差和滞后可能形成的机器人步行位相及游脚落地状态,带有挠性驱动单元的双足机器人仿真能够验证稳定性方面的理论。研究步行样本生成方法,提出一种用于机器人动力学分析的参数化曲面车桌模型及使用该模型生成双足机器人步行样本的方法,该方法采用B样条曲面作为双足机器人质心运动曲面,利用牛顿迭代法求解机器人质心运动从而生成步行样本,机器人质心按照步行周期做有规律的三维运动从而有效增大机器人步长,减小着地冲击,通过仿真验证理论正确性;
     研制带有挠性驱动单元的仿人双足机器人,搭建双足机器人控制系统,进行双足机器人步行实验;并进行对比步行实验,在挠性驱动单元分别采用张力反馈及关节全闭环控制器和PID轨迹跟踪控制器的情况下进行机器人步行实验,该实验验证挠性驱动控制器的有效性。
     通过对挠性驱动单元与其在双足机器人上的应用以及相关步行理论进行研究,双足步行机器人的部分关节实现挠性驱动,验证了挠性驱动对双足机器人的驱动能力以及挠性驱动控制器的有效性,为仿人双足步行机器人实现全部挠性驱动打下理论与实验基础。
Research of biped robot started in the1960s, which has become a major field ofrobotics research after more than50years of development. Impact force of humanwalking at a normal speed is3.5times of body weight, which is5times when running,even7times. Human muscle can buffer shock to protect the joints, while humanoidrobot mostly uses reducer drive which lacks for flexibility of human tendon. Humanoidrobot cannot afford such a large impact load, thus the robot walk speed is limited. Inaddition, humanoid robot need to be more similar to people from a biologicalperspective, a light small, easy installation, flexible output’s drive unit is needed forwalk robot research. A humanoid biped walk robot with two flexible drive units makesthe biped walk similar to people. Although flexible drive unit can buffer shock, steelrope’s viscoelastic will make the joint of the drive unit occor backlash and hysteresis,which is difficult to achieve robot walk. Research based on flexible drive unit ofhumanoid biped walk has important practical significance.
     In this paper, flexible drive unit and its application on the biped robot will bestudied in depth and systematic. The main study are following:
     A dynamic model of flexible drive unit is established based on viscoelasticdynamics. Steel rope of flexible drive unit is modeled as a viscoelastic by a number ofsprings and damper under the microscopic view. The relationship between the outputand input angle of flexible drive unit and tension on both sides of the joint is derived,which is used for tension control and the example shows the accuracy of dynamicmodel. The simulation model about steel rope and movable pulley is set up based on3Dvariable polylines. It’s easy and convenient using macro command to establish thesimulation system. This method solves a problem that it’s difficult to use discretemethod to establish steel rope and movable pulley model under the following dynamicssoftware, While contact between steel rope and object is omitted.
     It’s difficult to control for flexible drive unit due to the presence of backlash andhysteresis, and control research will be finished based on viscoelastic dynamic model.Joint position and joint velocity feedback is through the viscoelastic dynamic model,and joint velocity and acceleration feedforward is through the elastic deformation ofsteel rope. Joint position error and velocity error feedback is that joint position loop andspeed loop is based on the motor position loop and speed loop. Steel rope elongationcan be obtained by elastic deformation formula, and speed and acceleration feedforwardwill be obtained by the elongation. Real time modification of velocity feedforward andacceleration feedforward coefficient can achieve the purpose of compensating steel ropeelongation. Flexible drive unit controller is designed according to the above control strategy, which error compensation is achieved for flexible drive unit. Developprototype of flexible drive unit and set up its control system. The performance testprove the effectiveness of the proposed control strategy and its drive ability.
     The flexibility of steel rope have effects on gait stabilityfor robot, so it is necessaryto research on the stability of the robot. For the problem that constraints of existingrobot walking stability criterion are too strict, supplement sliding and rotationalconstraints are finished, and the effect of robot’s sliding and rotation on walkingstability criterion is analyzed. The backlash and hysteresis of flexible drive joints arecaused by the viscoelastic properties of steel rope, which have certain influence tobipedal robot gait. Hysteresis and walking foot landing phase of biped robot withflexible drive unit is discussed. The biped robot with flexible drive unit simulation canverify the stability theory. Walk sample generation method is researched, and aparametric surface vehicle table model used for robot dynamics analysis is proposed.walking sample generating method of biped robot by the vehicle table model isproposed too. B-spline surfaces is seen as bipedal robot centroid motion surface, andNewton iteration method is used to solve the robot COG motion to get walking samples.Robot COG motion is a regular3D robot in accordance with the walk cycle, whicheffectively increases the walk step and reduce the landing impact. A3D robot trajectorycan be planned without changing the model coordinate system, and the simulationresults show the correctness of the theory.
     A humanoid biped robot with flexible drive unit is developed, and the biped robotsystem is built. Biped robot walk experiments will be finished, and the robot can reach aspeed of0.1km/h. The robot can be buffered and damped due to the flexible drive unit.
     Based on the flexible drive unit and its applications and related theory on bipedrobot research, part joints of biped robot have achieved flexible driving, which verifiesthat the flexible drive unit has drive capability and buffer effort for biped robot. Thisresearch is a theoretical and experimental basis for full flexible drive unit of the bipedrobot.
引文
[1] Kamide H, Mae Y, Takubo T, et al. Direct comparison of psychological evaluationbetween virtual and real humanoids: Personal space and subjective impressions[J].International Journal of Human-Computer Studies,2014,72(5):451-459.
    [2] Kaneko K, Kanehiro F, Morisawa M, et al. Hardware improvement of cybernetichuman HRP-4C for entertainment use[C]. IEEE/RSJ International Conference onIntelligent Robots and Systems,2011:4392-4399.
    [3] Nishiwaki K, Kuffner J, Kagami S, et al. The experimental humanoid robot H7: aresearch platform for autonomous behaviour[J]. Philosophical Transactions of theRoyal Society A: Mathematical, Physical and Engineering Sciences,2007,365(1850):79-107.
    [4] Hashimoto K, Takezaki Y, Hattori K, et al. Development of New Biped FootMechanism Mimicking Human’s Foot Arch Structure[C]. Springer Vienna,2010:249-256.
    [5] Jun Y, Alspach A, Oh P. Controlling and maximizing humanoid robot pushingforce through posture[C]. International Conference on Ubiquitous Robots andAmbient Intelligence,2012:158-162.
    [6] Endo G, Nakanishi J, Morimoto J, et al. Experimental studies of a neural oscillatorfor biped locomotion with QRIO[C]. IEEE International Conference on Roboticsand Automation,2005:596-602.
    [7] Weiguo W, Yu W, Yunzhong P, et al. Research on the Walking Modes ShiftingBased on the Variable ZMP and3-DOF Inverted Pendulum Model for a Humanoidand Gorilla Robot[C]. IEEE/RSJ International Conference on Intelligent Robotsand Systems,2006:1978-1983.
    [8] Weiguo W, Yu W, Feng L. Development, Stability Locomotion Analysis andExperiments of Wheeled-Locomotion Mechanism for a Humanoid and GorillaRobot[C]. IEEE International Conferenceon Robotics and Biomimetics,2006:1390-1395.
    [9]刘莉,汪劲松,陈恳. THB IP-I拟人机器人研究进展[J].机器人.2002,24(3):265-266.
    [10]张正涛.乒乓球机器人视觉测量与控制[D].北京:中国科学院自动化研究所,2010:24-25.
    [11] Xiao T, Huang Q, Li J, et al. Trajectory calculation and gait change on-line forhumanoid teleoperation[C]. IEEE International Conference on Mechatronics andAutomation,2006:1614-1619.
    [12] Dong H, Zhao M, Zhang N. High-speed and energy-efficient biped locomotionbased on Virtual Slope Walking[J]. Autonomous Robots,2011,30(2):199-216.
    [13] Choi T Y, Jin S, Lee J J. Implementation of a robot actuated by artificial pneumaticmuscles[C]. International Joint Conference on SICE-ICASE,2006:4733-4737.
    [14] Tsuji T, Miyata S, Hashimoto T, et al. Controller design for robot with pneumaticartificial muscles[C]. International Joint Conference on SICE-ICASE,2006:5419-5422.
    [15] Shen X. Nonlinear model-based control of pneumatic artificial muscle servosystems[J]. Control Engineering Practice,2010,18(3):311-317.
    [16] Hudyjaya J, Mir-Nasiri N. Development of Minimalist Bipedal Walking Robotwith Flexible Ankle and Split-mass Balancing Systems[J]. International Journal ofAutomation and Computing,2013,10(5):425-437.
    [17] Hyon S. A motor control strategy with virtual musculoskeletal systems forcompliant anthropomorphic robots[J]. IEEE/ASME Transactions on Mechatronics,2009,14(6):677-688.
    [18] Nelson G, Saunders A, Neville N, et al. Petman: A humanoid robot for testingchemical protective clothing[J]. Journal of the Robotics Society of Japan,2012,30(4):372-377.
    [19] Kawato M. From ‘understanding the brain by creating the brain’ towardsmanipulative neuroscience[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2008,363(1500):2201-2214.
    [20] Cheng G, Hyon S H, Morimoto J, et al. CB: A humanoid research platform forexploring neuroscience[J]. Advanced Robotics,2007,21(10):1097-1114.
    [21] Espiau B, Sardain P. The anthropomorphic biped robot BIP2000[C]. IEEEInternational Conference on Robotics and Automation,2000:3996-4001.
    [22] Bjorn Verrelst, Ronald Van Ham, Bram Vanderborght, et al. The Pneumatic Biped“Lucy” Actuated with Pleated Pneumatic Artificial Muscles[J]. AutonomousRobots,2005(18):201-213.
    [23] Yamaguchi J, Nishino D, Takanishi A. Realization of dynamic biped walkingvarying joint stiffness using antagonistic driven joints[C]. IEEE InternationalConference on Robotics and Automation,1998:2022-2029.
    [24] Akagi T, Dohta S, Katayama S. Development of Small-Sized Flexible PneumaticValve Using Vibration Motor and Its Application for Wearable Actuator[C].Mechatronics and Machine Vision in Practice,2008:441-446.
    [25] Masahiko O, Nobuyuki I, Yuto N, et al. Stiffness readout in musculo-skeletalhumanoid robot by using rotary potentiometer[C]. IEEE Sensors,2010:2329-2333.
    [26] Ito N, Urata J, Nakanishi Y, et al. Development of very small high output motordriver for realizing forceful musculoskeletal humanoids[C]. IEEE-RASInternational Conference on Humanoid Robots,2010:385-390.
    [27] Nakanishi Y, Ito N, Shirai T, et al. Design of powerful and flexiblemusculoskeletal arm by using nonlinear spring unit and electromagnetic clutchopening mechanism[C]. IEEE-RAS International Conference on HumanoidRobots,2011:377-382.
    [28] Nakanishi Y, Izawa T, Kurotobi T, et al. Achievement of complex contact motionwith environments by musculoskeletal humanoid using humanlike shockabsorption strategy[C]. IEEE/RSJ International Conference on Intelligent Robotsand Systems,2012:1815-1820.
    [29] Nakanishi Y, Izawa T, Osada M, et al. Development of musculoskeletal humanoidkenzoh with mechanical compliance changeable tendons by nonlinear springunit[C]. IEEE International Conference on Robotics and Biomimetics,2011:2384-2389.
    [30] Masahiko O, Nobuyuki I, Yuto N, et al. Stiffness readout in musculo-skeletalhumanoid robot by using rotary potentiometer[C]. IEEE Sensors,2010:2329-2333.
    [31] Osada M, Ito N, Nakanishi Y, et al. Realization of flexible motion bymusculoskeletal humanoid “Kojiro” with add-on nonlinear spring units[C].IEEE-RAS International Conference on Humanoid Robots,2010:174-179.
    [32] Izawa T, Nakanishi Y, Ito N, et al. Development of stiffness changeable multi jointcervical structure with soft sensor flesh for musculo-skeletal humanoids[C].IEEE-RAS International Conference on Humanoid Robots,2010:665-670.
    [33] Osada M, Izawa T, Urata J, et al. Approach of “planar muscle” suitable formusculoskeletal humanoids, especially for their body trunk with spine havingmultiple vertebral[C]. IEEE-RAS International Conference on Humanoid Robots,2011:358-363.
    [34] Koichi N, Atsushi K, Koichi N, et al. The humanoid saika that catches a thrownball[C]. IEEE/RSJ International Conference on Robot and Human InteractiveCommunication,1997:94-99.
    [35] Ito N, Urata J, Nakanishi Y, et al. Development of Small Motor Driver IntegratingSensor Circuit and Interchangeable Communication Board[J]. Journal,2011:443-450.
    [36] Ikemoto S, Kannou F, Hosoda K. Humanlike shoulder complex formusculoskeletal robot arms[C]. IEEE/RSJ International Conference on IntelligentRobots and Systems,2012:4892-4897.
    [37] Osada M, Mizoguchi H, Asano Y, et al. Design of humanoid body trunk with“multiple spine structure” and “planar-muscle-driven” system for achievement ofhumanlike powerful and lithe motion[C]. IEEE International Conference onRobotics and Biomimetics,2011:2217-2222.
    [38] Migliore S A, Ting L H, DeWeerth S P. Passive joint stiffness in the hip and kneeincreases the energy efficiency of leg swing[J]. Autonomous Robots,2010,29(1):119-135.
    [39] Mizuuchi I, Nakanishi Y, Sodeyama Y, et al. An advanced musculoskeletalhumanoid kojiro[C]. IEEE-RAS International Conference on Humanoid Robots,2007:294-299.
    [40] Kozuki T, Mizoguchi H, Asano Y, et al. Design methodology for the thorax andshoulder of human mimetic musculoskeletal humanoid Kenshiro-a thorax structurewith rib like surface[C]. IEEE/RSJ International Conference on Intelligent Robotsand Systems,2012:3687-3692.
    [41] Asano Y, Mizoguchi H, Kozuki T, et al. Achievement of twist squat bymusculoskeletal humanoid with screw-home mechanism[C]. IEEE/RSJInternational Conference on Intelligent Robots and Systems,2013:4649-4654.
    [42] Nakanishi Y, Namiki Y, Urata J, et al. Design of tendon driven humanoid’s lowerbody equipped with redundant and high-powered actuators[C]. Intelligent Robotsand Systems,2007:3623-3628.
    [43] Nakanishi Y, Asano Y, Kozuki T, et al. Design concept of detail musculoskeletalhumanoid “Kenshiro”-Toward a real human body musculoskeletal simulator[C].IEEE-RAS International Conference on Humanoid Robots,2012:1-6.
    [44] Motegi Y, Shirai T, Izawa T, et al. Motion control based on modification of theJacobian map between the muscle space and work space with musculoskeletalhumanoid[C]. IEEE-RAS International Conference on Humanoid Robots,2012:835-840.
    [45] Asano Y, Mizoguchi H, Kozuki T, et al. Lower thigh design of detailedmusculoskeletal humanoid “Kenshiro”[C]. IEEE/RSJ International Conference onIntelligent Robots and Systems,2012:4367-4372.
    [46] Osada M, Mizoguchi H, Asano Y, et al. Design of humanoid body trunk with“multiple spine structure” and “planar-muscle-driven” system for achievement ofhumanlike powerful and lithe motion[C]. IEEE International Conference onRobotics and Biomimetics,2011:2217-2222.
    [47] Asano Y, Mizoguchi H, Osada M, et al. Biomimetic design of musculoskeletalhumanoid knee joint with patella and screw-home mechanism[C]. IEEEInternational Conference on Robotics and Biomimetics,2011:1813-1818.
    [48] Shirai T, Urata J, Nakanishi Y, et al. Whole body adapting behavior with musclelevel stiffness control of tendon-driven multijoint robot[C]. IEEE InternationalConference on Robotics and Biomimetics,2011:2229-2234.
    [49] Mizoguchi H, Asano Y, Izawa T, et al. Biomimetic design and implementation ofmuscle arrangement around hip joint for musculoskeletal humanoid[C]. IEEEInternational Conference on Robotics and Biomimetics,2011:1819-1824.
    [50] Mizuuchi I, Nakanishi Y, Namiki Y, et al. Realization of standing of themusculoskeletal humanoid kotaro by reinforcing muscles[C]. IEEE-RASInternational Conference on Humanoid Robots,2006:176-181.
    [51] Russell D L, McTavish M. Biomimetic Design of Low Stiffness Actuator Systemsfor Prosthetic Limbs[J]. Proceedings of the Canadian Engineering EducationAssociation,2011:4022-4032
    [52] Abe K, Suga T, Fujimoto Y. Control of a biped robot driven by elastomer-basedseries elastic actuator[C]. IEEE International Workshop on Advanced MotionControl (AMC),2012:1-6.
    [53] Cao G, Zhi Z, Peng W, et al. Coupled extensional-torsional vibration frequency ofhoisting rope in tower-type friction drive hoist system[C]. Measuring Technologyand Mechatronics Automation,2009:615-618.
    [54] Zhang Y, Agrawal S K. Lyapunov controller design for transverse vibration of acable-linked transporter system[J]. Multibody System Dynamics,2006,15(3):287-304.
    [55] Koh C G, Rong Y. Dynamic analysis of large displacement cable motion withexperimental verification[J]. Journal of Sound and Vibration,2004,272(1):187-206.
    [56] Srinil N, Rega G. Nonlinear longitudinal/transversal modal interactions in highlyextensible suspended cables[J]. Journal of Sound and Vibration,2008,310(1):230-242.
    [57] Chucheepsakul S, Srinil N. Free vibrations of three-dimensional extensible marinecables with specified top tension via a variational method[J]. Ocean Engineering,2002,29(9):1067-1096.
    [58] Srinil N, Rega G, Chucheepsakul S. Three-dimensional non-linear coupling anddynamic tension in the large-amplitude free vibrations of arbitrarily saggedcables[J]. Journal of Sound and Vibration,2004,269(3):823-852.
    [59] Echter R, Bischoff M. Numerical efficiency, locking and unlocking of NURBSfinite elements[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(5):374-382.
    [60] Kiendl J, Bletzinger K U, Linhard J, et al. Isogeometric shell analysis withKirchhoff–Love elements[J]. Computer Methods in Applied Mechanics andEngineering,2009,198(49):3902-3914.
    [61] Berlioz A, Lamarque C H. A non-linear model for the dynamics of an inclinedcable[J]. Journal of Sound and Vibration,2005,279(3):619-639.
    [62] Armero F, Valverde J. Invariant Hermitian finite elements for thin Kirchhoff rods.I: The linear plane case[J]. Computer Methods in Applied Mechanics andEngineering,2012,213:427-457.
    [63] Bazilevs Y, Hsu M C, Kiendl J, et al.3D simulation of wind turbine rotors at fullscale. Part II: Fluid–structure interaction modeling with composite blades[J].International Journal for Numerical Methods in Fluids,2011,65(1-3):236-253.
    [64] Impollonia N, Ricciardi G, Saitta F. Vibrations of inclined cables under skewwind[J]. International Journal of Non-Linear Mechanics,2011,46(7):907-918.
    [65] Impollonia N, Ricciardi G, Saitta F. Statics of elastic cables under3D pointforces[J]. International Journal of Solids and Structures,2011,48(9):1268-1276.
    [66] Armero F, Valverde J. Invariant Hermitian finite elements for thin Kirchhoff rods.II: The linear three-dimensional case[J]. Computer Methods in Applied Mechanicsand Engineering,2012,213:458-485.
    [67] Bazilevs Y, Hsu M C, Scott M A. Isogeometric fluid–structure interaction analysiswith emphasis on non-matching discretizations, and with application to windturbines[J]. Computer Methods in Applied Mechanics and Engineering,2012,249:28-41.
    [68] Johansen V, Ersdal S, S rensen A J, et al. Modelling of inextensible cabledynamics with experiments[J]. International Journal of Non-Linear Mechanics,2006,41(4):543-555.
    [69] Auricchio F, Beir o da Veiga L, Lovadina C, et al. The importance of the exactsatisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMsversus NURBS-based approximations[J]. Computer Methods in AppliedMechanics and Engineering,2010,199(5):314-323.
    [70] Choi J, Inman D J. Spectrally formulated modeling of a cable-harnessedstructure[J]. Journal of Sound and Vibration,2014,333(14):3286-3304.
    [71] Bazilevs Y, Calo V M, Hughes T J R, et al. Isogeometric fluid-structure interaction:theory, algorithms, and computations[J]. Computational Mechanics,2008,43(1):3-37.
    [72] Stanova E, Fedorko G, Fabian M, et al. Computer modelling of wire strands andropes Part I: Theory and computer implementation[J]. Advances in EngineeringSoftware,2011,42(6):305-315.
    [73] Benson D J, Bazilevs Y, De Luycker E, et al. A generalized finite elementformulation for arbitrary basis functions: from isogeometric analysis to XFEM[J].International Journal for Numerical Methods in Engineering,2010,83(6):765-785.
    [74] Thai H T, Kim S E. Nonlinear static and dynamic analysis of cable structures[J].Finite Elements in Analysis and Design,2011,47(3):237-246.
    [75] Cottrell J A, Hughes T J R, Bazilevs Y. Isogeometric analysis: toward integrationof CAD and FEA[M]. John Wiley&Sons,2009:234-256.
    [76] Beir o da Veiga L, Lovadina C, Reali A. Avoiding shear locking for theTimoshenko beam problem via isogeometric collocation methods[J]. ComputerMethods in Applied Mechanics and Engineering,2012,241:38-51.
    [77] De Luycker E, Benson D J, Belytschko T, et al. X‐FEM in isogeometric analysisfor linear fracture mechanics[J]. International Journal for Numerical Methods inEngineering,2011,87(6):541-565.
    [78] Salehi Ahmad Abad M, Shooshtari A, Esmaeili V, et al. Nonlinear analysis ofcable structures under general loadings[J]. Finite Elements in Analysis and Design,2013,73:11-19.
    [79] Zimek Z, Przybytniak G, Nowicki A. Optimization of electron beam crosslinkingof wire and cable insulation[J]. Radiation Physics and Chemistry,2012,81(9):1398-1403.
    [80] Zimek Z, Przybytniak G, Nowicki A, et al. Optimization of electron beamcrosslinking for cables[J]. Radiation Physics and Chemistry,2014,94:161-165.
    [81] Borden M J, Verhoosel C V, Scott M A, et al. A phase-field description of dynamicbrittle fracture[J]. Computer Methods in Applied Mechanics and Engineering,2012,217:77-95.
    [82] Beir o da Veiga L, Lovadina C, Reali A. Avoiding shear locking for theTimoshenko beam problem via isogeometric collocation methods[J]. ComputerMethods in Applied Mechanics and Engineering,2012,241:38-51.
    [83] Cirak F, Ortiz M, Schroder P. Subdivision surfaces: a new paradigm for thin-shellfinite-element analysis[J]. International Journal for Numerical Methods inEngineering,2000,47(12):2039-2072.
    [84] Goyal S, Perkins N C, Lee C L. Non-linear dynamic intertwining of rods withself-contact[J]. International Journal of Non-Linear Mechanics,2008,43(1):65-73.
    [85] Goyal S, Perkins N C, Lee C L. Writhing dynamics of cables with self-contact[J].Arxiv preprint physics,2007:27-36.
    [86] Goyal S. A dynamic rod model to simulate mechanics of cables and DNA[D]. TheUniversity of Michigan,2006:56-78.
    [87] Ramsey H. Analysis of interwire friction in multilayered cables under uniformextension and twisting[J]. International Journal of Mechanical Sciences,1990,32(8):709-716.
    [88] Gordana K, Nenad V, Vukman B, et al. On finite element analysis of sling wirerope subjected to axial loading[J]. Ocean Engineering,2014,88:480-487.
    [89] Echter R, Oesterle B, Bischoff M. A hierarchic family of isogeometric shell finiteelements[J]. Computer Methods in Applied Mechanics and Engineering,2013,254:170-180.
    [90] Elguedj T, Bazilevs Y, Calo V M, et al. B and F projection methods for nearlyincompressible linear and non-linear elasticity and plasticity using higher-orderNURBS elements[J]. Computer Methods in Applied Mechanics and Engineering,2008,197(33):2732-2762.
    [91] Goyal S, Perkins N C, Lee C L. Nonlinear dynamics and loop formation inKirchhoff rods with implications to the mechanics of DNA and cables[J]. Journalof Computational Physics,2005,209(1):371-389.
    [92] Kiendl J, Bazilevs Y, Hsu M C, et al. The bending strip method for isogeometricanalysis of Kirchhoff–Love shell structures comprised of multiple patches[J].Computer Methods in Applied Mechanics and Engineering,2010,199(37):2403-2416.
    [93] Benson D J, Bazilevs Y, Hsu M C, et al. Isogeometric shell analysis: theReissner–Mindlin shell[J]. Computer Methods in Applied Mechanics andEngineering,2010,199(5):276-289.
    [94] Benson D J, Bazilevs Y, Hsu M C, et al. A large deformation, rotation-free,isogeometric shell[J]. Computer Methods in Applied Mechanics and Engineering,2011,200(13):1367-1378.
    [95] McNaught A D, McNaught A D. Compendium of chemical terminology[M].Oxford: Blackwell Science,1997:53-65.
    [96] Elata D, Eshkenazy R, Weiss M P. The mechanical behavior of a wire rope with anindependent wire rope core[J]. International Journal of Solids and Structures,2004,41(5):1157-1172.
    [97] Ghoreishi S R, Cartraud P, Davies P, et al. Analytical modeling of synthetic fiberropes subjected to axial loads. Part I: A new continuum model for multilayeredfibrous structures[J]. International Journal of Solids and Structures,2007,44(9):2924-2942.
    [98] Beltran J F, Rungamornrat J, Williamson E B. Computational model for theanalysis of damaged ropes[C]. International Offshore and Polar EngineeringConference,2003:705-710.
    [99] Benson D J, Hartmann S, Bazilevs Y, et al. Blended isogeometric shells[J],Computer Methods in Applied Mechanics and Engineering,2013,(255):133-146.
    [100]Bergou M, Wardetzky M, Robinson S, et al. Discrete elastic rods[J]. ACM,2008:1-12.
    [101]Wang D G, Zhang D K, Wang S Q, et al. Finite element analysis of hoisting ropeand fretting wear evolution and fatigue life estimation of steel wires[J].Engineering Failure Analysis,2013,27:173-193.
    [102]Holyk C, Liess H D, Grondel S, et al. Simulation and measurement of the steadystate temperature in multi-core cables[J]. Electric Power Systems Research,2014,116:54-66.
    [103] Dudarev A V, Gavrilin A V, Ilyin Y A, et al. Reduction of current carrying capacityin multistrand superconducting cables at changing current[C]. IEEE Transactionson Magnetics,1996,32(4):2905-2908.
    [104]Ogura Y, Aikawa H, Shimomura K, et al. Development of a new humanoid robotWABIAN-2[C]. IEEE International Conference on Robotics and Automation,2006:76-81.
    [105]Kagami S, Nishiwaki K, Kuffner Jr J J, et al. Online3D vision, motion planningand bipedal locomotion control coupling system of humanoid robot: H7[C].IEEE/RSJ International Conference on Intelligent Robots and Systems,2002:2557-2562.
    [106]Mizuuchi I, Yoshikai T, Nakanishi Y, et al. A reinforceable muscle flexible spinehumanoid Kenji[C]. Intelligent Robots and Systems,2005:4143-4148.
    [107]Kaneko K, Harada K, Kanehiro F, et al. Humanoid robot HRP-3[C]. IEEE/RSJInternational Conference on Intelligent Robots and Systems,2008:2471-2478.
    [108]Kagami S, Mochimaru M, Ehara Y, et al. Measurement and comparison ofhumanoid H7walking with human being[J]. Robotics and Autonomous Systems,2004,48(4):177-187.
    [109]Kajita S, Kanehiro F, Kaneko K, et al. The3D Linear Inverted Pendulum Mode: Asimple modeling for a biped walking pattern generation[C]. IEEE/RSJInternational Conference on Intelligent Robots and Systems,2001:239-246.
    [110]Ogura Y, Aikawa H, Lim H, et al. Development of a human-like walking robothaving two7-DOF legs and a2-DOF waist[C]. IEEE International Conference onRobotics and Automation,2004:134-139.
    [111]Ogura Y, KATAOKA T, LIM H O, et al. A novel method of biped walking patterngeneration with predetermined knee joint motion[C]. IEEE/RSJ InternationalConference on Intelligent Robots and Systems,2004:2831-2836.
    [112]Sugiura H, Gienger M, Janssen H, et al. Real-time self collision avoidance forhumanoids by means of nullspace criteria and task intervals[C]. IEEE-RASInternational Conference on Humanoid Robots,2006:575-580.
    [113]Park I W, Kim J Y, Lee J, et al. Online free walking trajectory generation for bipedhumanoid robot KHR-3(HUBO)[C]. IEEE International Conference on Roboticsand Automation,2006:1231-1236.
    [114]马培荪,曹曦,赵群飞.两足机器人步态综合研究进展[J].西南交通大学学报.2006,41(4):408-410.
    [115]Capi G, Kaneko S, Mitobe K, et al. Optimal trajectory generation for a prismaticjoint biped robot using genetic algorithms[J]. Robotics and Autonomous Systems,2002,38(2):119-128.
    [116]梶田秀司.仿人机器人[M].北京:清华大学出版社,2007:42-55,108-122.
    [117]石宗英,徐文立,冯元琨,海军.仿人型机器人动态步行控制方法[J].机器人.2001,23(6):572.
    [118]Jerry E P, Gill A P. Exploiting Natural Dynamics in the Control of a3D BipedalWalking Simulation[C].International Conference on Climbing and Walking Robots,1999.
    [119]Huang Q, Kajita S, Koyachi N, et al. A high stability, smooth walking pattern for abiped robot[C]. IEEE International Conference on Robotics and Automation,1999:65-71.
    [120]Ogura Y, Aikawa H, Lim H, et al. Development of a human-like walking robothaving two7-DOF legs and a2-DOF waist[C]. IEEE International Conference onRobotics and Automation,2004:134-139.
    [121]Ogura Y, KATAOKA T, LIM H O, et al. A novel method of biped walking patterngeneration with predetermined knee joint motion[C]. IEEE/RSJ InternationalConference on Intelligent Robots and Systems.2004:2831-2836.
    [122]Zhao J, Schutz S, Berns K. Biologically motivated push recovery strategies for a3D bipedal robot walking in complex environments[C]. IEEE InternationalConference on Robotics and Biomimetics (ROBIO),2013:1258-1263.
    [123]Matsumoto T, Konno A, Gou L, et al. A humanoid robot that breaks woodenboards applying impulsive force[C]. IEEE/RSJ International Conference onIntelligent Robots and Systems,2006:5919-5924.
    [124]Kajita S, Kanehiro F, Kaneko K, et al. Biped walking pattern generation by usingpreview control of zero-moment point[C]. IEEE International Conference onRobotics and Automation,2003:1620-1626.
    [125]Xiang L, Wenlong X. Planning and Control for Passive Dynamics Based Walkingof3D Biped Robots[J]. Journal of Bionic Engineering,2012,9(2):143-155.
    [126]许贤泽,戴书华编著.精密机械设计基础[M].北京:电子工业出版社,2007:230-231.
    [127]Aguirre G, Colgate J E, Peshkin M A, et al. A1-DOF assistive exoskeleton withvirtual negative damping: effects on the kinematic response of the lower limbs[C].IEEE/RSJ International Conference on Intelligent Robots and Systems,2007:1938-1944.
    [128]马军,葛世荣,张德坤.钢丝绳股内钢丝的载荷分布[J].机械工程学报,2009,45(4):259-264.
    [129]Vukobratovic M, Juricic D. Contribution to the synthesis of biped gait[J]. IEEETransactions on Biomedical Engineering,1969(1):1-6.
    [130]包志军,马培荪等.用ZMP描述类人型机器人步行稳定的不完善讨论[J].上海交通大学学报.2001,9(6):548-552.
    [131]柯显信.仿人型机器人双足动态步行研究[D].上海大学博士学位论文,2005:12-13,64-68.
    [132]侯月阳.双足机器人快速步行动力学研究[M].哈尔滨工业大学硕士学位论文,2008:46-49.
    [133]Hashimoto K, Takezaki Y, Motohashi H, et al. Biped walking stabilization basedon Gait analysis[C]. IEEE International Conference on Robotics and Automation,2012:154-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700