纤维铺放装置及其铺放关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维复合材料由于其高比强度、高比模量、耐烧蚀和抗侵蚀等一系列优点已经成为现代大型飞机的主要结构用材,我国启动的大飞机项目中明确规定要大量使用纤维复合材料,因此飞机复合材料零件的“高性能”制造是我们亟待解决的问题。纤维铺放技术是实现复合材料高性能制造的重要手段之一,同时也是近年来发展最快、最有效的先进制造技术。纤维铺放技术综合了纤维缠绕技术与自动铺带技术各自的优点,通过能够完成丝束夹紧、重送和切断功能的铺放头,按一定角度将预浸丝束铺放到制品表面,同时完成开口、局部加厚等功能。本文针对铺放装置结构设计、铺放控制系统、铺放轨迹规划、后置处理等关键技术进行了研究。
     为了提高铺放设备的加工能力,特别是为了实现复杂型面管状零件的加工,研制了七自由度纤维铺放装置,该装置由手臂、主轴和纱架三部分组成。手臂部分的三个移动轴设计成正交结构,同时为了便于机构的逆运动学分析,将手臂的手腕设计成球型手腕,其位置和姿态解耦。铺放头安装在手臂末端,能够独立控制各路丝束的夹紧、重送和切断,其结构采用模块化设计方法,按丝束运动方向分为七个功能模块:丝束导向模块、丝束夹紧模块、丝束重送模块、丝束切断模块、丝束集合模块、丝束加热模块、丝束施压模块。纱架具有张力控制功能,张力控制器设计成以交流伺服电机为执行元件,PLC为主控制器,张力传感器为反馈元件的全闭环控制系统,并采用PID数字控制技术。
     研究了开放式结构的铺放控制系统,该控制系统包括运动控制、丝束控制和张力控制三个部分。运动控制部分采用IPC+运动控制卡的开放式结构,铺放加工代码采用标准的G代码和M代码。通过分析单路丝束的工作循环和丝束在重送、切断、铺放状态下夹紧模块、重送模块、切断模块的工作情况,总结出丝束控制程序设计的基本原则。同时提出了两种丝束控制方法:丝束控制与运动控制整合的方法;丝束控制独立于运动控制的方法。通过对这两种丝束控制方法的比较分析,得出丝束控制独立于运动控制的方法具有方法简单、降低铺放软件开发难度的特点。最终通过铺放试验验证了丝束控制方法的正确性。分析讨论了影响相邻丝束间缝隙的三个主要因素:丝束宽度、丝束集合装置设计的合理性、丝束加热温度。
     研究了两种铺放轨迹规划方法,即网格化方法和UG软件的二次开发方法。网格化方法以曲面网格化数据为基础,在网格单元内计算轨迹点坐标,再将计算的轨迹点顺次拟合得到铺放轨迹。这种方法由于开发周期长、难度大,仅在算法上进行了初步研究。UG软件的二次开发方法选用UG/Open GRIP开发工具,实现了铺放轨迹、轨迹规划坐标系下铺放头压辊姿态、轨迹点丝束数量、纤维重叠面积与间隙面积等铺放信息的计算。通过分析等铺放角曲线的计算方法、等距偏置算法、曲线延伸算法、基于丝带边缘曲线的轨迹规划方法,提出以等距偏置算法为计算核心的铺放轨迹优化方法,该轨迹优化方法使铺放设备尽量处于满丝铺放状态,减少了剪切丝束的次数,有助于铺放工作效率的提高。
     通过分析铺放运动过程,采用位姿分离法研究了七自由度纤维铺放设备的后置处理算法。铺放运动由主轴旋转运动和铺放头运动共同完成,因此将七自由度铺放机构分成主轴和手臂两部分分别进行后置处理,而这两部分都是非冗余机构,从而避开了处理冗余机构的运动学问题,简化了后置处理算法。通过分析主轴旋转变量的计算方法,提出了基于手臂末端运动轨迹和基于手臂末端施压方向的两种后置处理算法,并对这两种算法进行比较,得出基于手臂末端施压方向的后置处理算法具有机床工作平稳、关节变量范围小、关节角波动小、适用范围广的特点。因此对于曲率半径小、曲率变化大的铺放轨迹首选该后置处理算法。最后通过铺放运动仿真试验和机床铺放试验验证了后置处理算法的正确性和有效性。
Fiber reinforced composites have become major structural materials where attractive strength-to-weight and stiffness-to-weight ratios, ablative resistance, corrosion resistance are the significant advantages. China has been launched the aircraft project which need lots of fiber composite material, so the high-performance manufacture of composite parts of aircrafts is an urgent problem. Fiber placement technology is a key method of producing composite structures, which is also the fastest growing and most efficient composites manufacturing technology. Fiber placement technology is the combination of filament-winding and tape layer technology, including tows clamp, restart, cut, the placement head moving on the mould surface at specific angle, local clipping and thickening function. The research of thesis is focused on structure design of fiber placement machine, composition and structure of CNC, path planning, post processing and so on.
     In order to improve the production capacity of the equipment, especially realize complex surface tubular parts producing, the fiber placement machine has been designed. It consists of three major parts: manipulator, spindle and creel cabinet. The three shifting axis of the manipulator are orthogonality due to simplify the inverse kinematics analysis of mechanism. The style of wrist is orthogonal spherical wrist and position decoupling with orientation. The fiber placement head is mounted on the end of the manipulator, including guide module, clamp module, restart module, cut module, compaction module, collection module and heat module, which can achieve independent control of tows clamp, restart and cut. The creel cabinet has the function of tension control. Utilizing PID digital control technology, the tension controller using AC servo motor as actuator, PLC as controller and tension sensor as feedback component is closed loop control system.
     This paper studied open architecture CNC system of fiber placement machine, which include motion control, tow control and tension control. Motion control using IPC and motion control card is open architecture. G code and M code is written in a standardized mode. Through analyzing operating cycle of single tow and operating mode of clamp, restart and cut module in tows restart, cut and fiber placement working condition, fundamental principle of program designing is proposed. Comprehensive approach of tows control and motion control is presented together with independent approach of tows control and motion control. Comparing two control schemes, the second scheme is convenient, and the software development is easy. Finally the experiment results show that this method is correct and adjacent tows gap influenced by width of tow, design rationality of tow collector and heating-up temperature of tows.
     This paper studied meshing method and secondary development of UG which are used to path planning. Meshing method based on meshing data of curve surface. Coordinates of track points are calculated in mesh cells and these points are connected from first to last to form trajectory. This method is long development cycle and difficulty, which is just carried out a preliminary study for algorithm. Secondary development of UG using UG/Open GRIP realizes calculation of path, posture and quantity, overlapping area and gap area of tows. Through analyzing equivalent placement angle method, iso-metric offset method, natural extension of curve method and path planning method based on the tows edges, a path optimization based on iso-metric offset method is proposed. This method make the machine in total tows states and reduce cut frequency, the utilization rate of equipment is improved thereby.
     Through analyzing the fiber placement process, the paper utilizes pose-separated method to study the processing algorithm of 7-DOF fiber placement machine. Fiber placement process consists of rotational motion of spindle and motion of fiber placement head, so 7-DOF fiber placement machine is divided into two parts, the spindle and the manipulator. These two non-redundant parts are postprocessed separately. Using this method, the kinematics problem of redundancy mechanism can be avoided and post processing algorithm is simplified. After analyzing the different algorithms of spindle rotary variable, the post processing algorithms based on motion trajectory of end-effector is proposed together with the post processing algorithms based on compressing direction of end-effector. Through analyzing two algorithms, the second one is smooth working reliable, small variation range of joint variable, small ripple of joint angle and wide range of application. For placement path of small radius of curvature, the pressing direction algorithm of end-effector is being used. The simulation and experiment results show that the method is correct and effective.
引文
1林德春,潘鼎,高健,陈尚开.碳纤维复合材料在航空航天领域的应用.玻璃钢. 2007, (01): 18~28
    2杜善义.先进复合材料与航空航天.复合材料学报. 2007, 24(01): 1~12
    3 S Robert I M. Advanced Composite Structures Research in Aus-tralia. Composite Structures. 2002, 57: 3~10
    4 Measom R, Sewell K. Fibre Placement Low-cost Production for Complex Composite Structures. Proceedings of American helicopter society 52nd annual forum, USA. 1996: 611~622
    5刘玲,路明坤,张博明,王殿富,郑岩,张春清.孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响.复合材料学报. 2004, 21(05): 116~121
    6 http://engineers.ihs.com/NR/rdonlyres/AEF9A38E-56C3-4264-980C-D8D6980A4C84/0/444.pdf
    7 Robert I M. Advanced Composite Structures Research in Aus-tralia. Composite Structures. 2002, 57: 3~10
    8 Costen R, Marchello J. Tape-drop Transient Model for In-situ Automated Tape Placement of Thermoplastic Composites. Proceedings of the International SAMPE symposium and exhibition. 1990: 1820~1830
    9 W. T. Freeman. Filament Winding. Aerospace America. 2006, (08): 44~49
    10 V.S.Rudnev, M.S.Vasil'eva, I.V.Lukiyanchuk, V.G.Kuryavyi. On the Surface Structure of Coatings Formed by Anodic Spark Method. Protection of Metals. 2004, 40(04): 352~357
    11 Robinson MJ. Aqualitative Analysis of Some of Theissues Affectingthe Cost of Composites Structures. Proc 23th InternationalSAMPE Technical Conf. Covina CA: Societyfor the Advancementof Material and Process Engineering. 1991: 445~458
    12 I.C.Finegan, G.G.Tibbetts, D.G.Glasgow, J.M.Ting, M.L.Lake. Surface Treatments for Improving the Mechanical Properties of Carbon Nanofiber/Thermoplastic Composites. Journal of Materials Science, 2003, 38(16): 3485~3490
    13赵渠森.材料与工艺在“买得起的复合材料”中的作用.航空制造技术. 2000, (06): 47~50
    14 Chen H, Sheng W, Xi N, Song M, Chen Y. Automated Robot Trajectory Planning for Spray Painting of Free-form Surfaces in Automotive Manufacturing. Proceedings of the IEEE international conference on roboticsand automation. 2002: 450~455
    15肖军,李勇.自动铺放技术在大型飞机复合材料结构件制造中的应用.航空制造技术. 2008, (1): 50~53
    16上官倩芡,蔡泖华.碳纤维及其复合材料的发展及应用.上海师范大学学报(自然科学版). 2008, 37(03): 275~279
    17何凯.飞机全复合材料进气道制造工艺.航空制造技术. 2004, 7: 91~94
    18 SCOTT KRAJCA. Carbon Fibers Enabling Next Generation Commercial Air Travel. Lecture given at "The Global Outlook for Carbon Fiber 2002". Raleigh, NC:USA, 2002: 21~23
    19 George M. Duelling with Composites. Reinforced Plastics. 2006,50(6): 18~23
    20陈绍杰.航空复合材料技术的近期发展——欧洲2005年JEC复合材料展览会见闻.航空维修与工程. 2005, (05): 39~43
    21 D. O. Evans. Fiber Placement Cincinnati Machine. 2002: 477~479
    22徐再,吴耀楚,田会方. FRP铺放成型技术的研究.玻璃钢/复合材料. 2002, (05): 44~46
    23 Vaniglia, Milo M. Fiber Placement Head. US Patent: 5110395. 1992.5:1~6
    24于传浩,吴耀楚,王志辉. FRP铺放技术的机构分析.武汉化工学院学报. 2003, (02): 54~56
    25 Wiliam P B. The Fiber Placement Path toward Affordability. SAMPE J. 1998,
    34(3): 11~16
    26姜振华.先进聚合物基复合材料技术.科学出版社. 2006: 43~53
    27石林.自动铺丝束在航空工业的应用现状.航空制造工程. 1997, (09): 11~13
    28王天玉,梁宪珠,杨进军.飞机复合材料构件自动铺带/丝束铺放典型设备.航空制造技术. 2008, (04): 42~44
    29许斌,安鲁陵,肖军,周来水.自动铺丝机运动控制信息的生成与仿真.制造业自动化. 2005, (01): 69~73
    30 Guasti F, Kutufa N, Matticari G and Rosi E. Layer by Laer E-beam Curing of Filament Wounding Composite Materials with Low Energy Electron Beam Accelerators. SAMPE J, 1998, 34(02): 29~33
    31艾涛,王汝敏.低成本、高性能复合材料的成型技术.纤维复合材料. 2004, 42(02): 42~44
    32 Enders Mark L, Hopkins Paul C. Developments in the Fiber Placement Process.
    36th International SAMPE Symposium. 1991
    33 Daniel L. Automated Tap Placement with In-situ Electron Beam Cure. SAMPE J. 2000, 36(02): 11~33
    34 Grant C G. Fiber Placement Process Utilization with Worldwide AerospaceIndustry. SAMPE J. 2000, 36(4): 7~12
    35 Vaniglia, Milo M. Redirect Roller Apparatus for Fiber Placement Machine. United States Patent: 4877193 1989.10.31: 1~8
    36 Shirinzadeh B, Alici G, Foong C W, et al. Fabrication Process of Open Surfaces by Robotic Fibre Placement. Robotics and Computer-Integrated Manufacturing. 2004, 20: 17~28
    37丁韬.自动纤维铺放机.航空制造技术. 2007, (09): 60~64
    38林胜.自动铺带机/铺丝机(ATL/AFP)——现代大型飞机制造的关键设备.世界制造技术与装备市场. 2009, (04,06): 84~89, 78~83
    39 Kurt Schueler, James Miller, Richard Hale. Approximate Geometric Methods in Application to the Modeling of Fiber Placed Composite Structures. Jourmal of Computing and Information Science in Engineering. 2004: 18~27
    40 Kurt Schueler. Object-oriented Implementation of an Integrated Design and Analysis Tool for Fiber Placed Structures. 43rd AIAA/ASME/ASCE/AHS/ASC Structrral Dynamics and Materials Conference. 2002: 1~8
    41 Bijan Shirinzadeha, Gary Cassidya, Denny Oetomoa, Gursel Alicib, Marcelo H, Ang Jr. Trajectory Generation for Open-contoured Structures in Robotic Fibre Placement. Robotics and Computer-Integrated Manufacturing. 2007: 380~394
    42 http://www.vistagy.com/
    43 http://cgtech.com/cn/afp-programming-simulation/
    44李勇,肖军.复合材料纤维铺放技术及其应用.纤维复合材料. 2002, 19(03): 39~41
    45安鲁陵,许斌.复合材料纤维铺放自动编程技术研究.工程设计学报. 2005, 12(02): 80~84
    46田会方,黄亚辉.纤维铺放机的机构设计及仿真.机械工程师. 2005, (08): 92~94
    47韩振宇,孟庆鑫,路华,富宏亚.新型纤维铺放头的方案设计与实验研究.玻璃钢/复合材料. 2007, (03): 45~47
    48韩振宇,纤维缠绕复合材料构件CAD/CAM技术的及其应用的研究.哈尔滨工业大学博士学位论文. 2005: 13~16
    49 Boeing Company. The Boeing Company 2001 Annual Report. 2001: 1~10
    50 D. O. Evans. Design Considerations for Fiber Placement. 38th International SAMPE Symposium. 2003: 10~13
    51 Ahrens M, Mallick V, Parfrey K. Robotic Based Thermoplastic Fibre Placement Process. Proceedings of the IEEE international conference on robotics and automation, vol. 2. Leuven, Belgium; 1998: 1148~1153
    52文立伟.六轴联动数控纤维缠绕机控制系统及缠绕软件的研究.哈尔滨工业大学博士学位论文. 2005, (03): 15~28
    53 Shirinzadeh B, Foong C W, Tan B H. Robotic Fibre Place-ment Planning and Control. Journal of Assembly Auto-mation. 2000, 20(04): 313~320
    54 Gu P, Sosale S. Product Modularization for Life Engineering. Robotics and Computer Integrated Manufacturing. 1999, 15(5): 387~401
    55 Sa'ed M Salhieh, Ali K Kamrani. Macro Level Product Development Using Design for Modularity. Robotics and Computer Integrated Manufacturing. 1999, 15(4): 319~329
    56 Kikuo Fujita. Product Variety Optimization Under Modular Architecture. Computer-Aided Design. 2002, 34(12): 953~965
    57 Erixon G, Yxkull A, Arnstrm A. Modularity: the Basis for Product and Factory Reengineering .Annals of the CIRP. 1996, 45(01): 1~6
    58 Joseph E Shigley, Charles R Mischke. Mechanical Engineering Design. McGraw-Hill Companies. Inc.2001: 15~76
    59 Torres Martinez, Manuels. Multi-application Head for Fibre Strips and Method of Applying Said Fibre Strips. Espana: WO/2006/021601. 2006, (03): 1~31
    60 Mark A.Lamontia, Mark B.Gruber, Brian J.Waibel, Ralph D.Cope. Conformable Compaction System Used in Automated Fiber Placement of Large Composite Aerospace Structures. International SAMPE Europe conference No.23. 2002: 745~756
    61于传浩,吴耀楚,王志辉. FRP铺放技术的机构分析.武汉化工学院学报. 2003, 25(02): 54~56
    62 HE YuPeng, ZHAO ShengDun, ZOU Jun & ZHANG ZhiYuan. Study of Utilizing Differential Gear Train to Achieve Hybrid Mechanism of Mechanical Press. Science in China (Series E: Technological Sciences). 2007, (01): 69~80
    63 E. M. Rubio, A. M. Camacho, L. Sevilla, M. A. Setastian. Calculation of the Forward Tension in Drawing Processes. ELSEVIER Journal of Matarials Processing Technology. 2005: 162~163, 551~557
    64 M. A. Ayub, M. R. Jackson. Visual Servo System for Controlling Tension of Non-linear-elastic Web Deformation. IEEE. 2006: 641~647
    65 Ren Shengle, Lu Hua, Wang Yongzhang, Fu Hongya. Development of a PLC-based Tension Control System. Chinese Journal of Aeronautics. 2007, (20): 266~271
    66任胜乐.纤维缠绕运动中精密张力控制系统的研究.哈尔滨工业大学博士学位论文. 2007.3: 15~33
    67路华,任胜乐,王永章.以交流数字伺服电机为执行件的张力控制系统.制造业自动化. 2004, 26(6): 27~29
    68 Report By the Journal of Reinforced Plastice. Variety of Windign EquipmentAvailable Worldwide. Reinforced Plastics. March 1993: 20~30
    69 Z.D.Zhou, J.M.Xie, Y.P.Chen, B.Chen, Z.M.Qiu, Y.S.Wong and Y.F.Zhang. The Development of A Fieldbus-based Open-CNC System. The International Journal of Advanced Manufacturing Technology. 2004, 8(23): 507~513
    70高荣,王治森,章建科.基于Web服务的移动网络数控系统研究.计算机集成制造系统, 2007, 13(09): 1750~1761
    71 D.B.Matthew, Y.P.Lucy. Robust Control of Transport Systems with No Tension Sensor. 43rd IEEE Conference on Decision and Control. December 14-17, 2004. Atlantis, Paradise Island, Bahamas:4342~4349
    72 Christian Thiffault, Pierre Sicard, Alain Bouscayrol. Tension Control Loop Using Alinear Actuator Based on the Energetic Macroscopic Representation. IEEE 2004: 2041~2046
    73王瑞. 6-TPS并联平台型数控铣床关键技术的研究.哈尔滨工业大学博士学位论文. 2007.6: 75~77
    74刘旭波.半固态铝合金浆料智能制备技术和装置研究.南昌大学博士学位论文. 2007.6: 81~85
    75张邦楚,王少锋,韩子鹏,李臣明.飞航导弹分数阶PID控制及其数字实现.宇航学报. 2005, 26(05): 653~656
    76 Y. P. Chang, L. S. Shieh, C. R. Liu, P. Cofie. Digital Modeling and PID Controller Design for MIMO Analog Systems with Multiple Delays in States, Inputs and Outputs. Circuits, Systems, and Signal Processing. 2009.2, 28(01): 111~146
    77 Jeongjin Roh. Digital PWM Controller with One-bit Noise-shaping Interface. Analog Integrated Circuits and Signal Processing. 2006.10, 49(01): 11~17
    78 Ed Bernardon. Fiber SIM CAD Integrated Software Tools for Composite Manufacturing and Design. SAMPE Journal. 1998, 34(04): 34~39
    79 WANG Xianfeng, FU Hongya, HAN Zhenyu. The Vlidation of the Feasibility of Abnormal form Patch Winding. The 12th International Manufacturing Conference, Xi’an, China. 2006: 401~407
    80王显峰,韩振宇,张勇,孟庆鑫,富宏亚.复合材料缠绕法的对比研究.硅酸盐学报. 2007.3(03): 358~363
    81 http://cgtech.com/usa/Content-Downloads/VCS-VCP.pdf
    82万健,徐小媚,叶晓华.基于区间算术和四叉树消除偏置曲线自交算法的实现.计算机应用. 2005, 8(25): 1942~1943
    83 Evans Don O, Vaniglia Milo M, Hopkins Paul C. Fiber Placement Process Study. International SAMPE Symposium and Exhibition. 1989, 34(02): 1822~1833
    84 Smith Anthony, Anthony Donald. Robotic Fiber Placement in the Fabrication of Complex Thermoplastic Structures. International SAMPE Electronics Conference. 1992, 24: 399~407s
    85安鲁陵,周燚,周来水.复合材料纤维铺放路径规划与丝数求解.航空学报. 2007, 28(03): 745~750
    86 Wyatt Joseph, Haj-Hariri Hossein, Gruber Mark. ATL Design Tool for Tow Path Optimization. International SAMPE Symposium and Exhibition. 2008, 52: 251~264
    87成基华,范玉青,袁国平,逄淑荣. CAD/CAM开发平台及其发展趋势.计算机辅助设计与图形学学报. 2000, 12(02): 154~159
    88周友行,唐稳庄,张建勋.基于运动轨迹的机器人运动学逆解研究.机械科学与技术. 2009, 28(07): 862~866
    89熊有伦.机器人技术基础.华中科技大学出版社. 1996.8: 15~29
    90 Koker, Rasit. Reliability-based Approach to the Inverse Kinematics Solution of Robots Using Elman's Networks .Engineering Applications of Artificial Intelligence, 2005, 18(06): 685~693
    91 Zhao J W, Sun L N, Du Z J. Self-motion Analysis on a Redundant Robot with a Parallel/series Hybrid Configuration .IEEE Int Conf on Control, Automation, Robotics and Vision. 2006: 2239~2244
    92 PATEL R V, SHADPEY F, RANJBARAN F, et al. A Collision-avoidance Scheme for Redundant Manipulators. Theory and Experiments Journal of Robotic Systems. 2005, 22(12): 737~757
    93 DELGADO K, LONG K, SERAJI M H. Kinematic Analysis of 7 DOF Anthromorphic Arms. IEEE International Conference on Robotics and Automation, 1990, (02): 824~830
    94 Hollerbach J M. Optimum Kinematic Design for a Sevendegree of Freedom Manipulator. Robotics Research, theSecond International Symposium. Cambridge: MIT Press, 1985: 216~222
    95祖迪,吴镇炜,谈大龙.一种冗余机器人逆运动学求解的有效方法.机械工程学报, 2005, 41 (06): 71~75
    96时凯飞,李瑞峰. 7自由度仿人手臂运动学研究.哈尔滨工业大学学报, 2003, 35(07): 806~808
    97 Kucuk S, Bingul Z. The Inverse Kinematics Solutions of Funda-mental Robot Manipulators with Offset Wrist. Proceedings ofthe International Conference on Mechatronics. Taipei, Taiwan, China. 2005: 197~202
    98 Zhang Kai, Hu Dejin, Liu Chengliang. Study on Singular Configurations and Computer Imulation of 6R Robt. Chinese Journal of Mechanical Engineeiring.2004, (02): 177~180
    99 Yang G L, Lin W, Kurbanhusen M S. Kinematic Design of a 7-DOF Cable-driven Humanoid Arm: A solution-in-nature Approach. Proceedings of the IEEE/ASME International Conference onAdvanced Intelligent Mechatronics. Piscataway, NJ, USA: IEEE, 2005: 444~449
    100刘连忠,汪一彭,张启先.机器人逆运动学的数值解法.北京航空航天大学学报. 1995, 21 (01): 120~125
    101 B. Karlik, S. Aydin. An Improved Approach to the Solution of Inverse Kinematics Problems for Robot Manipulators. Engineering Applications of Artificial Intelligence. 2000, 13(02): 159~164
    102 Hasan Ali T, Hamouda A MS, Ismail N, Al-Assadi HMA A. An Adaptive-learning Algorithm to Solve the Inverse Kinematic Sproblem of a 6 D.O.F Serial Robot Manipulator. Advances inEngineering Software. 2006, 37(7): 432~438
    103 P. Kalra, P.B. Mahapatra, D.K. Aggarwal. An Evolutionary Approach for Solving the Multimodal Inverse Kinematics Problem of Industrial Robots. Mechanism and Machine Theory. 2006, 41(10): 1213~1229

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700