步行康复训练机器人助行腿的步态规划与运动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
步行康复训练机器人系统是一种对下肢功能障碍患者进行步行康复训练的现代医疗设备。使用机器人对下肢功能障碍患者进行步行康复训练,是当前世界公认的先进的康复医疗手段。近些年来,我国患下肢运动障碍的病人不断增多,社会对步行康复治疗的需求也越来越大。然而,由于我国目前尚无成熟的步行康复训练机器人产品,国外的此类产品价格又很高,所以国内医疗机构还没有真正运用这项医疗技术。加快自主研发这种设备,对提升我国医疗水平、提高患者生活质量、减轻社会负担都具有重要的意义。
     本文所研究的助行腿的步态规划与运动控制是步行康复训练机器人系统研究中的一部分,也是其中的关键技术。本文所做的研究是制定步行康复训练机器人助行腿的步态规划,建立操纵助行腿运动的控制系统,主要研究内容包含以下几方面。
     (1)研究了步态特征参数的测试原理与计算方法。建立了由运动捕捉系统和跑步机组成的步态特征参数测试平台,研究了运动捕捉系统中局部坐标系的建立方法、坐标变换方法以及关节角度的计算方法,并通过实验检验了它们的可行性与正确性。在此基础上,确定了步态特征参数的具体测试方法与操作步骤。
     (2)研究了人体下肢髋关节、膝关节和踝关节转角变化规律的数学建模方法。采用非线性曲线拟合的方法分别建立了髋关节、膝关节和踝关节转角变化规律的数学模型。对数学模型进行了残差分析,结果表明,构建出的数学模型能够如实反映出人体行走时的步态特征,能满足助行腿步态规划的需要。
     (3)针对助行腿的工作任务和工作环境,制定了一套完整的步态规划方法。根据人体下肢的行走特征,将助行腿的训练过程划分为起步、周期步和止步三个阶段,确定了每个阶段的功能和作用。根据助行腿在各阶段的运动特征与任务要求,分别制定出了每一阶段的步态规划。最后将三个阶段的步态规划按顺序组合在一起,合成为一套适用于助行腿步行训练的完整步态规划。
     (4)研究了助行腿的运动控制策略和运动控制数据生成方法,并应用于助行腿的运动控制系统中。根据伺服电机的工作原理和助行腿的结构特点,确定了运动控制系统所用的控制策略,建立了基于关节转角位置的闭环控制方法。根据助行腿的关节结构和驱动器的动力传递顺序,求出了电机轴与对应关节轴之间的转角传递函数,并以此为基础编制了运动控制数据生成程序,将规划出的目标运动轨迹转换为电机驱动器所需的脉冲控制指令数据。
     (5)通过实例对所研究的步态规划方法与运动控制系统进行了验证。用测试出的一组周期步关节角变化轨迹数据,规划出助行腿各关节的目标运动轨迹,按规划出的目标运动轨迹计算出助行腿各关节的运动控制指令数据,在步行康复训练机器人系统样机上进行了模拟训练试验。试验结果表明,助行腿能够按照规划的步态带动人体模型进行训练,助行腿的行走步态相对于规划步态的误差很小,能够达到以人体正常步态带动患者训练的目的。
Gait Training Robot (GTR) is a kind of modern medical equipment for the rehabilitation training of individuals with locomotor disfunction of the lower limbs. Currently, performing the rehabilitation training with GTR has become a world recognized rehabilitation method with obvious treatment effects. In recent years, with the increase of individuals with locomotor disfunction of the lower limbs in China, the needs for the gait rehabilitation training have become more and more. Because the prices of the overseas GTR products are very high and there isn’t home-made GTR product with mature technology, this medical equipment has not been used in domestic medical establishments. So development this kind equipment has great significance to improve domestic medical treatment level and to improve the patients’life quality.
     The dissertation is part of the study on the key techniques of Gait Training Robot System. The main works of this dissertation are establishing the gait planning method and motion control system for the Powered Gait Orthosis (PGO) of the GTR System. The main contents of this dissertation are as follows:
     (1) Testing and computing methods of the gait characteristic parameters. A gait characteristic parameter test bench is built, which consists of a motion capture system and a treadmill. The local coordinate system creation method, coordinate transformation method and the computing methods for the parameters of joint angles are studied. The feasibility and correctness of these methods have been tested by experiments.
     (2) Mathematical model creation method for the hip joint, knee joint and ankle joint angle data. The hip joint, knee joint and ankle joint angle data mathematical model are established by using non-linear curve-fitting methods and the residual analyses are made. The residual analyses results demonstrate that these created mathematical models can describe the human gait characteristics exactly and meet the demands of human natural gait planning for the PGO.
     (3) A set of overall gait planning methods for the PGO are established according to the PGO’s work tasks and work environments. The overall walk training process consists of three gait phases: start gait, cycle gait and end gait. The gait of each gait phase is planed according to its motion characteristic and task demand. In the end, a set of overall gait planning for the PGO are established by combining the three gait phases in a certain sequence.
     (4) The motion control strategy and its data generation method for the PGO are studied and applied to the motion control system of the PGO. According to the operating principle of servo motor and structural features of PGO, the motion control strategy is confirmed and the closed loop position control method, which based on the joint angle data, is established. According to the joint structure and motion transmission order of the joint actuator, the motion transfer functions from motor axis to joint axis are derived. Based on the motion transfer functions, the motion control data generation program is programmed, which can transform the target motion trajectories to pulse instructions needed by the servo motor drivers.
     (5) The gait planning methods and motion control system for the PGO have been tested through experiments. First detect and calculate a set of joint angle data of cyclic gait, then plane the target motion trajectories of the three joints, and then transform the target motion trajectories to pulse instructions data. At last, the gait training experiments are carried out on the GTR prototype with a dummy. The experimental results show that the PGO is able to guide the dummy’s legs to move in the planned gait pattern on treadmill and the motion trajectory errors are very small. The goal of driving the patient’s legs to move in human natural gait pattern can be achieved by using the GTR prototype.
引文
[1]陈银海.脊髓损伤康复的临床研究[D].广州:第一军医大学博士论文,2007.
    [2] Dietz1 V, Harke S J. Locomotor activity in spinal cord-injured persons [J]. Appl Physiol, 2004, 1954-1960.
    [3] Andrea L Behrman, Anna R Lawless-Dixon, Sandra B Davis, et al. Locomotor training progression and outcomes after incomplete spinal cord injury[J]. Physical Therapy, 2005, 85:1356-1371.
    [4] Jezernik S, Morari M. Controlling the human-robot interaction for robotic rehabilitation of locomotion [C]. 7th International Workshop on Advanced Motion Control, 2002, 133-135.
    [5]刘晓玲.对多发性硬化患者的认知性评估和认知性干预的评价[J].中国临床康复,2002,6(21): 3214-3214.
    [6] Noritaka K, Daichi N, Masaki O, et al. Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons [J]. Journal of Neurophysiology, 2005, 93:777-785.
    [7] Katherine J, Barbara J, Bruce H. Step training with body weight support effect of treadmill speed and practice paradigms on poststroke locomotor recovery[J]. Arch Phys Med Rehabil, 2002, 83:683-691.
    [8] Field E C. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury [J]. PHYS THER, 2000, 80(5):477-484.
    [9]常冬梅,纪树荣,寇志刚等.偏瘫康复训练中的步态分析[J].中国康复理论与实践, 2002, 8(1):56-57.
    [10]王彤,王翔,陈旗等.减重平板训练对瘫痪后步行障碍患者的影响[J].中华物理医学与康复杂志, 2002,2, 24(2):98-101.
    [11] Mirbagheri M, Tsao C, Pelosin E, et al. Therapeutic effects of robotic-assisted locomotor training on neuromuscular properties[C]. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, 2005: 561-564
    [12] Galvez J A, David J R. Robotics for gait training after spinal cord injury [J]. Topics in Spinal Cord Injury Rehabilitation, 2005, 11(2): 18-33.
    [13] Swinnen E, Duerinck S, Baeyens J P, et al. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review [J]. Journal of Rehabilitation Medicine, 2010, 42: 520-526.
    [14]孙巍.脊髓损伤后截瘫病人自护能力的研究[D].上海:第二军医大学硕士论文,2007.
    [15] Peter AC Lim, Adela M Tow. Recovery and regeneration after spinal cord injury a review and summary of recent literature [J]. Annals Academy of Medicine, 2007, 36(1):49-57.
    [16]缪鸿石.中枢神经系统(CNS)损伤后功能恢复的理论(一)[J].中国康复理论与实践, 1995, 1(1):1-4.
    [17]励建安.减重训练的研究进展[J].中华物理医学与康复杂志, 2002, 24(12):759-761.
    [18]程方,王人成,贾晓红等.减重步行康复训练机器人研究进展[J].康复医学工程, 2008, 31(2):366-368.
    [19] Colombo G, Matthias J, Reinhard S, et al. Treadmill training of paraplegic patients using a robotic orthosis[J]. Journal of Rehabilitation Research and Development. 2000, 37(6): 693-700.
    [20] Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients [J]. Spinal Cord, 2001, 39: 252-255.
    [21] Riener R, Lunenburger L, Colombo G. Human-centered robotics applied to gait training and assessment [J]. Journal of Rehabilitation Research &Development, 2006, 43(5): 679-694.
    [22] Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the lokomat robotic gait-orthosis[J]. Clinical Biomechanics, 2008, 23(10):1251-1259.
    [23] Costa N, Caldwell D G. Control of a biomimetic "soft-actuated" 10 DOF lower body exoskeleton[C]. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006: 495-501.
    [24] Lunenburger L, Colombo G, Riener R, et al. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat[C]. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. 2005: 345-348.
    [25] Vallery H, Ekkelenkamp R, Buss M, et al. Complementary limb motion estimation based on interjoint coordination: experimental evaluation [C]. IEEE 10th International Conference on Rehabilitation Robotics, 2007, 361-364.
    [26] Veneman J F, Kruidhof R, Ekkelenkamp R, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15 (3): 379-386.
    [27] Veneman J F, Ekkelenkamp R, Kruidhof R, et al. A series elastic-and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots [J]. The International Journal of Robotics Research, 2006, 25 (3): 261-581.
    [28] Veneman J F, Ekkelenkamp R, Kruidhof R, et al. Design of a series elastic and bowden-cable-based actuation system for use as torque-actuator in exoskeleton-type training[C]. IEEE 9th International Conference on Rehabilitation Robotics, 2005: 496-499.
    [29] Veneman J F, Asseldonk E V, Ekkelenkamp R, et al. Evaluation of the effect on walking of balance-related degrees of freedom in a robotic gait training device[C]. Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007: 868-875.
    [30] Sangwan V, Agrawal S K. Generation of leg-like motion and limit cycles with an underactuated two dof linkage[C]. The First IEEE/RAS-EMBS International Conference, 2006: 684-689.
    [31] Agrawal S K, Fattah A. Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12 (2): 157- 165.
    [32] Agrawal S K, Banala S K, Fattah A, et al. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15 (3): 410-420.
    [33] Banala S K, Kulpe A, Agrawal S K. A pwered leg othosis for gait rehabilitation of motor-impaired patients[C]. IEEE International Conferrence on Robotics and Automation, 2007: 10-14.
    [34] Banala S K, Agrawal S K, Scholz J P. Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients[C]. Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007: 401-407.
    [35] Agrawal S K, Banala S K, Mankala K, et al. Exoskeletons for gait assistance and training of the motor-impaired[C]. Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007: 1108-1113.
    [36] http://www.braintreerehabhospital.com/pdf/autoambulator_MDNews.pdf [OL].
    [37]张杰.脑卒中瘫痪下肢外骨骼康复机器人的研究[D].杭州:浙江大学硕士学位论文,2007.
    [38] Hesse S. A mechanized gait trainer for restoration of gait [J]. Journal of Rehabilitation Research and Development, 2000, 37(6):701-708.
    [39] Hesse S, Bemhardt S. Locomotor therapy in neurorehabilitation [J]. Neuro Rehabilitation, 2001, 16:133-139.
    [40] Hesse S, Sorowka D, Bemhardt S. Design of a robotic walking simulator for neurological rehabilitation[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002: 1487-1492.
    [41] Hesse S, Bemhardt S, Schmidt H, et al. HapticWalker–a novel haptic foot device [J]. ACM Transactions on Applied Perception, 2005, 2(3):563-574.
    [42] Schmidt H, Sorowka D, Hesse S, et al. Development of a robotic walking simulator for gait rehabilitation [J]. Biomed Tech, 2003, 48(10): 281-286.
    [43] Schmidt H, Piorko F, Bernhardt R, et al. Synthesis of perturbations for gait rehabilitation robots[C]. IEEE 9th International Conference on Rehabilitation Robotics, 2005: 74-77.
    [44] Hiroo I, Hiroaki Y, Fumitaka N. Gait master: a versatile locomation interface for uneven virtual terrain[C]. IEEE Proceedings of Virtual Reality Conference, 2001.
    [45] http://intron.kz.tsukuba.ac.jp/gaitmaster/gaitmaster_e.html [OL].
    [46]张晓超,张立勋,颜庆.一种新型三自由度下肢康复训练机器人步态机构运动分析及仿真[J].自动化技术与应用, 2005, 24(3):32-35.
    [47]张立勋,张晓超.下肢康复训练机器人步态规划及运动学仿真[J].哈尔滨工程大学学报, 2009, 30(2):187-191.
    [48]颜庆,张立勋,杨勇等.下肢康复训练机器人单片机控制系统设计[J].应用科技, 2004, 31(11):1-3.
    [49]张立勋,王克义,张今瑜.下肢康复训练机器人的运动协调仿真[J].机械设计与研究, 2007, 23(6):46-50.
    [50]夏昊昕,张立勋,王岚.下肢康复训练机器人[J].应用科技, 2004, 31(2):3-7.
    [51]钱振美.卧式下肢康复机器人的研究[D].哈尔滨:哈尔滨工程大学硕士学位论文, 2006.
    [52] http://www.lokohelp.net/en/interesting/interesting/lokohelp-therapy-at-infantile-cerebral-palsy [OL].
    [53] Hirai K, Hirose M, Haikawa Y, et al. The development of Honda humanoid Robot[C]. Proceedings of the IEEE International Conference on Robotics and Automation, 1998: 1321-1326.
    [54]包志军.仿人型机器人运动特性研究[D].上海:上海交通大学博士学位论文, 2000.
    [55]纪军红. HIT-III双足步行机器人步态规划研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2001.
    [56]杨敏.拟人机器人的步态规划仿真研究[D].南京:南京工业大学硕士学位论文, 2006.
    [57]石宗英,徐文立,冯元琨等.仿人型机器人动态步行控制方法[J].机器人, 2001, 23(6):569-574.
    [58]陈子琏,曾园山,张惠君.人体结构学[M].北京:科学出版社, 2001.
    [59]吕厚山.人工关节外科学[M].北京:科学出版社, 2001.
    [60]吴海山,吴宇黎.人工膝关节外科学[M].北京:人民军医出版社, 2005.
    [61]姚太顺,孟宪杰.踝关节外科[M].北京:中国中医药出版社, 1998.
    [62]周凌宏,丁海曙,张通.正常成人步态与偏瘫步态的比较与分析[J].生物医学工程学杂志, 1995, 12(4): 315-320.
    [63] Zanchi V. Quantitative human gait analysis [J]. Simulation Practice and Theory, 2000, 8:127-139.
    [64] DeLisa J A. Gait analysis in the science of rehabilitation [M]. Washington D.C.: Scientific and Technical Publications Section, 1998.
    [65] Nixon M S, Tan T N, Chellappa R. Human Identification Based on Gait [M]. New York: Springer, 2005.
    [66]张彤,毕胜.减重步行训练的临床应用[J].现代康复, 2001, 5(8):58-61.
    [67] Rose J, Gamble JG. Human Walking [M]. Baltimore: Williams & Wilkins, 1994.
    [68]戴克戎,汤荣光.平地行走时的步态观察[J].中国生物医学工程学报, 1982,12(1): 15-19.
    [69]吴剑,李建设.人体行走时步态的生物力学研究进展[J].中国运动医学杂志, 2002,21(3): 305-307.
    [70]中华人民共和国卫生部医政司.中国康复医学诊疗规范上册.北京:华夏出版社, 1998: 53-78.
    [71] Biryukova E V, Roby B A, Frolov A A, et al. Kinematics of human arm reconstructed from spatial tracking system recordings [J]. Journal of Biomechanics, 2000, 30(8): 985-995.
    [72] Alexander E J, Andriacchi T P. Correcting for deformation in skin-based marker systems [J]. Journal of Biomechanics, 2001, 34(3): 355-361.
    [73] Holden J P, Orsini J A, Siegel K L, et al. Surface movement errors in shank kinematics and knee kinetics during gait[J]. Gait and Posture, 1997, 5(3): 217-227.
    [74] Bharatkumar A G, Daigle K E, Pandy M G, et al. Lower limb kinematics of human walking with the medial axis transformation[C]. IEEE Computer Society Workshop on Motion of Non-Rigid and Articulated Objects, 1994: 70-76.
    [75] Yakunina G Y. The three-dimensional motion of optimalpyramidal bodies [J]. Journal of Applied Mathematics and Mechanics, 2005, 69(2): 234-243.
    [76] Zoss A, Kazerooni H, Chu A. On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX) [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005: 3465- 3472.
    [77]董玉振.人体步行动力学及下肢假肢的研究[D].北京:清华大学博士学位论文, 1995.
    [78] Winter D A. Human balance and posture control during standing and walking [J]. Gait and Posture, 1995(3): 193-214.
    [79] Casey K D, Robert S R, Patrick R. The modeling of adult spastic paretic stiff-legged gait swing period based on actual kinematic data [J]. Gait and Posture, 1998(7): 117-124.
    [80] Mirjam P, Maarten F B, Jaap H. Contribution of the support limb in control of angular momentum after tripping [J]. Journal of Biomechanics, 2004(37): 1811-1818.
    [81] Murray M P, Spurr G B. Treadmill vs. floor walking: kinematics, electromyogram, and heart rate [J]. Appl Physiol, 1985, 59(1): 87-91.
    [82] Lee S J, Hidler J. Biomechanics of overground vs. treadmill walking in healthy individuals [J]. Journal of Applied Physiology, 2008, 104:747-755.
    [83]冯治国.步行康复训练助行腿机器人系统[D].上海:上海大学博士学位论文, 2009.
    [84]方彬.步行康复训练机器人主动减重控制方法的研究[D].上海:上海大学硕士学位论文,2010.
    [85]杨辉.下肢康复机器人减重支撑系统设计与装置研究[D].上海:上海大学硕士学位论文,2009.
    [86] Feng Z G, Qian J W, Zhang Y N, et al. Biomechanical design of the powered gait orthosis [C]. IEEE International Conference on Robotics and Biomimetics, China, 2007:1698-1702.
    [87] Johan I, Lennart G, Knutsson E. Three-dimensional electrogoniometric gait recording [J]. Journal of Biomechanics, 1986,19(8): 627-629.
    [88] Tata J A, Quanbury A O, Steinke T G, et al. A variable axis electrogoniometer for the measurement of single plane movement [J]. Journal of Biomechanics, 1978, 11(8): 421-425.
    [89]张立勋,王令军,王凤良等.一种人体步态轨迹测量方法[J].测控技术, 2009,28(2): 24-27.
    [90]杨衍明,林方,袁波等.超声定位人体下肢步态分析仪[J].中国生物医学工程学报.1997,16(4): 298-303.
    [91] Adam G K, James F O, David A F. Skeletal parameter estimation from optical motion capture data[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2005: 782-788.
    [92] Kazutaka K, Shinichiro H, Katsu Y, et al. Optical motion capture system with pan-tilt camera tracking and realtime data processing[C]. IEEE International Conference on Robotics and Automation, 2002: 1241-1248.
    [93] Lorna H, Pascal F, Ralf P, et al. Using skeleton-based tracking to increase the reliability of optical motion capture [J]. Human Movement Science, 2001, 20: 313-341.
    [94] Werner C, Frankenberg V, Treig T, et al. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study [J]. Stroke, 2002, 33: 2895-2901.
    [95]石振东,刘国庆.实验数据处理与曲线拟合技术[M].哈尔滨:哈尔滨船舶工程学院出版社, 1991.
    [96]李庆扬,王能超,易大义.数值分析(第4版)[M] .武汉:华中科技大学出版社, 2006.
    [97]盛骤,谢式千,潘承毅.概率论与数理统计(第2版)[M].北京:高等教育出版社, 1999.
    [98]马徐琨,邹冰.分段曲线拟合在同步距离后置处理中的应用[J].声学技术, 2004, 23(3): 159-163.
    [99]柯显信.仿人形机器人双足动态步行研究[D].上海:上海大学博士学位论文, 2005.
    [100] Nobuya Y, Tomohito T, Kenichi O, et al. Gait Planning for a Biped Robot by a Nonholonomic System with Difference Equation Constraints[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, 4471-4476.
    [101]蔡自兴.机器人学[M].北京:清华大学出版社, 2000.
    [102]夏泽洋,陈恳,刘莉,熊璟.面向仿人机器人自然步态规划的人体步行实验分析[J].机器人, 2008, 30(1):41-46.
    [103]陈学东,孙立羽,贾文川.多足步行机器人运动规划与控制[M].武汉:华中科技大学出版社, 2006.
    [104] Vaughan C L, Davis B L, O’Connor J C. Dynamic of Human Gait [M]. Cape Town: Kiboho Publishers, 1999.
    [105]孙迪生,王炎.机器人控制技术[M].北京:机械工业出版社, 1997.
    [106]吴振彪,王正家.工业机器人[M].武汉:华中科技大学出版社, 2006.
    [107] http://www.yade-auto.com/forum/context_blog.asp?id=14[OL].
    [108]尔桂花,窦曰轩.运动控制系统[M].北京:清华大学出版社.2002.
    [109]舒志兵.交流伺服控制系统[M].北京:清华大学出版社, 2006.
    [110]熊有伦.机器人技术基础[M].武汉:华中理工大学出版社, 1996.
    [111]孙树栋.工业机器人技术基础[M].西安:西北工业大学出版社, 2006.
    [112] http://sine.ni.com/nips/cds/view/p/lang/zhs/nid/201607 [OL].
    [113] http://sine.ni.com/nips/cds/view/p/lang/zhs/nid/13087 [OL].
    [114] http://www.megatron.de/export/Contacless__analog_Sensors/MAB28/DB_MAB28_engl.pdf [OL].
    [115] http://www.hbm.cz/Prospekty/Sila/U9B/p_U9B_e.pdf [OL].
    [116] http://sine.ni.com/nips/cds/view/p/lang/zhs/nid/14125 [OL].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700