六维并联冗余振动台控制规划与实验关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动台系统是振动工程研究工作中的重要试验设备之一。同串连机构振动台相比,并联结构的振动台具有刚度大、对称性好、速度高、机构紧凑、动力学性能好等优点。本文针对具有3-2-1结构的冗余驱动并联机构,进行了控制系统的规划,并对此机构的运动学、动力学、动平台的加速度检测以及基于六维加速度传感器的全闭环控制系统进行了比较全面的研究,具体内容如下:
     1.在分析机构特点的基础上,进行控制系统软硬件的整体设计,包括驱动方式的选择、控制系统硬件结构的设计、控制系统软件结构设计。
     2.应用六维力传感器的模型,结合广义牛顿第二定律的原理,设计出六维加速度传感器,分析传感器存在重力加速度会引起误差的缺点,制定两种加速度检测方案,消除误差。并给出加速度检测仿真图线。
     3.应用Neton-Euler法建立6-PSS并联机构各杆和动平台的动力学方程,并进一步推导整个系统的动力学方程,给出其开式形式和闭式形式,并给出动力学仿真图,验证动力学模型的正确性。为基于动力学模型的控制奠定了基础。
     4.详细分析振动台半闭环反馈控制系统,给出整个机电系统的数学模型并进行稳定性分析和位置调节器参数整定的工作。
     5.提出六维振动台的自适应控制系统模型。在此系统中加入全闭环六维加速度反馈控制和前馈控制,使系统减小了误差、消除了抖动。
The vibration table is one of the most important test equipment in the research of the vibration engineering. Corresponding to the serial vibration table, the vibration table with parallel structure shows several advantages, such as, higher stiffness, better symmetry, higher velocity, better dynamics and compact structure. In this dissertation, control programming is presented to a new redundant activate parallel mechanism with 3-2-1 structure and studied in many fields, such as kinematics, dynamics, acceleration measuring of flatform, closed loop control system based on 6-axis acceleration sensor and so on.
     1. Based on the analysis of mechanism character, the software and hardware of control system are designed, including selection of drive pattern, design of hardware and software structure.
     2. A novel 6-axis acceleration sensor is presented using the modle of 6-axis force sensor and the theory of Newton’s second law. The sensor gets fault signal of acceleration for gravitational acceleration, so two schemes are made to get rid of the disturbance of gravitational acceleration. And the simulation-graph is given finally.
     3. A formulation based on Newton-Euler equation is educed for the dynamic model of the 6-PSS parallel mechanism. The open-form and closed-form equations for the inverse dynamics of the holistic parallel mechanism were established. The driving force emulational curves for different curves translation proved the dynamic model proper. The dynamic model is the base of control.
     4. The half feedback control loop system is analysed detailedly. The whole electromechani- cal mathematical model is educed and the stability of the system is analysed. The parameters of position control are setted.
     5. Self-adaptive control system model of 6-axis vibration table is presented. Feedback control and feedforward control of 6-axis acceleration are both put in the closed loop to reduce the error of system and get rid of jitter of the platform.
引文
[1] 黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997.
    [2] W. Pollard and Evanston, “Position-controlling apparatus,” Application, 1938, Serial No.203: 634, April 22
    [3] K.H. Hunt, “Structural kinematic of in-parallel-actuated robot-arms,” ASME Journal of Mechanisms, Transmissions and Automation in Design, Dec. 1983, Vol.105:705-712.
    [4] 陈学生,陈在礼,孔民秀.并联机器人研究的进展与现状.机器人,2002,Vol.24,No.5:464-470
    [5] D. Stewart, “A platform with six degrees of freesom,” IME, Proc. 80, 1965, Part I (15): 371-386.
    [6] K.H.Hunt.Structural Kinematics of In-Parallel-Actuated Robot Arm. Trans.ASME J.Mechanisms, Transmissions, and Automation in Design, 1983,105:705-712
    [7] H. MacCallion and D.T. Pham, “The analysis of a six degree of freedom workstation for mechanised assembly,” Proccedings of the 5th World Congress on Theory of Machines and Mechanisms, July 1979.
    [8] J.-P. Merlet, “Les robots paralleles,” Hermes, Paris, 1990
    [9] 刘辛军.并联机器人机构性能与尺寸关系分析及其设计理论研究.燕山大学,博士学位论文[D],1999
    [10] Peter Vischer, “Improving the accuracy of parallel robots,” Thèsen 1570, Lausanne (EPFL), 1996.
    [11] E.F. Fitcher, “A Stewart platform-based manipulator: General Theory and Practical Construction,” Int. J. Rbotics Research, 1986, Vol.5, No.2: 157-182.
    [12] J.-P. Merlet, “Direct kinematic and assembly motion parallel manipulators,” Int. J. Rbotics Research, 1992, Vol.11, No.2: 150-162.
    [13] 余晓流,岑豫皖,潘紫微,吴玉国.并联机器人的理论及应用研究.安徽工业大学学报.2003, 20(4):290-294
    [14] 韩俊伟,李玉亭,胡宝生.大型三向六自由度地震模拟振动台.地震学报,1998,20(3): 327-331
    [15] 李为民, 高峰.新型并联冗余驱动地震模拟台.机械设计.2004,21(3):22-24
    [16] D. R. Kerr, “Analysis, properties and design of a Stewart-platform transducer,” J. Mech. Transm. Autom. design, 1989, Vol.111: 25-28.
    [17] C. C. Nguyen, et al., "Analysis and experimentation of a Stewart platform-based force/torque sensor,” International Journal of Robotics and Automation, Vol.7, No.3, 19: 133-140.
    [18] C. Ferraresi, et al., “Static and dynamic behavior of a high stiffness Stewart platform-based force/torque sensor,” Journal of Robotic Systems, 1995, Vol.12, No.12, pp.883-893.
    [19] 陈滨. 机器人手腕测力装置,机械工程学报, 1988, 24(2)
    [20] 熊有伦,机器人力传感器的各向同性,自动化学报, 1996,22(1)
    [21] Hongrui Wang, Feng Gao and Zhen Huang, “Design of 6-axis force/torque sensor based on Stewart platform related to isotropy,” Chinese Journal of Mechanical Engineering, 1998, Vol.11, No.3: 217-222.
    [22] G.W. Ellis, “Piezoelectric micromanipulators,” Science Instruments and Techniques, 1962, Vol.138: 84-91.
    [23] R. Stoughton, “Kinematic optimization of a chopsticks-type micromanipulator,” ASME Japan/USA Symp. on Flexible Automation, Vol.1, , pp151-157, 1992.
    [24] J.C. Hudgens, and D. Tesar, “A fully-parallel six degree-of-freedom micro-manipulator: kinematic analysis and dynamic model,” Proc. 20th Biennal ASME, Mechanisms Conf. Trends and Development in Mechanisms Machines and Robotics, Vol.15(3), pp29-37, 1988.
    [25] K. M. Lee, and S. Arjunnan, “A three degree of freedom micro-motion-in-parallel actuated-manipulator,” Proc. of the IEEE Int. Conf. On Robotics and Automation, pp1698-1703, 1989.
    [26] 安辉,压电陶瓷驱动六自由度并联微动机器人的研究,哈尔滨工业大学,博士论文,1995
    [27] 杜铁军,机器人误差补偿器研究.硕士论文.燕山大学,1994
    [28] 毕树生,王守杰,宗光华. 串并联微动机构的运动学分析.机器人.1997,Vol.19, No.4
    [29] 徐卫平,张玉茹.六自由度微动机构的运动分析.机器人.1995,Vol.17, No.5, pp298-302
    [30] Akihiko Nagakubo and Shigeo Hirose, “Walking and running of the quadruped wall-climbing robot,” Proc. IEEE Int. Conf. on Robotics and Automation, 1994, pp.1005-1012.
    [31] Y. Tsumaki, H. Naruse, D. N. Nenchev and M. Uchiyama: Design of a Compact 6-DOF Haptic Interface, Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, (1998/5/16-20), 2580-2585.
    [32] Lionel Birglen, Clément Gosselin, etc. SHaDe, A New 3-DOF Haptic Device, PREPRINT OF A PAPER PUBLISHED IN IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002, pp166~175.
    [33] 蒋新松.机器人及机器人学中的控制问题.机器人,1990, 12 (5): 1-6.
    [34] 金仁成,赵继,杨红梅.多关节机器人的运动灵活性.吉林工业大学自然科学学报.1998, Vol.28(1 ): p p 12-16.
    [35] Kahn M E. and Roth B. The Near Minimum Time Control of Open Loop Articulated Kinematic Chains. Trans. of ASME of Dyn. Sys. Meas. And Cont.,1971, 164-172
    [36] Wu H C. and Paul P R. Manipulator Conpliance Based on Joint Torque Control. Proc. 19th IEEE Conf. Decision Control. 1980, 1:681-193.
    [37] PauI R P. Robot Manipulator Mathematic Programming and Control. Cambridge: The MIT Press,1981.
    [38] 卢桂章.机器人控制的现状与问题.控制理论与应用.第 7 卷第 2 期 1990 年 6 月
    [39] Paul, R. P.,Modclling, Trajectory Calculatioa and Servoing of A Computer Coatrolled Arm, Stanford AI Lab. Memo AM-177, (1972).
    [40] Luh, J. Y. S., M.Walkcr, and R.Paul, Resolvcd-Accclcration Control of Mechanical Manipulators, IEEE Trans on Aotomatical Control, AC-25, (1980).
    [41] Tarn, T. J,A. K. Bejczy, and X. Yun, Nonlinear Feedback Control of Multiple Robot Arms: Closed Chain and Force Feedback Formulalions,Proc. of the NASA Workshop on Tclerobotics, JPL, (1987)
    [42] Sloline, J. J. E., Robustness Issuse in Robot Control, Proc. IEEE Int. Conf. on Robotics and Automation,(1985).
    [43] Hsia, T. C., Adaptive Control of Robot Maniplators -A Review, Proc. IEEE It. Conf. on Robotics and Automation, (1986).
    [44] Shin, K. G., and N. Mcday,Minimum Timc Control of A Robotic Manipulator with Gemetric Path Constrains IEEE Trans,AC-30, (1985).
    [45] Arimoto, S., and Miyazaki, F., Stability and Robustness of PID Feedback Control for Robot Manipulators and Sensory Capability, 1st Int. Symp.of Robot Research, (1983).
    [46] Spong, M. W., and Vidyasagar, Robust Nonlinear Control of Robot Manipulators, Proc. 24th IEEE Conf. on Decision and Control, (1985).
    [47] Arimoto, S., Mathematical Theory of Learning with Applications to Robot Control, Proc. of 4th Yale Work. shop on Applications of Adaptive Syslcms Theory, (1985).
    [48] 王颧,毛宗源.机器人的智能控制方法〔M〕.北京:国防工业出版社,2002.
    [49] Lin C M, Hiyama T. Application of fuzzy logic control to a manipulator[J]. Robot and Automation.1991. 7(5):688-691
    [50] 应浩.关于模糊控制理论与应用的若干问题[J].自动化学报,2001,27(4):591-592.
    [51] Lewis F L. et al. Multiplayer Neural-Net Robot Controller with Guaranteed Tracking Performance [J]. IEEE Trans Neural Networks, 1996,7(2): 388-399
    [52] Holland J H. Adaptation in natural and artificial systems[M]. MI: University of Michigan Press,1975.
    [53] Mark W. Spong, M. Vidyasagar. Robot Dynamics and Control [M]. John Wiley & Sons, Inc, 1989.
    [54] Richard M. Murray, Zexiang Li, Sastray S S. A Mathematical Introduction to Robotic Manipulation [M].CRC Press, 1994.
    [55] 吴宇列,吴学忠,李圣怡. 冗余并联机构的 PD 控制. 国防科技大学学报. 第 23 卷第 3 期.
    [56] 贺利乐,段志善.并联机器人的动态性能及控制方法的研究现状与展望[J].振动利用技术的若干研究与进展.2003.9
    [57] M .D. Bryfogle C .C. Nguyen, Kinematics and control of a fully parallel force-reflecting hand controller for manipulator teleoperation, Journal of Robot Systems, Vol.10 .1993,5
    [58] Koditschek D .E .A daptivete chniques for mechanical systems, P roc,5 th Yale Workshop on Adaptive Systems ,1987.
    [59] M .Honegger, R .Brega, G .Schweizer, Application of a nonlinear adaptive controller to a 6 dof parallel manipulator, Pro .of the 2000 IEEE, Inter Conf. On Robotics & Automation, 2000.
    [60] I .F. Chung, H .H .Chung , C .T .Li n , Fuzzy control of a s ix-degree motion platform with stability analys is, Proc. Of the 38th Conference on Decision & Control, Dec.1999.
    [61] 孔令富等.基于动力学的 6 - DOF 并联机器人力补偿控制[J].机械工业自动化,1995,2
    [62] 张建明,王平,王树青.使用模糊转换器的并联机器人神经元控制[J].系统仿真学报,2001,13(1)
    [63] 方浩,周冰,冯祖仁.基于层叠 CMAC 的六自由度并行机器人控制[J].机器人,2001,23(4)
    [64] 朱龙彪,龚建伟,徐海黎,庄 健.并联六自由度机器人智能控制算法的研究. 机械设计与制造.2004.10.第 5 期,47~48
    [65] 王益群,张泽强.并联机器人电液伺服系统控制策略的研究[J].机床和液压, 1992(3):112~117
    [66] 吴 博,吴盛林,赵克定.并联机器人控制策略的现状和发展趋势.机床与液压.2005,NO.10
    [67] 赵现朝. Stewart 结构六维力传感器设计理论与应用研究.燕山大学工学博士论文.2002:32-40
    [68] 于春战.基于并联机构的六维加速度传感器.燕山大学硕士论文. 2005 年 4 月
    [69] 胡宝生.我国自行研制的第一个大型三向地震模拟振动台.世界地震工程.1995 年 11 月.第 4 期.
    [70] 李敏霞,杨泽群,陈建秋. 地震模拟振动台技术的开发与应用. 世界地震工程.1996 年 5 月.第 2期.
    [71] 方重. 模拟地震振动台的近况及其发展. 世界地震工程. 1999 年 6 月.15 卷 2 期.
    [72] 李为民,高 峰.一种自均力冗余驱动接口模块.中国机械工程第 15 卷第 2 期 2004 年 1 月下半月.
    [73] 刘安心,杨廷力.求一般 6-TPS 并联机器人机构的全部位置正解[J].机械科学与技术, 1996, 15(4): 543~546.
    [74] 曲义远,黄 真.空间六自由度多回路机构位置的三维搜索方法[J].机器人,1985,3(5):25~29
    [75] 姜虹,贾嵘,董洪智,王小椿. 六自由度并联机器人位置正解的数值解法.上海交通大学学报,2000,Vol.34,No.3:351-353
    [76] 刘伟.具有 3-2-1 并联结构地震模拟器的关键技术研究.河北工业大学硕士论文.2004 年 4 月
    [77] KokkinisT, Millies P. A parallel robot-Arm regional structure with actuator redundancy [J]. Mechanism and Machine theory, 1991, 26: 629-641.
    [78] Kokkinis T, Millies P. Kinetostatic Performance of A Dynamically Redundant Parallel Manipulator. Int. Journal of Robotics and Automation, 1992, 7: 30~37.
    [79] Yi B J. Geomatric Analysis of Antagonistic Stiffessin Redundantly Actuated Parallel Mechanisms. Journal of Robotic Systems, 1993, 10: 581~603.
    [80] 张松,杨杰,吴月华.分布式多环境智能机器人系统的设计与仿真.机器人,1998, Vol.20 (1):pp44-50.
    [81] http://www.ni.com/china(2005.12.20)
    [82] 熊有伦,尹周平,熊蔡华,等.机器人操作.武汉:湖北科学技术出版社,2002:31-33,100-103.
    [83] 熊有伦,丁汉,刘恩.机器人学.机械工业出版社.1993,36~37.
    [84] D.E.Whitney. Mathematics of Coordinated Control of Prosthetic Arms and Manipulators. ASME J. Dynamic Systems Measurement and Control, 1972, 122:306-309.
    [85] Uchiyama M, Nakamura Y, Hakomori K. Evaluation of Robot Force Sensor Structure Using Singular Value Decomposition. Journal of the Robotics Society of Japan,1987,5(1):4-10
    [86] Uchiyama M, Bayo E, Palma-Villalon E. A Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors. Trans. ASME, Journal of Dynamic Systems, Measurement, and control,1991,113:194-388.
    [87] 赵锡芳.机器人动力学[M].上海:上海交通大学出版社,1992,2-3.
    [88] Merlet J P. Parallel robots [M]. Dordrecht: Kluwer Academic Publishers, 2000.
    [89] 张国伟,宋伟刚. 并联机器人动力学问题的 Kane 方法. 系 统 仿 真 学 报. Vol. 16 No. 7 July 2004. 1386
    [90] Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach [J] .Mechanism and Machine Theory,1998,3 3(7):993 一 1011
    [91] Dasgupta B, Choudhury P. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators [J ].Mechanism and Machine Theory,1 999,34 (6):801-82
    [92] Liu K, Fitzgerald M, Dawson D W and Lewis F L. Modeling and control of a Stewart platform manipulator[J]. ASME DSC, Control of Systems with Inexact Dynamic Models, 1 991,3 3:83-89
    [93] 刘敏杰,田涌涛,李从心. 并联机器人动力学的子结构 Kane 方法[J].上海交通大学学报,2001,3 5(7):1032-1035
    [94] 李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究[J],哈尔滨工业大学学报,1999,1 8(1):4 1-4.
    [95] 孔令富,张世辉,肖文辉,李成元,黄真. 基于牛顿-欧拉方法的 6-PUS 并联机构刚体动力学模型[J]. 机器人. 2004,26(5):395-399.
    [96] 梅江平.可重构并联机构主模块机电伺服控制系统研究及硬件设计.天津大学博士文[D].2002.
    [97] 王建民,高铁红等.机电控制工程,中国计量出版社,2002 年 7 月第一版,4-9.
    [98] 霍伟,机器人动力学与控制,高等教育出版社,2005 年第一版,123.
    [99] Arnold V. L, Mathematical Methods of Classical Mechanics, Springer-verlag, New York, 1974.
    [100] Armstrong B., Dupont, P., and Canudas de Wit, C., A survey of analysis tools and compensation methods for the control of machines with friction . Automatica, vol.10, 1083-1138, 1994.
    [101] Global, Z. Q., “ Stability of trajectory tracking of robot under PD control,” Proceedings of the IEEE Conference on Control Applications, 8-12, 1992.
    [102] Global, Z. Q., “ Stabilization of nonlinear systems with a class of unmathched uncertainties,” Proceedings of the IEEE Conference on Control Application, 498-503, 1992.
    [103] Global, Z. Q. and Dordey, J. “Robust tracking control of robots by a linear feedback law,”IEEE Transactions on Automatic Control, 36(9), 1081-1084, 1991.
    [104] Dubowsky S, Desforges D T. The Application of the model-referenced adaptive control to robotic manipulators. ASME Trans. on Dynamic Systems, Measurement, Control, 1979, 101.
    [105] Craig J, Hsu P, Sasry S. Adaptive control of mechanical manipulators, Int. J. Robotics Research, 1987, 6: 16~28
    [106] Slotine J J E, Li W P. On the adaptive control of robot manipulators. Int. J. Robotics Research, 1987, 6: 49~59.
    [107] Sadegh, N., and Horowitz, R, Stability and robustness analysis of a class of adaptive controller for robotic manipulators, Int. J. Robotics Research, 9(3), 74-92, 1990.
    [108] Studenny J, Belanger P R. Robot manipulator control by acceleration feedback: stability, design and performance issues,In:IEEEConf.DecisionandControl,1986,80~85
    [109] YoichiHori.Disturbance Suppression on an Acceleration Control Type DCServo System.PSCE'88 Record,1988,222~229.
    [110] 李杰,韦庆,常文森.基于加速度反馈的机械手位置控制研究.国防科技大学学报.1999,21(3):93~97.
    [111] 邱志成,谈大龙,韩建达.基于加速度传感器反馈控制的谐波驱动系统的研究.中国机械工程第2000 年 11 月 11 卷第 11 期.
    [112] Yamane, Katsu; Nakamura, Yoshihiko; Okada, Masafumi; Komine, Noriaki; Yoshimoto, Ken'ichi. Parallel dynamics computation and H infinity acceleration control of parallel manipulators for acceleration display. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, v 127, n 2, June, 2005, p185-191.
    [113] Whitcomb,L.L.,Rizzi,A.A.,and Koditachek, D. E., Comparative experiments with a new adaptive controller for robot arms, IEEE transactions on Robotics and Automation, 9(1),59-70,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700