酞菁衍生物/MCM-41的制备及催化苯酚羟基化反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯二酚(邻苯二酚和对苯二酚)是重要的精细化工原料,用途非常广泛,市场需求量很大。双氧水氧化苯酚羟基化联产邻苯二酚、对苯二酚法是目前最理想的绿色化学生产工艺,该工艺的催化剂成为研究的重点。酞菁衍生物是一类具有良好热稳定性和化学稳定性的大环化合物。近年来,人们发现酞菁具有许多特殊性质和新颖功能,但由于酞菁类化合物的难溶性,使其在应用上受到了很大的限制。为提高其溶解性并获得所需要的理化性质,需要对其分子结构加以修饰,通常有效的做法是在酞菁类化合物的中心、周边以及轴向引入官能团。分子筛MCM-41是一类通过无机前驱体与有机表面活性剂之间的相互作用自组装形成的具有长程有序排列,孔径处于纳米量级(2-10nm)的纳米结构体系。功能材料组装进介孔分子筛的孔道内形成具有纳米结构的新型复合材料,在催化领域有着理论研究价值和实际应用前景。
     本文在实验的基础上,建立了苯酚羟基化反应液用高效液相色谱分析的方法。以4-磺酸基邻苯二甲腈和乙酸钴或氯化亚铁为原料,采用固相熔融法合成4,4′,4″,4′″-四磺酸基钴酞菁(CoPcS_4)和4,4′,4″,4′″-四磺酸基铁酞菁(FePcS_4),采用红外光谱、紫外-可见光光谱和质谱对其表征。
     以4,4′,4″,4′″-四磺酸基钴酞菁为催化剂作用于苯酚羟基化反应,主要考察了溶剂、pH值、温度、双氧水用量、催化剂用量以及双氧水滴加速度对苯酚羟基化反应的影响,最后得到苯酚羟基化的优化反应条件为:溶剂水,pH值6,反应温度40℃,双氧水/苯酚摩尔比1.2,苯酚/催化剂质量比150,双氧水滴加速度3.90ml/h,在此条件下苯酚的转化率达到28.79%,苯二酚的选择性达到62.07%。以4,4′,4″,4′″-四磺酸基铁酞菁为催化剂苯酚羟基化的优化反应条件为:反应温度50℃,双氧水/苯酚摩尔比1.2,苯酚/催化剂质量比125,双氧水滴加速度2.60ml/h,在此条件下苯酚的转化率达到63.01%,苯二酚的选择性达到49.80%。
     通过比较4,4′,4″,4′″-四磺酸基铁酞菁和4,4′,4″,4′″-四磺酸基钴酞菁做催化剂的转化率可知,4,4′,4″,4′″-四磺酸基铁酞菁的催化反应活性相对较好。以MCM-41为载体,FePcS_4为活性中心,采用浸渍法制备催化剂FePcS_4/MCM-41,并应用于苯酚羟基化反应进行研究,发现和FePcS_4相比,虽然苯酚转化率降到了30%,但是苯二酚的选择性最高能达到93.05%。
Catechol and hydroquinone,as the important raw material intermediates in fine chemical industries,are used in many fields.The catalytic hydrogenation of phenol by hydrogen peroxide is the optimal green way to produce pyrocatechtechol and hydroquinone.So the catalysts had become the emphases studied.Phthalocyanine is a kind of microcycle compound with well thermal stabilities and chemical stabilities.In recent years,many special characters and novel functions have been found,the field of applications will increase widely.However, Phthalocyanine compounds can't be resolved easily which limites their application.So the structure of phthalocyanine molecule has to be modified to improve their solubilities and obtain the required physical and chemical properties.The effective method is importing functional groupe to center,circumference and axes of phthalocyanine compounds.Mesoporous molecular sieves(MCM-41) have been obtained by means of the corporative interaction between inorganic presecursors and supramolecular surfactants.Their unique strctures such as large pore size(2-10nm),large area and narrow pore size distribution have attracted considerable attention in porous materials science since 1992.New complex materials with nano-structure which are synthesized by functional materials assembled in mesoporous zeolite have theory and reality value in catalysis fields.
     A new method for the separation and determination of phenolic compounds in phenol hydroxylation by reversed-phase high performance chromatogrophy with gradient elution was established.Tetra-substituted sulfonated cobalt(iron) phthalocyanine was synthesized by using 4-sulfonicphthalonitrile as fragment.Theirs structures were identified and characterized byFT-IR,UV-VIS and MS.The influence of various reaction parameters solvent,pH, reaction temperature,the molar ratio H_2O_2/phenol,the mass ratio of phenol/catalyst,and the velocity of H_2O_2,were studied and the optimized reaction condition was acquired.When tetra-substituted sulfonated cobalt phthalocyanine as catalyst,under optimal reaction condition(n_(phenol)=0.05mol,solvent H_2O,pH=6,H_2O_2/phenol molar ratio=1.2,phenol/catalyst quality ratio=150,the velocity of H_2O_2 3.9ml/h),the phenol conversion,the diphenol selectivity and reaches 28.79%and 62.07%,respectively.When tetra-substituted sulfonated iron phthalocyanine as catalyst,under optimal reaction condition(n_(phenol)=0.05mol,H_2O_2/ phenol molar ratio=1.2,phenol/catalyst quality ratio=125,the velocity of H_2O_2 2.6ml/h),the phenol conversion,the diphenol selectivity and reaches 63.01%and 49.8%,respectively.
     By comparing,the catalyst activity of tetra-substituted sulfonated iron phthalocyanine was higher than tetra-substituted sulfonated cobalt phthalocyanine,so the catalysts,MCM-41 as carrier and tetra-substituted sulfonated iron phthalocyanine as active components,were prepared by impregnation method.Its structure was identified and characterized by FT-IR、XRD、nitrogen adsorption-desorption method and UV-Vis.When FePcS_4/MCM-41 as a catalyst in phenol hydroxylation,the catalyst activity was higher than FePcS_4,FePcS_4/ MCM-41 showed optimum catalytic properties with phenol conversion of 30.27%and selectivity to diphenols of 93.57%.
引文
[1]骆生.邻苯二酚的开发及应用进展[J].化工中间体,2004,15(8):16-21
    [2]管振强,李大伟等.对苯二酚生产技术研究进展[J].化工进展,2006,25(11):1314-1318
    [3]UMEMURA S,TAKAMITSU N,HAMAMOTO T,et al.Process for preparing dihydricphenol derivatives[P].US:4078006,1978-03-17.
    [4]COSTANTINI M,DROMARD A,JOUFFRET M.Process for hydroxylating of phenolic compounds [P].EP:480800,1992-04-15.
    [5]TARAMASSO M,PEREGO G,NOTARI B.Preparing of porous crystalline synthetic materiacomprised of silicon and titanium oxides[P].US:4410501,1983-10-13.
    [6]RUDOLF A V,ETTLINGB V.Hydroquinone,resorcinol,and pyrocatechol[M].Encycl.Chem.Zechnol,2nd Ed.1966,11:462-92.
    [7]王景明.邻苯二酚的应用及合成方法探析[J].河北化工,1997,12(4):46-48
    [8]DYAKONOV A Y,SEYTSENKO V D,VIZOVA S A,et al.Dehydrogenation of transcyclohexarr 1,2-diol to pyrocatechol on metalcontaining catalysts,Selection of catalytic composition[J].Kinet Natal,1984,25(2):489-492.
    [9]SEIICHI T,KAZUHIROW,HIDEKI H.Method for separation and recovering hydroquinone [P].USA:USP4049723.1977-09-20.
    [10]EOSTANTINI M,LAUCHER D.Process for hydroxylating phenols and phenol ethers[P].EP:432006,1993-09-14.
    [11]石晓波,傅海萍,李春根等.Bi_2Mo_3O_2在苯酚-过氧化氢羟基化反应中的催化性能[J].江西师范大学学报(自然科学版),2003,27(1):73-76.
    [12]MARCO T,GIOVANNI P,BRUNO N.Preparation of porous crystalline synthetic material comprised of titanium oxides[P].Italy:USP4410501,1983-10-18.
    [13]SUBRAHMANYAMC,LOUIS B,VISWANATHANB,et al.Hydroxylation of phenol over M-MCM-48[J].Eurasian Chemico-Technological Journal.2001,3(1):59-63.
    [14]CLARENCE D,STUART D.Shape-selective catalytic oxidation of phenol[P].USA:USP4578521.1986-03-25.
    [15]CHUL W L,DONG n A.Hydroxylation of phenol over surface functionalized MCM-41supported metal catalyst[J].Microporous and Mesoporous Materials,2001,44-45:587-594.
    [16]SHEVADE S S,ROBERT R,KOTASTHANE A N.Copper(Ⅱ)phthalocyanines entrapped in MFI zeolite catalysts and their application in phenol hydroxylation[J].Applied Catalysis A:General,1999,178:243-249.
    [17]WANG J,PARK J N,JEONG H C,et al.Cu~(2+)-Exchanged Zeolites as Catalysts for Phenol Hydroxylation with Hydrogen Peroxide[J].Energy&Fuels.2004,18(2):470-476.
    [18]孙建敏,孟祥举,王润伟等.Cu修饰的MCM-41的合成、表征及对芳烃羟化反应催化作用的研究[J].高等学校化学学报,2000,21(9):1451-1454.
    [193 SEELAN S,SINHA A K.Phenol hydroxylation activity of metal phthalocyanine complexes encapsulated in zeolite-Y[J].Applied Catalysis,2003,238(2):201-209.
    [20]张淳,隆仲华,熊春荣等.铁酸镁催化剂催化苯酚羟化作用的研究[J]化学世界,2000,12(9):483-487.
    [21]XIAO C R,CHEN Q L,LU W R,et al.Novel Fe-based complex oxide catalaysts for hydroxylation of phenol[J].Catalysis Letters,2000,69:231-236.
    [22]WANG D Y,LIU Z Q,Fe_2O_3/macroporous resin nanocomposites,some novel highly efficient catalysts for hydroxylation of phenol with H_2O_2[J].Appl Catal A,1998,174:25-34.
    [23]于剑锋,刘志强,刘庆生等.微孔树脂镶嵌α-Fe_2O_3纳米粒子催化苯酚过氧化氢羟化研究[J]高等学校化学学报,1999,20(7):1125-1127.
    [24]张信芳,张天巧.负载型铁基复合金属氧化物对苯酚羟基化反应催化作用的研究[J].石化技术,1999,16(2):81-83.
    [25]LITVINTSEV N N,LITVINTSEV I Y,MITNIK YV,et al.Method of joint production of pyrocatechol and hydroquinone[P].USSR:USPI368309,1988-01-23.
    [26]MOSTAGHIM R,AHMADIBENI Y.Novel oxidation of phenols to quinones by hydrogen peroxide in the presence of cobalt(Ⅱ) and manganese(Ⅱ) acetate[J].Acta Chimica Slovenica.2003,50(3):569-572.
    [27]沈永嘉.酞菁的合成与应用[M].北京:化学工业出版社,2000.
    [28]孙强,邓桂胜.双核磺化酞菁铜(Ⅱ)催化氧化α-萘酚[J].有机化学,1996,16(5):83-87.
    [29]BARRETT P A,FRYE DA,LINSTEADR P.Phthalocyanines and associated compounds.ⅩⅣ.Further investigations of metallic derivatives[J].Journal of the Chemical Society,1938,26(5):I157-i163.
    [30]LOWERY M K,STARSHAK A J,ESPOSITO J N,et al.Dichloro(phthalocyanato)silicon[J].Inorganic Chemistry(Washington,DC,United States),1965,4(1):128.
    [31]张英菊,潘玉珍,孟凡民.四叔丁基金属酞菁化合物的合成[J].染料工业,2001,38(5):34-36.
    [32]GAOL D,QIAN X H,ZHANG L,et al.Tetra-trifluoroethoxyl zinc phthalocyanine:potential photosensitizer for use in the photodynamic therapy of cancer[J].Journal of Photochemistry and Photobiology,(2001),65(1):35-38.
    [33]冯海霞,朱志昂,阮文娟等.2,9,16,23-四羧基钴酞菁(Ⅱ)与硫醇、硫酚配位反应的热力学研究[J].无机化学学报.1999,15(6):732-738.
    [34]LINSTEAD R P,BYRNE G T,LOWE A R.The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide[J].Journal of the Chemical Society,1934,1017-1022.
    [35]NEVIN W A,LIU W,MELNIK M,et aI.Spectro-electrochemistry of cobalt and iron tetrasulfonated phthalocyanines[J].Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1986,213(2):217-234.
    [36]LOERY M K,STARSHAK A J,ESPOSITO J N,et al.Dichloro(phthalocyanato)silicon [J].Inorganic Chemistry(Washington,DC,United States),1965,4(1):128.
    [37]LEZNOFF C C,LEVE A B,Phthalocyanines of Properties and Applications[M].New York:VCH.1989.
    [38]HASANT M.Photodvnamic therapy of cancer[J].Cancer Medical,2000,5(11):1121-1123
    [39]刘尔生,黄剑东,戴志飞.八丁氧基萘钴酞菁(Ⅱ)的合成、表征和性质[J].无机化学学报,1997,12(6):411-413.
    [40]ALl H,LANGLOIS R.Biological activities of phthalocyanines-X Syntheses andanalvses of sulfonated phthalocvanin[J].Photochem and Photobiol,1988,34:101-112.
    [41]胡希明,梅治乾,黄仲涛.微波辐照下酞菁铜配合物的合成及磺化反应[J].华南理工大学学报,1997,25(12):34-37.
    [42]ZHAO P L,LOHAN V L,CLIFFORD C L.Heterocyclic Aromatic AmideProtecting Groups for Aryl and Phthalocyaninesulfonic Acids[J].Can.J.Chem,1999,77:138-145.
    [43]彭亦如,陈耐生,黄金陵.四磺酸酞菁锌四钾盐的合成与表征[J].应用化学,2002,19(8):56-59.
    [44]梁强,韩爱霞,张复实.四磺酸酞菁锰(Ⅱ)的合成及其应用[J].应用化学,2004,21(12):1290-1294
    [45]GREGORY P.Industrial Applications of Phthalocyanines[J].Porphyrins Phthalocyanines,2000,4:432-437.
    [46]MOPELOLA I,TEBELLO N.Journal of Photochemistry and Photobiology[J].Chemistry,2008,197:273-280.
    [47]胡亚琴,李翔高.合成酞菁氧钛影响素的研究[J].化工新型材料,2007,35(2):27-29.
    [48]KIMURA M,NISHIGAKI T,KOYAMA T,et al.Autoxidation of thiol by temperature-sensitive polymer catalyst containing cobalt(Ⅱ)phthalocyanine complex[J].Reactive Polymers,1994,23(3):195-200.
    [49]SOROKIN A B,MANGEMATIN S,PERGRALE C.Selective oxidation of aromatic compounds with dioxygen and peroxides catalyzed by phthalocyanine supported catalysts[J].Journal of Molecular Catalysis,2002.182-183.
    [50]冯海霞,朱志昂,王传忠等.钴(Ⅱ)酞菁与巯基乙醇轴向配位反应的动力学[J].物理化学学报,1999,15(2):167-170.
    [51]LLIEV V,TOMOVA D.Photocatalytic oxidation of sulfide ion catalyzed by phthalocyanine modified titania[J].Catalysis Communications,2002,3(7):287-292.
    [52]王波,顾彦龙,杨立明等.有机/无极杂化材料负载金属配合物催化剂-Sol-gel技术的新利用[J].分子催化,2003,17(6):468-480
    [53]PERGRALE C,SOROKIN A B.Metal complexes as photo and Radiosensitizers[J].Chem Rev,1999,99:2379-2450.
    [54]MAKOTO N,TAKASHI T.Synthesis and catalytic capability of zeolite-encapsulated iron and manganese tetramethylporphine complexes[J].Bul.Chem.Soc,1996,63:3334-3338.
    [55]郭卓,邵允,赵玉龙.MCM-41/钴酞菁、酞菁铜的合成、表征及催化性质[J].东北师大学报,2007,39(2):77-81
    [56]晋春,马静红,范彬彬等.MCM-41介孔分子筛共价键联钴酞菁的制备,表征及性质[J].无机化学学报,2005,21(12):1837-1842
    [57]黄俊潮,李得加,邹国林.四磺基钴酞菁/MCM-41的制备、表征及其催化性能[J].武汉大学学报,2006,52(4):457-460
    [58]齐兴义,王国甲,张伟德等.铁、钴、铜酞菁/Y型分子筛的制备、表征及催化苯酚羟化化的研究[J].高等学校化学学报,1995,16(5):791-795
    [59]MOLLER K,BEIN T.Inclusion Chemistry in Periodic Mesoporous Hosts[J].Chemistry of Materials,1998,10(10):2950-2963.
    [60]黄金陵.金属酞著配合物结构研究的一些谱学方法[J].光谱学与光谱析,2001,21(1):1-5.
    [61]GUFTA S,HUANG H,YEAGE E Studies of The Adsorption of Tetrasulfonated Phthalocyanines on Graphite Substrate[J].Electrochbnica Acta,1991,36(14):2165-2169
    [62]于剑锋,杨宇,冯威等.苯酚羟化过程中过氧化氢的分行为研究[J].化学研究与应用,1998,10(2):124-127.
    [63]景晓辉.苯酚双氧水氧化合成邻、对苯二酚新工艺研究[D].南京:南京工业大学,2002.
    [64]徐成华.Ti_ZSM_5分子筛的制备_表征及其催化烯键烃选择氧化和苯酚羟基化的研究[D].成都:中国科学院成都有机化学研究所,2001.
    [65]周红敏,石双群.Fe(Ⅲ)/Cr(Ⅲ)对过氧化氢分解作用在研究[J].河北化工,1995,14(2):22-24.
    [66]张信芳,张敬畅,张光明等.苯酚羟基化合成苯二酚反应过程中酚焦油的生成机理[J].精细石油化工,2005,5(13):58-62.
    [67]杜长海,袁红刚,王天慧等.苯酚羟基化反应中焦油的分离与分析[J].分子科学,2006,22(5):344-347.
    [68]顾晓利.苯酚羟基化反应新型催化剂与工程技术基础研究[D].南京:南京工业大学,2005.
    [69]BECK J S,VARTULI J C.A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].Journal of the American Chemical Society,1992,114(27),10834-43.
    [70]陈长鑫,陈文哲.MCM-41分子筛的合成与表征[J].机电技术,2003,S1:239-243.
    [71]霍涌前,李珺,李菲等.MCM-41型介孔分子筛的合成及其化学修饰[J].西北大学学报,2003,33(1):57-60.
    [72]马骞,毛雪峰,魏宏广等.MCM-41介孔分子筛的修饰与表征[J].西北师范大学学报,2004,5(4):55-57.
    [73]张建国,蒋庆哲,郑成国等.Si-MCM-41的合成及其影响素[J].中国石油大学学报(自然科学版),2008,32(1):115-117.
    [74]张丹,张英菊.介孔分子筛MCM-41的合成探索[J].山东陶瓷,2007,30(5):5-8,
    [75]崔峻,乐英红,刘毅等.MCM-41分子筛和催化剂的特殊吸附等温线[J].化学学报,1997,55(8):974-978.
    [76]储伟.催化剂工程[M].成都:四川大学出版社,2006.
    [77]赵九生.催化剂生产原理[M].北京:科学出版社,1986.
    [78]刘持标,叶兴凯,吴越.八羟基喹啉铁(Ⅱ)-MCM-41对苯酚羟化的催化作用[J].催化学报,1997,18(2):140-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700