基于信号强度的WLAN室内定位跟踪系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的发展,位置服务成为人们的一个重要需求。然而,成熟的GPS (Globe Positioning System,全球定位系统)不能用于室内环境。因而,室内定位需要使用新的信号。近年来WLAN (Wireless Local Access Network,无线局域网)发展迅速,各大公共场所均配备了WLAN,这使得WLAN室内定位跟踪系统变得非常有吸引力。而且,该室内定位跟踪系统使用WLAN信号强度进行定位,不需要任何其他的专用硬件,因而WLAN室内定位跟踪系统得到了越来越多的研究人员的关注,成为了最流行的室内定位跟踪系统之一。
     本文对基于信号强度的WLAN室内定位系统做了一些改进,其主要贡献和创新为:
     1.传统的室内定位方法采用标准高斯模型对参考点上接收到的信号强度进行建模。然而,室内环境非常复杂,存在多径干扰、频繁的人员干扰和环境变化。实际上参考点上信号强度分布并不是一个标准的高斯分布。因此,本文对参考点上信号强度分布采用多高斯混合模型进行建模。该模型不仅考虑了各种干扰的影响还考虑了各AP (Access Point,接入点)的信号强度之间的相关关系,使得该方法的性能相比之前的标准高斯分布模型大大提高。对于多高斯混合模型的参数,本文使用EM(Expectation Maximization,期望最大值)算法估计。最后的实验结果验证了本方法的有效性。
     2.对于较大目标环境的室内定位系统,指纹数据库的参考点数量会非常多。因此,对指纹数据库进行聚类就变得非常必需了。本文基于自组织映射神经网络,将指纹数据库的高维元素映射到一个二维平面。之后,在这个二维平面上进行聚类。这样做的好处就在于能够避免高维空间聚类困难的问题,准确度高。最后的实验结果验证了该方法的有效性。
     3.对于室内目标跟踪,一般的方法使用卡尔曼滤波器。然而室内噪声实际上并不是高斯噪声,这需要使用无迹卡尔曼滤波器或是精度更高的粒子滤波器。不幸的是粒子滤波器的算法复杂度非常大,特别是当状态超过三维的情况,已不适合于实时系统。本文将整个目标状态划分为均为二维矢量的位置分量和速度分量,对速度分量采用无迹卡尔曼滤波器估计,而对位置分量则采用粒子滤波器估计。不仅大大地提高了室内跟踪系统的系统性能,还将算法复杂度限制在可以实时使用的程度。最后的实验结果验证了本方法的有效性。
With the development of information technology, location service is becoming an important requirement of people. However, the mature GPS(Globe Positioning System) can not be applied in indoor environment. So a new signal is needed for indoor positioning. Lately WLAN(Wireless Local Area Network) develops quickly, which is equipped in big public place. It makes attractable for WLAN to be used in indoor positioning. And the indoor positioning system using WLAN do not require any other hardwares and has more and more attentions of researchers. WLAN indoor positioning system becomes one of the most popular indoor positioning systems.
     This paper improves the classic WLAN indoor positioning system, and its contributions and innovation are:
     1. Classic indoor positioning system uses standard Gaussian distribution to model the signal strength received by an object in reference point. However, indoor environment is complicated and changing, existing multi-path interference and mobile people interference. Hence, this paper uses a multi-Gaussian mixture model to model the signal strength distribution in reference point. This model not only considers the influence of the interference, but also considers the related relationship between signal strength of every AP(Access Point), and improves the system performance. The parameters of this method are estimated by EM(Expectation Maximization) algorithm in this paper. The experimental results prove the effectiveness of our method.
     2. For indoor positioning system in a big environment, the number of reference points in fingerprint database is very big. Therefore, the clustering of fingerprint database is necessary. This paper mapped the elements of fingerprint database into a2-D plane using a self-organizing map. And the clustering is based on this2-D plane. The advantage of this method is that it can avoid the difficulty of clustering in space with high dimension, and the accuracy of clustering is high. The experimental results prove the effectiveness of our method.
     3. For tracking an object in indoor environment, the general method uses a Kalman filter. However, the noise of indoor environment is not Gaussian, for tracking an object it require an unscented Kalman filter or a particle filter. Unfortunately the particle filter algorithm is complex, and it is not comfortable for a real time system with a state whose dimension is more than3. This paper divides the object state into a2-D velocity state and a2-D location state. And it uses the unscented Kalman filter to estimate the velocity state and uses the particle filter to estimate the location state. This method not only improves the performance of the indoor positioning and tracking system, but also ensures that the system is real time. The experimental results prove the effectiveness of our method.
引文
[1]张德干.移动计算[M].北京:科学出版社.2009.
    [2]佘玉梅.基于移动计算环境的Agent技术研究[J].云南民族大学学报(自然科学版),2005,14(1):89-91.
    [3]滕文星,李士宁,尹小燕.移动协同感知研究综述[J].计算机科学,2008,35(6):25-27.
    [4]魏峻,冯玉琳.移动计算形式理论分析与研究[J].计算机研究与发展,2000,37(2):129-139.
    [5]刘书香,武浦军.直接移动环境下基于位置的发布/订阅机制研究[J],浙江工商职业技术学院学报,2005,4(2):61-64.
    [6]杨涛,刘勤让.移动计算网络及其漫游协议[J].计算机应用,1999,19(10):34-36.
    [7]英特尔利用全新技术推动移动计算发展[J].信息安全与通信保密,2011,(3):27-28.
    [8]孟樸.移动计算的未来[J].IT时代周刊,2011,(8):18.
    [9]蒲雯.移动计算技术在公路交通情况调查系统中的分析与应用[J].机电信息,2011,(12):199-200.
    [10]曹永军,陶瑞岩,钟震宇,黄翔.基于移动计算的实时路况信息采集系统设计与实现[J].自动化与信息工程,2011,(3):19-21.
    [11]Enge P, Misra P. Special issue on GPS:The global positioning system [C]. IEEE: Proceedings of the IEEE,1999:3-172.
    [12]谢彩香,林宗坚,刘召芹,刘峰GPS/DR/MM组合导航中的车辆定位精度研究[J].测绘科学,2006,31(1):75-77.
    [13]蔡昌听,皮亦鸣.高灵敏度GPS技术的研究进展[J].全球定位系统,2006,(2)1-4.
    [14]关止,赵凯,宋冬生.GPS软件接收机中C/A码信号捕获的圆周相关算法[J].吉林大学学报(理学版),2006,44(2):229-232.
    [15]崔哲,阎鸿森,惠卫华,杜乃鹏,李波.GPS信号信噪比对接收机捕获性能的影响[J].时间频率学报,2004,27(2):120-128.
    [16]周斌.无线局域网技术管窥[J].现代电信科技,2002,(11):9-12.
    [17]戴少锋,王明亮.无线局域网安全技术研究[J].电脑知识与技术(学术交流),2006,(35):27-28.
    [18]孙迪科,刘志新.基于WAPI标准的奥运场馆WLAN室内覆盖解决方案[J].移动通信,2008,(20):27-31.
    [19]http://baike.baidu.com/view/95305.htm?subLemmaId=95305&fromenter=Mobile+Co mputing [OL].2012-2-5.
    [20]刘雨露,方刚.基于二进制的挖掘算法在移动计算中的应用[J].计算机工程与设计,2009,30(14):3319-3325.
    [21]陈剑赟,刘怀泉,陈乃阔,李传忠,赵新昱.移动计算终端多途径自适应的信息传输设计[J].火力与指挥控制,2009,34(7):178-180.
    [22]李秀丽,段韵,田景文.一种移动计算中移动性支持跨层优化方案[J].微计算机信 息,2008,24(1):304-306.
    [23]帖军,张宝哲,王小荣.移动计算环境下一种新的乐观并发控制协议应用研究[J].中南民族大学学报(自然科学版),2010,29(3):84-88.
    [24]姚建盛,刘艳玲.一种基于移动计算的非阻塞协同检查点算法[J].哈尔滨理工大学学报,2011,16(2):60-65.
    [25]王英华.移动计算中间件研究[J]'科技信息,2010,(16):194.
    [26]科玛拉,孙学军,何丕廉.用于移动计算环境中的新移动性管理和路由方案(英文)[J]. Transactions of Tianjin University,2002,8(4):255-260.
    [27]侯志强,刘东华,何戈,徐志伟Internet 3 A访问模式及相关技术的研究[J].计算机科学,2005,32(2):36-39.
    [28]吴常国,杨庚,沈金龙.移动代理技术在移动计算中的应用[J].南京邮电学院学报(自然科学版),2000,20(4):53-55.
    [29]杨玉峰,李云,梅顺良.基于J2ME和PHP技术的移动计算应用解决方案[J].电讯技术,2004,(3):124-127.
    [30]刘刚,李德敏,施颖男,王昳.基于RS在移动计算中的规则提取与仿真[J].计算机工程与应用,2003,(1):112-114.
    [31]郭新.移动计算在商务活动中的应用[J].信息与电脑,2005,(4):36-37.
    [32]http://en.wikipedia.org/wiki/Mobile_computing [OL].2012-2-5.
    [33]唐斌,董绪荣.基于简易差分相干积累的高灵敏度GPS软件接收机捕获算法[J].信号处理,2009,25(5):832-836.
    [34]李明江,张一,张中兆.多径干扰下一种新的有效的弱GPS信号处理算法[J].南京理工大学学报(自然科学版),2009,33(1):64-68.
    [35]马永奎,张一,张中兆,马广富.改进的高动态高灵敏度GPS信号捕获算法[J].系统工程与电子技术,2009,31(2):265-269.
    [36]周坤芳,吴晞,孔键.紧耦合GPS/INS组合特性及其关键技术[J].中国惯性技术学报,2009,17(1):42-45.
    [37]杨静,郑南宁.一种基于SR-UKF的GPS/DR组合定位算法[J].系统仿真学报,2009,21(3):721-724.
    [38]焦瑞祥,茅旭初.基于DBZP方法的微弱GPS信号快速捕获[J].电子学报,2008,36(12):2285-2289.
    [39]黄鹏达,皮亦鸣.基于混沌振子的微弱GPS信号检测算法[J].电子测量与仪器学报,2008,22(4):49-52.
    [40]何典,袁运斌,柴艳菊GPS/INS组合中观测噪声方差阵的自适应估计方法研究[J].武汉大学学报(信息科学版),2008,33(8):838-841.
    [41]高为广,何海波,陈金平.自适应UKF算法及其在GPS/INS组合导航中的应用[J].北京理工大学学报,2008,28(6):505-509.
    [42]田世君,皮亦鸣.基于气压表/GPS的数据融合算法研究[J].电子学报,2008,36(4):800-803.
    [43]梁坤,施浒立,宁春林.室内环境中的GPS信号特性分析[J].天文研究与技术,2008,5(1):30-36.
    [44]焦瑞祥,茅旭初.基于批处理的微弱GPS信号捕获[J].上海交通大学学报,2008, 42(2):285-289.
    [45]徐帆,房建成,全伟SINS/CNS/GPS组合导航系统半物理仿真研究[J].系统仿真学报,2008,20(2):332-336.
    [46]梁坤,施浒立.高灵敏度GPS捕获技术的分析与仿真[J].全球定位系统,2007,(6):26-31.
    [47]李春宇,张晓林,张超,李宏伟.遗传算法在微弱GPS信号捕获方法中的应用[J].航空学报,2007,28(6):1433-1437.
    [48]李斐,陈武,岳建利.GPS在物理大地测量中的应用及GPS边值问题[J].测绘学报,2003,32(3):198-203.
    [49]陈安刚.俄全力打造“格洛纳斯”抗衡美国GPS[J].国防科技,2006,(4):48-50.
    [50]韩文明.挑战GPS的“伽利略”计划[J].现代军事,2004,(1):40-41.
    [51]褚静.无线局域网(WLAN)中WAPI安全机制分析[J].科技广场,2008,(10):81-83.
    [52]易卫兵.无线局域网的安全技术研究[J].科技经济市场,2006,(2):169-170.
    [53]王远峰,李莉,周迅.两种典型无线局域网络的安全性能分析[J].中国数据通信,2002,(8):21-24.
    [54]温蕾,张翔,贺鹏,郑忠斌.移动终端WLAN接收机最小输入电平项目分析[J].移动通信,2010,(7):69-72.
    [55]柴争义,陈亮,王雪涛WLAN中IDS架构研究[J].信息网络安全,2008,(8):62-63.
    [56]赵军平,郑金州.无线局域网技术及其在医疗机构中的应用[J].医疗卫生装备,2006,27(4):43-45.
    [57]何帆.下一代局域网——WLAN[J].西铁科技,2006,(4):21-22.
    [58]李东江,司凤山.基于数字签名的WLAN安全机制研究[J].网络安全技术与应用,2006,(7):90-92.
    [59]刘垚峰,王相林WLAN安全方案及802.11i标准研究[J].计算机工程与设计,2006,27(13):2327-2330.
    [60]李建军,郎为民,吴帆.无线局域网(WLAN)安全问题研究[J].电子技术,2007,(Z1):140-142.
    [61]吴友蓉,何蔚林.WLAN安全技术分析及对策[J].科技创新导报,2008,(7):177-178.
    [62]胡萍.无线局域网(WLAN)安全机制分析[J].通信与信息技术,2004,(1):30-32.
    [63]赵志毅.无线局域网安全性分析[J].忻州师范学院学报,2006,22(3):120-122.
    [64]范娟.浅析无线局域网的安全性[J].中国新技术新产品,2011,(11):17.
    [65]王鹏卓,张尧弼802.11 WLAN的安全缺陷及其对策[J].计算机工程,2004,30(5):133-136.
    [66]何薇.无线局域网的安全配置方法[J].科技信息,2010,(24):760-761.
    [67]王岗.WLAN的安全发展及解决方案[J].中国数据通信,2005,(2):34-35.
    [68]胡加艳,陈秀方,陶迎春,等.基于室内外定位的校园LBS研究[J].计算机工程,2010,36(8):254-257.
    [69]Want R, Hopper A, Falco V, et al. The active badge location system [J]. ACM Transactions on Information Systems,1992,10(1):91-102.
    [70]http://www.ascension-tech.com [OL].2012-2-7.
    [71]Ward A, Jones A, Hopper A. A new location technique for the active office [J]. IEEE Personal Communications,1997,4(5):42-47.
    [72]Bahl P, Padmanabhan V. RADAR:An in-building RF-based user location and tracking system [C]. In IEEE Infocom 2000. Tel Aviv:IEEE,2000:775-784.
    [73]Youssef M A. HORUS:A WLAN-based indoor location determination system [D]. University of Maryland,2004.
    [74]Mazuelas S, Bahillo A, Lorenzo R, et al. Robust indoor positioning provided by real-time RSSI values in unmodified WLAN networks [J]. IEEE Journal of Selected Topics in Signal Processing,2009,3(5):821-831.
    [75]Li X. RSS-based location estimation with unknown pathloss model [J]. IEEE Transactions on Wireless Communications,2006,5(12):3626-3633.
    [76]Chang N, Rashidzadeh R, Ahmadi M. Robust indoor positioning using differential Wi-Fi access points [J]. IEEE Transactions on Consumer Electronics,2010,56(3): 1860-1867.
    [77]Kuo S, Kuo H, Tseng Y. The beacon movement detection problem in wireless sensor networks for localization applications [J]. IEEE Transactions on Mobile Computing, 2009,8(10):1326-1338.
    [78]Mazuelas S, Lorenzo R, Bahillo A, et al. Topology assessment provided by weighted barycentric parameters in harsh environment wireless location systems [J]. IEEE Transactions on Signal Processing,2010,58(7):3842-3857.
    [79]Narzullaev A, Park Y, Yoo K, et al. A fast and accurate calibration algorithm for real-time locating systems based on the received signal strength indication [J]. Int. J. Electron Commun (AEU),2010, doi:10.1016/j.aeue.2010.03.012.
    [80]Fang S, Lin T, Lee K. A novel algorithm for multipath fingerprinting in indoor WLAN environments [J]. IEEE Transactions on Wireless Communications,2008,7(9): 3579-3588.
    [81]Kuo S, Tseng Y. A scrambling method for fingerprint positioning based on temporal diversity and spatial dependency [J]. IEEE Transactions on Knowledge and Data Engineering,2008,20(5):678-684.
    [82]Yin J, Yang Q, Ni L. Learning adaptive temporal radio maps for signal-strength-based location estimation [J]. IEEE Transactions on Mobile Computing,2008,7(7):869-883.
    [83]Fang S, Lin T. Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments [J]. IEEE Transactions on Neural Networks,2008, 19(11):1973-1978.
    [84]Kushki A, Plataniotis K, Venetsanopoulos A. Kernel-based positioning in wireless local area networks [J]. IEEE Transactions on Mobile Computing,2007,6(6):689-705.
    [85]Pan J, Kwok J, Yang Q, et al. Multidimensional vector regression for accurate and low-cost location estimation in pervasive computing [J]. IEEE Transactions on Knowledge and Data Engineering,2006,18(9):1181-1193.
    [86]Fang S, Wang C. A dynamic hybrid projection approach for improved Wi-Fi location fingerprinting [J]. IEEE Transactions on Vehicular Technology,2011,60(3): 1037-1044.
    [87]Chai X, Yang Q. Reducing the calibration effort for probabilistic indoor location estimation [J]. IEEE Transactions on Mobile Computing,2007,6(6):649-662.
    [88]Kuo S, Tseng Y. Discriminant minimization search for large-scale RF-based localization systems [J]. IEEE Transactions on Mobile Computing,2011,10(2): 291-304.
    [89]Kushki A, Plataniotis K, Venetsanopoulos A. Intelligent dynamic radio tracking in indoor Wireless Local Area Networks [J]. IEEE Transactions on Mobile Computing, 2010.9(3):405-419.
    [90]Tseng P, Feng K, Lin Y, et al. Wireless location tracking algorithms for environments with insufficient signal sources [J]. IEEE Transactions on Mobile Computing,2009. 8(12):1676-1689.
    [91]Pan J, Pan S, Yin J, et al. Tracking mobile users in wireless networks via semi-supervised colocalization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(3):587-600.
    [92]Paul A, Wan E. RSSI-based indoor localization and tracking using Sigma-point Kalman smoothers [J]. IEEE Journal of Selected Topics in Signal Processing,2009, 3(5):860-873.
    [93]Sklar B, Digital Communications:Fundamentals and Applications, Second Edition, Prentice Hall PTR,2001.
    [94]Okumura Y, et al. Field strength and its variability in VHF and UHF land mobile radio serveice [J]. Review of the Electric Communication Lab,1968,6[9&10]:825-873.
    [95]Hata M. Empirical formulate for propagation loss in land mobile radio services [J]. IEEE transactions on vehicular technology,1980, VT-29(3):317-325.
    [96]Hardoon D, Szedmak S, Shawe-Taylor J. Canonical Correlation Analysis:An Overview with Application to Learning Methods [J]. Neural Computation,200416(12): 2639-2664.
    [97]Chong E, Zak S. An Introduction to Optimization, second ed. John Wiley and Sons, 1995.
    [98]Priyantha N, Chakraborty A, Balakrishnan H. The cricket location-support system [C], 6th ACM MOBICOM. Boston, America,2000.
    [99]Hazas M, Ward A. A novel broadband ultrasonic location system [C]. Fourth International Conference on Ubiquitous Computing.2002.
    [100]Gunawardana A. The information geometry of EM variants for speech and image processing [D]. Baltimore:Johns Hopkins University,2001.
    [101]Xu L, Jordan M. On convergence properties of the EM algorithm for Gaussian mixtures [J]. Neural Computation,1996,8(1):129-151.
    [102]Theodoridis S, Koutroumbas K. Pattern Recognition [M]. Second Edition. Academic Press,2003.
    [103]Weiss A. On the accuracy of a cellular location system based on RSS measurements [J]. IEEE Transactions on Vehicle Technology,2003,52(6):1508-1518.
    [104]刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,(6):54-58.
    [105]冯少荣,肖文俊.DBSCAN聚类算法的研究与改进[J].中国矿业大学学报,2008,37(1):105-111.
    [106]Kohonen T. The self-organizing map [C]. Proceedings of the IEEE.1990,78(9): 1464-1480.
    [107]Jari Kangas J, Teuvo Kohonen T, and Jorma Laaksonen J. Variants of self-organizing map [J]. IEEE Transactions on Neural Networks,1990,1(1):93-99.
    [108]Tuda R, Hart P, Stork D. Pattern Classification [M]. Second Edition. Wiley-Interscience,2000.
    [109]Hsu C. Generalizing self-organizing map for categorical data [J]. IEEE Transactions on Neural Networks,2006,17(2):93-99.
    [110]Duque-Anton M, Ruber B, Killat U. Extending Kohonen's self-organizing mapping for adaptive resource management in cellular radio networks [J]. IEEE Transactions on Vehicular Technology,1997,46(3):560-568.
    [111]Wan W, Fraser D. Multisource data fusion with multiple self-organizing maps [J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1344-1349.
    [112]Lewis F, Optimal Estimation with an Introduction to Stochastic Control Theory [M]. New York:Wiley,1986.
    [113]Meng Q, Sun Y, Cao Z. Adaptive extended Kalman filter (aekf)-based mobile robot localization using sonar [J]. Robotica,2000,18:459-473.
    [114]Leonard J, Durrant-Whyte H. Mobile robot localization by tracking geometric beacons [J]. IEEE Transactions on Robotic Automation,1991,7(3):376-382.
    [115]Wan E, Merwe R. The unscented Kalman filter for nonlinear estimation [C]. AS-SPCC 2000,2000:153-158.
    [116]Wan E, Merwe R. Kalman filtering and neural networks.1st ed. New York:Wiley, 2001, ch.7, pp.221-280.
    [117]Merwe R, Wan E. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models [C]. Proc. Workshop Adv. Mach. Learn.,2003.
    [118]Hashemi H. The Indoor Radio Propagation Channel [C]. IEEE:Proceeding of IEEE. 1993,81(7):943-968.
    [119]Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation, and tracking [J]. IEEE Transactions on Signal Processing,2002,50(2): 425-437.
    [120]Julier S, Uhlmann J. Unscented filtering and nonlinear estimation [C]. IEEE: Proceeding of the IEEE,2004,92(3):401-422.
    [121]Kay S, Fundamentals of Statistical Signal Processing, Volume I:Estimation Theory [M]. Prentice Hall,1993.
    [122]Dissanayake M, Newman P, Clark S. et al. A solution to the simultaneous localization and map building (SLAM) problem [J]. IEEE Transactions of Robotics and Automation,2001,17(3):229-241.
    [123]Uhlmann J. Simultaneous map building and localization for real time applications [D]. transfer thesis, Univ. Oxford, Oxford, U.K.,1994.
    [124]Merwe R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models [D] Ph.D. dissertation, OGI School Sci. and Eng., Oregon Health Sci. Univ., Beaverton, OR,2004.
    [125]Li S, Ni P. Square-Root Unscented Kalman filter based simultaneous localization and mapping [C]. Harbin, China:Proceedings of the 2010 IEEE,2010, pp.2384-2388.
    [126]Gustafsson F, Koren Y. Particle filter theory and practice with positioning applications [J]. IEEE A&E Systems magazine,2010,25(7):53-81.
    [127]Chang H, Lee C, Lu Y, et al. P-SLAM:Simultaneous Localization and Mapping with environmental-structure prediction [J]. IEEE Transactions on robotics,2007,23(2): 281-293.
    [128]Kim C, Sakthivel R, Chung W. Unscented FastSLAM:A robust and efficient solution to the SLAM problem [J]. IEEE Transactions on robotics,2008,24(4):808-820.
    [129]Borenstein J, Koren Y. Real-time obstacle avoidance for fast mobile robots [J]. IEEE Trans. Syst., Man, Cybern.,1989,19(4):1179-1187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700