基于解轨迹多项式分解的非线性电路故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪八十年代以来,计算机技术和微电子技术在测试领域的运用,带动了测控技术的飞速发展。航天、军工等领域对系统安全性、可靠性要求的日益提升,电子装备的可测性设计、故障诊断和容错控制技术正日益引起人们的重视。其中,非线性模拟电路的测试、诊断问题既不可避免又极其困难,已成为现代测试领域最具挑战性的课题之一。
     非线性模拟电路故障诊断可分为:系统建模、激励设计、特征提取和故障识别四个部分。由于非线性模拟电路(或系统)中故障传播机理的非线性,极易导致故障信息的重叠、交叉,因此,非线性模拟电路故障诊断技术的核心是故障特征提取。由于解轨迹分析能最大程度地获取电路信息,因此,本文以解轨迹多项式分解为基础,围绕提高故障特征的有效性(聚类性)为目标,展开非线性模拟电路故障诊断的研究。概括来说,主要做了如下几个方面的研究工作:
     1.研究了斜坡激励下的非线性电阻网络故障诊断方法,目的是建立非线性电阻网络的故障诊断方程,实现软故障、多故障诊断。方法是通过解轨迹多项式分解将非线性静态电路转化成线性电路序列,再在线性电路中实现软故障、多故障的诊断。重点讨论了斜坡激励下解轨迹多项式系数间的迭代关系和解轨迹多项式系数的性质;在此基础上,提出了基于静态解轨迹多项式系数的故障诊断方程和基于多轨迹分析的多故障诊断方法。
     2.研究了基于动态解轨迹Volterra响应分解的非线性动态电路故障诊断方法,目的是提高故障特征的聚类性。方法是根据动态解轨迹谐波多项式与Volterra响应分量间的对应关系,利用谐波分解方法和V子带参数估计方法提取Volterra线性子电路中的故障特征,以消除故障传播的非线性叠加效应。重点讨论了Volterra谐波分量的故障信息全息性;给出了基于响应空间正交投影的主元特征提取方法。
     3.研究了基于相干检测的故障特征提取方法,目的是建立非线性动态电路的故障诊断方程,实现非线性动态电路的软故障、多故障诊断。方法是利用相干检测方法提取满足动态电路复节点方程的静态故障特征,建立动态电路故障诊断方程。重点讨论了相位驻留特征提取的物理意义和实现方法;提出了基于相位驻留法的故障诊断方程建立方法。
     4.研究了基于动态增量Volterra级数(DDVS)的故障特征提取方法,目的是提高较大截尾误差情况下故障特征提取的数值稳定性,使Volterra方法适用于高维非线性电路的故障分析。方法是通过重组Volterra级数实现“截尾不截维”,来提高参数估计的数值稳定性。重点讨论了DDVS与Volterra级数的关系,分析了DDVS在参数估计中的数值稳定性和故障特征聚类性;提出了基于DDVS参数估计的故障特征提取方法。DDVS的显著特点是具有模块化结构,容易扩展成更高阶非线性系统。
     5.研究了基于时频基函数多项式(BFP)的非线性电路故障特征提取方法,目的是实现高维复杂非线性电路的故障特征提取。方法是通过对被测信号的BFP拟合来提取故障特征。重点讨论了框架基函数时频域描述的完备性和基于BFP的非线性系统建模问题;分析了BFP在故障诊断应用中存在的问题,提出了基于平移联动的BFP基函数族简化方法。BFP模型的特点是具有更强的非线性适应能力和更好的数值稳定性。
     总体而言,本文以故障特征提取方法为中心;以解轨迹多项式分解和参数估计为手段;以实现非线性电路的软故障、多故障诊断为目的。考虑到非线性电路的静态和动态、非线性程度的强与弱等情况,重点分析了参数估计的稳定性、故障特征的聚类性和非线性模型的线性化能力等问题。仿真结果表明:所提方法是有效的。
Since the 1980s, with the development of computer and microelectronics technology, the system security and reliability demands in aerospace, military and other fields have been leading the rapid progress of testing-controlling technology. Measurability design, fault diagnosis and tolerant control are becoming more and more important in electronic equipments. Among them, the problem of nonlinear analog circuit fault diagnosis is not only inevitable but also extremely difficult. Fault diagnosis theory and methods of nonlinear analog circuits have become one of the challenging topics in international test research domain.
     A typical process of nonlinear analog circuit fault diagnosis includes system modeling, stimulation design, feature extraction and fault identification. For the nonlinear mechanism of fault propagation, fault information can be very likely to be overlapped and interleaved, thus the key point of fault diagnosis is fault characteristics extraction. This dissertation is mainly focused on nonlinear system modeling and improvement of characteristics extraction approach, based on the trajectory polynomial decomposition analysis. Author's main work concentrates on five aspects as follows:
     1. An approach of static trajectory polynomial (STP) for nonlinear resistance network fault diagnosis was studied with ramp power supplies. The purpose is to build the fault diagnosis equation, and to realize multi-faults diagnosis. With the trajectory polynomial decomposition, the iterative relationship of STP's coefficients was discussed, and the properties of STP's coefficients on fault diagnosis were analyzed. Based on STP modeling, nonlinear circuit can be transformed into linear circuit series, and fault diagnosis equation was built with STP's coefficients. Finally, multi-faults diagnosis method of nonlinear resistance network was discussed based on multi-STP analysis.
     2. A fault diagnosis approach for nonlinear dynamic circuit with some special AM stimulation was studied based on trajectory harmonic polynomial (THP) decomposition. The purpose is to enhance clustering property of fault characteristics. First, the relationship between dynamic trajectory spectrum components and Volterra spectrum components were discussed under some special AM stimulation. Then the holography of fault information in THP components was analyzed. And two approaches of Volterra responses decomposition were represented based on ARMA harmonic decomposition and Volterra sub-band decomposition. Finally, an approach of characteristics extraction was presented based on orthogonal projection of sub-space.
     3.In order to solve the diagnosis problem of soft-faults and multi-faults for dynamic nonlinear circuit, an approach of fault diagnosis was studied based on coherent measurement. Based on the correlation between Volterra spectrum components and equivalent exciting signals, the phase resident method was presented by coherent measurement, and dynamic circuit can be transformed into static parameter circuit on phase cut-slide. Then the fault information included in phase cut-slide was discussed, and fault diagnosis equation was established based on circuit configuration.
     4. The dissertation studied fault characteristics extracting method based on dynamic deviation Volterra serise (DDVS), which is designed to improve stability of the process of characteristic extraction for higher dimension nonlinear circuit. Discussion has been done on relationship between DDVS and Volterra series, and DDVS stability in parameter estimation and fault information capability have been analyzed. Then fault characteristics extracting method based on DDVS parameter estimation was represented. DDVS have distinct modularization structure, so it's easy to extend to higher dimension nonlinear system..
     5. In chapter six, we studied nonlinear circuit fault characteristics extracting method based on basis-function polynomial (BFP), which is to solve the difficult problem for characteristics extraction of high dimension and longer delay nonlinear system. Based on the principle of time-frequency basic function frame, the paper analyzed existing problem of BFP fitting in nonlinear circuit diagnosis. Then an approach for simplifying the basic function tribe of BFP was presented based on fixed scale and joint translation. The virtue of BFP is higher stability in parameter estimation and stronger adaptability of various nonlinear circuits.
     In one word, this dissertation focuses on the fault characteristic extraction based on trajectory polynomial decomposition. In order to achieve the aim of soft-fault and multi-fault diagnosis of nonlinear circuit, the importance of both the stability and clustering performance of fault characteritics were emphasized in this paper, and the ability for linearization decomposition of nonlinear modeling was also analyzed emphatically. Some examples to illuminate the proposed approaches are available.
引文
[1]杨士元,童诗白.模拟系统的故障诊断与可靠性设计[M].北京,清华大学出版社,1993,pp1-142.
    [2]陈光(?),张世萁.数据域测试及仪器—数字系统的故障诊断及可测性设计(第三版)[M].成都,电子科技大学出版社,2001,pp1-25.
    [3]刘瑞文.反馈系统设计的公理化方法与模拟电路故障诊断问题[A].讲演记录,上海复旦大学,中国人民解放军国防科大情报资料室,1998,pp39-55.
    [4]杨江平.电子装备维修技术及应用[M].北京,国防工业出版社,2006,pp1-50.
    [5]F. Li, P. Y. Woo. Fault detection for linear analog IC:the method of short-circuit admittance parameters [J]. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,2002,49(1):pp105-108.
    [6]A. Roy, S. Sunter, et al. High accuracy stimulus generation for A/D converter BIST[C]. Proceedings of International Test Conference,2002, pp1031-1039.
    [7]杜普选,高岩,闻跃编著.现代电路分析[M].北京,清华大学出版社,2002,pp23-30.
    [8]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安,西安交通大学出版社,2001.
    [9]A. Isidori. Nonlinear Control Systems (Third Edition) [M]. Beijing, Publishing House of Electronics Industry,2005, ppl-80.
    [10]丘水生编著.非线性网络与系统[M].成都,电子科技大学出版社,1990,pp1-150.
    [11]李令莱,周东华.基于解析模型的非线性系统鲁棒故障诊断方法综述[J].信息与控制,2004,33(4):pp451-458.
    [12]王振滨,曹广益,朱新坚.基于状态空间模型分解的分数阶系统辨识算法[J].系统工程与电子技术,2004,26(12):pp1848-1853.
    [13]陈勇,梁军.滑动模型MPCA在非线性系统故障监测与诊断中的应用[J].工程设计学报,2003,10(3):pp131-136.
    [14]王爱平.参考模型自适应方法在非线性执行器故障诊断中的应用[J].控制理论与应用,1999,16(8):pp587-591.
    [15]J. G. Nemeth, I. Kollar, J. Schoukens. Identification of Volterra Kernels Using Interpolation[J]. IEEE Transctions on Instrumentation and Measurement,2002,51(4):pp770-776.
    [16]L. O. Chua, Y. L. Liao. Measuring Volterra Kernels III:How to Estimate the Highest Significant Order[J]. International Journal of Circuit Theory and Applications,1991, (19): pp189-209.
    [17]E. E. Vanden, J. Schoukens. A recursive solution for strongly nonlinear systems by combining Volterra principles with the harmonic balance technique[J]. IEEE International Symposium on Circuits and Systems,1989, (3):pp2159-2164.
    [18]M. H. Asyali, M. Juusola. Use of Meixner Functions in Estimation of Volterra Kernels of Nonlinear System With Delay[J]. IEEE Transactions on Biomedical Engineering,2005,52(2): pp229-237.
    [19]C. Evans, D. Rees, M. Weiss. Periodic Signals for Measuring Nonlinear Volterra Kernels[J]. IEEE Transactions on Instrumentation and Measurement,1996,45(2):pp362-371.
    [20]P.O. Amblard, E. Moisan. Frequency Domain Volterra of Distributions Filters in Terms[J]. IEEE Signal Processing Letters,1994,1(11):pp169-173.
    [21]C. Z. Han, L. Q. Wang. Identification of Nonparametric GFRF Model for a Class of Nonlinear Dynamic Systems[J]. Control Theory and Applications,1999,16(6): pp816-825.
    [22]殷时蓉,陈光(?),谢永乐.Volterra核的测量及在非线性模拟电路测试中的应用[J].控制与决策,2006,25(10):pp1134-1137.
    [23]吴景棠编著.非线性电路原理[M].北京,国防工业出版社,1990.
    [24]吕金虎,陆君安,陈士华著.混沌时间序列分析及其应用[M].武汉,武汉大学出版社,2002.
    [25]卢志刚,吴士昌,于灵慧著.非线性自适应逆控制及其应用[M].北京,国防工业出版社,2004.
    [26]T. H. Martin, B. D. Howard, H. B. Mark. Neural Network Design[M]. Beijin, China Machine Press,2002.
    [27]徐丽娜编著.神经网络控制[M].北京,电子工业出版社,2003.
    [28]杨行骏,郑君里编著.人工神经网络与盲信号处理[M].北京,清华大学出版社,2003.
    [29]J. R. Phillips. Automated extraction of nonlinear circuit macro-models[C]. IEEE 2000 Custom Integrated Circuits Conference, pp451-455.
    [30]S. P. Parker, F. A. Perry. A Discrete ARMA Model for Nonlinear System Identification[J]. IEEE Transctions On Circuits and Systems, CAS(28):pp224-233.
    [31]R. Bernardini, G. Cortelazzo, G. Mian. Multidimensional fast Fourier transform algorithm for signals with arbitrary symmetries [J]. IEEE Optics Soc. A,1999, (16):ppl892-1908.
    [32]M. Stephane. A wavelet tour of singnal processing (second edition) [M]. Beijing, China Machine Press,2002.
    [33]张贤达,保铮著.非平稳信号分析与处理[M].北京,国防工业出版社,1998.
    [34]张贤达编著.现代信号处理(第二版)[M].北京,清华大学出版社,2002.
    [35]边肇祺,张学工等.模式识别(第二版)[M].北京,清华大学出版者,2000.
    [36]胡昌华,许化龙著.控制系统故障诊断与容错控制的分析和设计[M].北京,国防工业出版社,2000.
    [37]谢宏,何怡刚,张英杰等.Volterra级数在非线性网络分析及故障诊断中的应用[J].数学理论与应用,2002,22(3):pp103-106.
    [38]J. Lee, V. J. Mathews. A Fast Recursive Least Squares Adaptive Second-Order Volterra Filter and Its Performance Analvsis[J]. IEEE Transactions on Signal Processing,1993,41(3): pp1087-1102.
    [39]Dorel Aiordachioaie, Ed Ceanga. Estimation, Compression and Classification of Volterra Kernels with Application to Process Diagnosis[C]. Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design, USA,1999, pp 170-175.
    [40]吴少敏.AR型非线性时间序列模型的稳定性分析[J].控制与决策,2000,15(3):pp305-309.
    [41]雷明,韩崇昭,郭文艳等.非线性时间序列的小波分频预测[J].物理学报,2005,54(5):pp1988-1993.
    [42]B. C. Toledo, J. A. Marin. Model-based fault diagnosis using sliding mode observers to Takagi-Sugeno fuzzy model[C]. Proceedings of the 2005 IEEE International Symposium on Intelligent Control Limassol, Cyprus,2005, pp652-658.
    [43]杨绿溪,陈阳,何振亚.非线性时间序列分析中系统建模和噪声抑制的交叉参考[J].电子学报,1999,27(10):pp47-50.
    [44]Pousga Kabore, Hong Wag. A B-Spline Neural Network Based Actuator Fault Diagnosis in Nonlinear Systems[C]. Proceedings of the American Control Conference Arlington, June 25-27, 2001,pp1139-1145.
    [45]Y. Maidon, B. W. Jervis, et al. Using Artificial Neural Networks or Lagrange Interpolation to Characterize the Faults in an Analog Circuit:An Experimental Study[J]. IEEE Transactions on Instrumentation and Measurement,1999,48(5):pp932-938.
    [46]K. Mohammadi, A. R. M. Monfared, A. M. Nejad. Fault diagnosis of analog circuits with tolerances by using RBF and BP neural networks[C]. Student Conference on Research and Development,2002, pp317-321.
    [47]Y. G. He, Y Sun. Neural network-based L1-norm optimization approach for fault diagnosis of nonlinear circuits with tolerance[J]. IEE Proceedings on Circuits, Devices and Systems,2001, 148(4):pp223-228.
    [48]G. Devarayanadurg, M. Soma. Analytical fault modeling and static test generation for analog IC's[C]. International Conference Computer Aided Design,1994, pp44-47.
    [49]N. Nagi, A. Chatterjee, A. Balivada, et al. Fault-based automatic test generator for linear analog devices[C]. Proceeding International Conference on Computer Aided Design,1993,88-91.
    [50]M. Slamani, B. Kaminska. Multifrequency analysis of faults in analog circuits[C]. IEEE Design Test Conference Computers,1995, pp70-80.
    [51]A. Abderrahman, E. Cerny, B. Kaminska. Optimization based multifrequency test generation for analog circuits[J]. Electronic Testing,1996.9:pp59-73.
    [52]D. Taylor, A. Platts. Transient response testing of nonlinear analogue circuits using optimised fault sets[J]. Circuits Devices and Systems, IEE Proceedings,2003,15(2):pp104-112.
    [53]A. Balivada, J. Chen, J. A. Abraham. Analog testing with time response parameters[J]. IEEE Design Test Computers,1996,13:pp18-25.
    [54]G. Devarayanadurg, M. Soma. Dynamic test signal design for analog IC's[C]. Proceedings of International Conference on Computer Aided Design,1995, pp627-629.
    [55]P. N. Variyam, A. Chatterjee. Specification driven test generation for analog circuits[J]. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,2000,19(10): pp1189-1201.
    [56]J. C. Willems, I. Markovsky, P. Rapisarda, et al. A Note on Persistency of Excitation[C]. IEEE Conference on Decision and Control December Atlantis, Bahamas,2004, pp2630-2632.
    [57]D. W. Joseph, J. N. Francis, J. K. Andrew. Persistency of Excitation, Identification, and Radial Basis Functions[C]. Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista,1994, pp2273-2278.
    [58]R. T. Andrew. Lyapunov methods in non-smooth optimization, Part II:persistently exciting finite differences[C]. Proceedings of the 39th IEEE Conference on Decision and Control Sydney, Australia December,2000, pp118-124.
    [59]李映,焦李成.基于核Fisher判别分析的目标识别[J].西安电子科技大学学报(自然科学版),2003,30(2):pp179-183.
    [60]J. Q. Wan, X. S. Li, S. Y. Qin. Kernel-based Nonlinear Feature Extractor and Its Application in Electronic Circuit Fault Diagnosis[C]. Proceedings of the 5th World Congress on intelligent Control and Automation, Hangzhou, P.R. China,2004, pp 1775-1780.
    [61]R. Berkowitz. Condition for network-element-value solvability[J]. IEEE Transaction on Circuits Theory,1962, CT(9):pp25-29.
    [62]N. Navid, A. N. Willson. A theory and an algorithm for analog circuit fault diagnosis[J]. IEEE transctions on Circuits and Systems,1979, CAS(26):pp440-457.
    [63]S. S. Axman. Fault Isolation in Convertional Linear System-A Feasibility Study[J]. IEEE Transctions on Reliability,1966, R(15):pp11-16.
    [64]H. Sriyanada, D. R. Towil, J.H. Williams. Volting Techniques for Fault Diagnosis for Frequency domain test data[J]. IEEE Tansctions on Reliability,1975, R(24):pp260-267.
    [65]T. N. Trick, W. Mayeda, A. A. Sakla. Calculation of Parament Values from Node Voltage Measurements[J]. IEEE Transctions on Circuits and Systems,1979, CAS(26):pp466-474.
    [66]N. Sen, R.Saeks. Fault Diagnosis for Linear System via Multi-frequency Measruements[J]. IEEE Transctions on Circuits and Systems,1979,26(7):pp475-465.
    [67]Z. F. Huang, C. S. Liu, R. W. Liu. Node fault diagnosis and a design of testability[J]. IEEE Transctions on Circuits and Systems,1983, CAS(30):pp257-265.
    [68]C. C. Wu, K. Nadiim, C. L. Wey, R. Saeks. Analog fault diagnosis with failure bounds[J]. IEEE Transctions on Circuits and Systems,1982, CAS(29):pp277-284.
    [69]A. E. Salama, J. A. Starzyk, J. K. Bandler. A unified decomposition approach for fault location in large analog circuits[J]. IEEE Transactions on Circuits and Systems,1984, CAS(31):pp609-622.
    [70]A. Farzan, A. Mehran, H. W. Collins. Analog Fault Diagnosis of Actual Circuits Using Neural Networks[J]. IEEE Transactions on Instrumentation and Measurement,2002,51(3):pp544-550.
    [71]M. Borairi, H. Wang. Actuator and Sensor Fault Diagnosis of Nonlinear Dynamic Systems via Genetic Neural Networks and Adaptive Parameter Estimation Technique[C]. Proceedings of the 1998 IEEE International Conference on Control Applications, Italy,1998, pp278-283.
    [72]M. Slamani, B. Kaminska. Analog circuit fault diagnosis based on sensitivity computation and functional testing[J]. IEEE Design and Test of Computers,1992,9(1):pp30-39.
    [73]M. Genesereth. The Use of Descriptions in Automated Diagnosis[J]. IEEE Artificial Intelli-gence,1984,24(1):pp411-436.
    [74]P. Dague, O. Raiman, P. Deves. An Expert System for Trouble Shooting Analogue Circuits[C]. IEEE International Test Conference,1987, pp586-594.
    [75]A. Mehran, A. Farzan. Neural-Network Based Analog-Circuit Fault Diagnosis Using Wavelet Transform as Preprocessor[J]. IEEE Transactions on Circuits and Systems,2000,47(2): pp151-157.
    [76]李志农,丁启全,吴昭同等.盲系统辨识与故障诊断[J].浙江大学学报(工学版),2003,37(2):pp215-221.
    [77]R. Isermann. Process fault detection based on Modeling and Estimation Methods—A Survey[J]. Automatic,1984, (20):pp387-404.
    [78]J. Levine, R. Marino. On Fault-Tolerant Observers[J]. IEEE Transactions on Automatic Control, 1990,35(5):pp623-627.
    [79]A. Alessandri, M. Baglietto, T. Parisini. Robust Model-based Fault Diagnosis Using Neural Nonlinear Estimators [C]. Proceedings of the 37th IEEE Conference on Decision and Control, Florida USA,1998, pp72-78.
    [80]B. Jiang, M. Staroswiecki, V. Cocquempot. Fault estimation in nonlinear uncertain systems using robust sliding-mode observers [J]. IEE Proceeding Control Theory and Applications,2004, 151(1):pp29-38.
    [81]P. Koukoulas, N. Kalouptsidis. Nonlinear system identification using Gaussian inputs[J]. IEEE Transctions on Signal Processing,1995, (43):pp.1831-1841.
    [82]R. Nowak, B. V. Veen. Random and pseudorandom inputs for Volterra filter identification[J]. IEEE Transctions on Signal Processing,1994, (42):pp2124-2135.
    [83]Andre Monin, Gerard Salut, Vincent Teuliere. Multisource Discrimination Using IIR Volterra Filtering[J]. IEEE Transctions on Commuications,2001,49(5):pp922-931.
    [84]H. Z. Tan, W. S. C. Tommy. Blind Identification of Quadratic Nonlinear Models Using Neural Networks with Higher Order Cumulants[J]. IEEE Transctions on Industrial Electronics,2000, 47(3):pp687-696.
    [85]李义府,谢宏,何怡刚等.非线性网络广义频率响应函数统一递推分析法[J].中南大学学报(自然科学版),2004,35(2):pp268-272.
    [86]W. G. David, R. A. Gonzalo. A Partially Decoupled RLS Algorithm for Volterra Filters[J]. IEEE Transctions on Signal Processing,1999,47(2):pp579-584.
    [87]魏瑞轩,韩崇昭,张优云.非线性系统故障诊断的Volterra模型方法[J].系统工程与电子技术,2004,26(11):pp1737-1741.
    [88]A. S. Mushtaq, V. J. Mathews. QR-Decomposition Based Algorithms for Adaptive Volterra Filtering[J]. IEEE Transctions on Circuits and Systems,1993,40(6):pp372-381.
    [89]Leehter Yao. Genetic Algorithm Based Identification of Nonlinear Systems by Sparse Volterra Filters[J]. IEEE Transctions on Signal Processing,1999,47(12):pp3433-3436.
    [90]S. Osowski, T. Quang. Multilayer neural network structure as volterra filter[J]. IEEE Int. Symp. Circuits and Models,1994, (6):pp253-256.
    [91]J. Y. Choi, J. Farrell. Adaptive Observer for a Class of Nonlinear Systems Using Neural Networks [C]. Proceedings of the 1999 IEEE International Symposium on Intelligent Control and Systems,1999, pp114-123.
    [92]A. B. Stephen, H. L. Wei. A New Class of Wavelet Networks for Nonlinear System Identification[J]. IEEE Transctions on Neural Networks,2005,16(4):pp862-874.
    [93]谢美萍,赵希人,庄秀龙.小波神经网络及其在非线性时间序列中的应用[J].应用科学学报,2000,18(3):pp208-211.
    [94]M. Catelani, A. Fort, et al. Application of radial basis function network to the preventive maintenance of electronic analog circuits[C]. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference,1999, pp510-513.
    [95]M. Catelani, A. Fort. Fault diagnosis of electronic analog circuits using a radial basis function network classifier[J]. Measurement,2000, (28):pp147-158.
    [96]X. P. Gu, Y. H. Yang, W. Q. Zang, et al. Integration of Artificial Neural Networks and Expert Systems for Power System Fault Diagnosis[C]. Proc. IPEC'95, Singapore,1995, pp136-140.
    [97]M. A. E. Gamal. A knowledge-based approach for fault detection and isolation in analog circuits. International Conference on Neural Networks,1997, (3):1580-1584.
    [98]F. A. Daouren, D. Yasuhiko, J. O. Seppo. Fuzzy Neural Network with General Parameter Adaptation for Modeling of Nonlinear Time Series[J]. IEEE Transctions on Neural Networks, 2001,12(1):pp148-153.
    [99]王淑娟,陈博,赵国良.基于小波包变换预处理的模拟电路故障诊断方法[J].电工技术学报,2003,18(4):pp118-123.
    [100]H. Ye, P. Zhang, X. Ding, G. Z. Wang. A time-frequency domain fault detection approach based on parity relation and wavelet transform[C]. Proccedings of 39th IEEE Conference Decision Control,2000, pp4156-4161.
    [101]Y. C. Pati, P. S. Krishnaprasad. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transforms[J]. IEEE Transctions on Neural Network,1993,4(1): pp73-85.
    [102]胡晓光,戴景民,纪延超等.基于小波奇异性检测的高压断路器故障诊断[J].中国电机工程学报,2001,21(5):pp68-71.
    [103]林京,屈梁生.基于连续小波变换的奇异性检测与故障诊断[J].振动工程学报,2000,13(4):pp523-531.
    [104]J. P. M. Harish, B. H. Jesse, S. B. Dennis. Basis-Function Optimization for Subspace-Based Nonlinear Identification of Systems with Measured-Input Nonlinearities[C]. Proceeding of the Control Conference, Boston American,2004, pp4788-4794.
    [105]Marcantonio Catelani, Ada Fort. Soft Fault Detection and Isolation in Analog Circuits:Some Results and a Comparison Between a Fuzzy Approach and Radial Basis Function Networks[J]. IEEE Transctions on Instrumentation and Measurement,2002,51(2):pp196-203.
    [106]M. Worsman, M. W. Wong. Nonlinear circuit fault diagnosis with large change sensitivity[C]. IEEE International Conference on Electronics, Circuits and Systems,1998, pp225-228.
    [107]A. M. Brosa, J. Figueras. Digital signature proposal for mixed-signal circuits[C]. Proceedings of International Test Conference,2000, pp1041-1050.
    [108]W. Toczek, R. Zielonko, A. Adamczyk. A method for fault diagnosis of nonlinear electronic circuits[J]. Measurement,1998, (5):pp2479-2486.
    [109]E. Gad, R. Khazaka, M. S. Nakhla, et al. A Circuit Reduction Technique for Finding the Steady-State Solution of Nonlinear Circuits[J]. IEEE Transctions Microwave Theory and Techniques,2000-12,48(12):pp2389-2396.
    [110]林争辉,武强.非线性电路故障诊断的理论和算法[J].上海交通大学学报,1995,29(1):pp16-21.
    [111]赵建,林争辉.非线性动态电路故障诊断的递推方法[J].上海交通大学学报,1998,31(1):pp8-11.
    [112]杨嘉伟,杨士元.非线性电阻网络的支路故障诊断[J].清华大学学报(自然科学版),1991,(1):69-76.
    [113]雷勇,陈光(?),谢永乐等.基于导纳矩阵分解的非线性电路故障诊断[J].仪器仪表学报,2005,26(12):ppl283-1291.
    [114]孙义闯,何怡刚.模拟电路可测拓扑条件和可测性分析及可测性设计[J].湖南大学学报(自然科学版),2002,29(1):pp86-94.
    [115]魏晨,陈宗基.非线性系统的鲁棒故障检测与诊断[J].自动化学报,2003,29(6):pp977-982.
    [116]张志涌,杨祖樱.非线性容差电路的故障诊断[J].通讯学报,1994,15(4):pp21-29.
    [117]孔祥玉,韩崇昭,魏瑞轩等.一种全解耦的RLS自适应Volterra滤波器[J].电子学报,2004,32(4):pp687-689.
    [118]谢宏,何怡刚等.小波神经网络在模拟电路故障诊断中的应用研究[J].湖南大学学报(自然科学版),2004,31(4):pp38-40.
    [119]王承,陈光福,谢永乐.小波-神经网络在模拟电路故障诊断中的应用[J].系统仿真学报,2005,(8):pp40-43.
    [120]S. Y. Yin, G. J. Chen, Y. L. Xie. Wavelet neural network based fault diagnosis in nonlinear analog circuits[J]. Journal of Systems Engineering and Electronics,2006,17(3):pp521-526
    [121]刘春生,胡寿松.一类基于状态估计的非线性系统的智能故障诊断[J].控制与决策,2005,20(5):pp558-563.
    [122]H. Manhaeve, J. Verfaillie. Application of Supply Current Testing to Analog Circuits Towards a Structural Analog Test Methodology[J]. Journal of Electronic Testing:theory and Application,2000, (16):pp227-234.
    [123]M. Sidiropulos, V. Musil, et al. Alternative Methodology for Dynamic IDD Testing[C]. Proceeding of the 5th Electronic Device and Systems Conference 1998, EDS98:pp84-85.
    [124]E. S. Carlos, C. C. Claudio, etc. Fault-Trajectory Approach for Fault Diagnosis on Analog Circuits [C]. Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05),2005, pp1530-1531.
    [125]T. Iokibe, Y. Fujimoto. Failure Diagnosis by Trajectory Parallel Measure on Attractor[J]. Journal of Japan Society for Fuzzy Theoly and SyStW, Tokyo,1998,9(4):pp194-200.
    [126]徐晨曦,陈光(?).基于解轨迹多项式系数估计的非线性电路故障诊断[J].仪器仪表学报,2006,27(10):pp109-113.
    [127]E. J. Grimme. Krylov projection methods for model reduction[R]. Ph. D. thesis, University of Illinois at Urbana-Champaign,1997, pp13-16.
    [128]J. R. Phillips. Model reduction of time-varying linear systems using approximate multipoint krylov-subspace projectors[C]. International Conference on Computer Aided Design, California,1998, pp96-102.
    [129]C. W. Ho, A. E. Ruehli, P. A. Brennan. The modified nodal approach to network analysis[J]. IEEE Transctions Circuits and Systems,1975, CAS(22):pp504-509.
    [130]张贤达编著.矩阵分析与应用[M].北京,清华大学出版社,2004.
    [131]Z. L. Deng. Self-tuning Filtering Theory with Applications Modern Time Series Analysis Method[M]. Harbin, Press of Harbin Institute of Technology,2003.
    [132]尉乃红,杨士元,童诗白.基于BP网络的线性电路故障诊断[J],计算机学报,1997,20(4):pp360-367.
    [133]徐晨曦,陈光福基于响应误差矩阵SVD的软故障诊断方法[J].仪器仪表学报,2006,27(9):pp1100-1103.
    [134]D. W. Griffith, G. R. Arce. Partially decoupled Volterra filters:Formulation and adaptive algorithms[J]. IEEE Transctions Signal Processing,1997, (45):pp1485-1494.
    [135]V. J. Mathews. Adaptive Volterra Filters Using Orthogonal Structures[J]. IEEE Signal Processing Letters,1996,3(12):pp307-310.
    [136]C. X. Xu, G. J. Chen, G. X. LI. Characteristic Extracting for Nonlinear Diagnosis Based on Volterra Frequency-Domain Slices[C]. Proceedings of 2008 international conference on Condition Monitoring and Diagnosis, Beijing China,2008, pp1323-1327.
    [137]A. S. Mushtaq, V J. Mathews. Lattice Algorithms for Recursive Least Squares Adaptive Second Order Volterra Filtering[J]. IEEE Transctions on Circuits and Systems,1994,41(3): pp202-215.
    [138]G.O. A. Glentis, P. Koukoulas, N. Kalouptsidis. Efficient Algorithms for Volterra System Identification. IEEE Transctions on Signal Processing,1999,47(11):pp3042-3058.
    [139]马晓岩,向家斌编著.雷达信号处理[M].长沙,湖南科学技术出版社,1998.
    [140]邢孟道,保铮.电离层电波传播相位污染校正[J].电波科学学报,2002,17(2):pp129-134.
    [141]Z. Anding, J. C. Pedro, J. B. Thomas. Dynamic Deviation Reduction-Based Volterra Behavioral Modeling of RF Power Amplifiers [J]. IEEE Transctions on Microwave Theory and Techniques,2006,54(12):pp4323-4332.
    [142]Stanley Klein, Syozo Yasui. Nonlinear Systems Analysis with Non-Gaussian White Stimuli: General Basis Functionals and Kernels[J]. IEEE Transctions on Information Theory,1979, 25(4):pp495-500.
    [143]Seiji Ishihara, Harukazu Igarashi. A Task Decomposition Algorithm Using Radial Basis Functions for Classification Problems[C]. IEEE Proceedings of the Digital Imaging Computing Techniques and Applications,2005, pp2467-2472.
    [144]K. B. Lee. Disturbance observer that uses radial basis function networks for the low speed control of a servo motor[J]. IEE Proccedings of Control Theory and Applications,2005, 152(2):pp118-125.
    [145]H. Song, J. X. Zhang, H. Y. Zhang. Fault Accommodation Based on Fuzzy Basis Function Network[C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou P.R. China,2004, pp1793-1798.
    [146]D. Allingham, M. West, A. Mees. Wavelet reconstruction of non-linear dynamics[J]. Intelligent identification, Bifurcation and Chaos,1998, (8):pp2191-2201.
    [147]H. L.Wei, S. A. Billings. A unified wavelet-based modeling framework for nonlinear system identification:The WANARX model structure[J]. IEEE Intelligent Control,2004, (77): pp351-366.
    [148]S. Chen, C. F. N. Cowan, P. M. Grant. Orthogonal least-squares learning algorithm for radial basis function networks[J]. IEEE Transctions on Neural Network,1991,2(2):pp302-309.
    [149]K. Li, J. X. Peng, G. W. Irwin. A Fast Nonlinear Model Identification Method[J]. IEEE Transctions on Automatic Control,2005,50(8):pp1211-1217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700