新疆额尔齐斯河流域杨属克隆结构、遗传多样性及种间关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆额尔齐斯河流域分布着大面积的杨树天然林,包括有四大派系(白杨派、黑杨派、青杨派和胡杨派),其中,欧洲山杨、银白杨、银灰杨、欧洲黑杨、苦杨等杨属植物在我国仅天然分布于该地区。额尔齐斯河流域拥有一个丰富的天然杨树基因资源库,具有独特的生态和遗传学研究价值。本论文通过实地调查和实验分析,初步弄清了额尔齐斯河流域杨属天然林的分布状况、繁殖方式、遗传多样性和种间亲缘关系,为这一天然基因资源库的保存利用提供科学依据;取得了以下主要研究结果:
     1.白杨派树种克隆结构及多样性分析:
     (1)额尔齐斯河流域分布的白杨派天然林分多呈雌雄独立斑块状分布,从独立斑块小尺度上研究表明斑块内所有单株是同一个克隆系,即独立分布斑块是单克隆结构。白杨派树种天然林分以无性克隆繁殖方式(根孽)来产生新个体,维持种群的延续。
     (2)流域大尺度分析结果显示欧洲山杨和银白杨天然居群的Simpson指数(D)分别为0.987和0.983,表明欧洲山杨和银白杨天然居群具有较高水平的克隆多样性。其原因是:最初白杨派树种建群过程中,多个基因型不同的基株占据不同地点生境,通过根孽方式繁殖后代,形成克隆斑块;现在的植株是最初基株的克隆后代或者克隆后代的后代。
     (3)雌雄独立斑块是单克隆结构,而沿流域分布的多个斑块间具有遗传变异。通过对额尔齐斯河流域白杨派居群小尺度(独立斑块)和大尺度(流域几百平方公里)的研究,发现由于人为活动和环境恶化的影响,使得生境碎片化,大的斑块形成了相邻的多个小斑块,相邻的不同斑块植株是属于同一个大斑块的同一克隆系。同一居群内空间上不相邻的斑块也聚为一类,是一个克隆系,表明欧洲山杨和银白杨的根蘖繁殖距离长,克隆系空间分布的跨度很大。
     (4)分析欧洲山杨和银白杨居群的遗传多样性,结果表明欧洲山杨的Shannon信息指数(I)平均为1.0689, Nei多样性指数(h)平均为0.5056,以检测到的期望杂合度(He)为标准,将3个居群按照遗传多样性高低进行排序,其次序为:S1>S3>S2。银白杨的Shannon信息指数(I)平均为0.3249, Nei多样性指数(h)平均为0.2122,以检测到的期望杂合度(He)为标准,将4个居群按照遗传多样性高低进行排序,其次序为:Y4>Y3>Y1>Y2。银白杨的遗传多样性水平要明显低于欧洲山杨。
     2.用SSR分析青杨派树种苦杨、黑杨派树种欧洲黑杨的遗传多样性发现:
     (1)利用筛选的12对SSR引物对苦杨共检测出89个等位基因变异,平均位点等位基因数(Na)为7.4167个;有效等位基因数(Ne)为3.8872;观察杂合度(Ho)平均为0.4249;期望杂合度(He)平均为0.3940。对欧洲黑杨共检测出24个等位基因变异,平均位点等位基因数(Na)为2.0000个;有效等位基因数(Ne)平均为1.3967;观察杂合度(Ho)平均为0.3452;期望杂合度(He)平均为0.2200。苦杨和欧洲黑杨的期望杂合度小于观察杂合度,表明其群体的杂合体过量。
     (2)苦杨的Shannon信息指数(I)平均为0.7659, Nei多样性指数(h)平均为0.3657,以检测到的期望杂合度(He)为标准,将6个群体按照遗传多样性高低进行排序,其次序为:K3>K1>K5>K6>K2>K4。欧洲黑杨的Shannon信息指数(I)平均为0.3199, Nei多样性指数(h)平均为0.2122,以检测到的期望杂合度(He)为标准,将4个群体按照遗传多样性高低进行排序,其次序为:H2>H3>H4>H1。欧洲黑杨的遗传多样性水平要明显低于苦杨。
     (3)苦杨群体间遗传分化系数(Fst)为0.0714,即有7.14%的遗传变异存在群体之间,92.86%的遗传变异存在于群体内,群体内变异是其遗传变异的主要来源;苦杨群体间的基因流(Nm)平均为3.2533。欧洲黑杨群体间遗传分化系数(Fst)为0.0243,97.57%的遗传变异存在于群体内;欧洲黑杨群体间的基因流(Nm)平均为10.0585。表明苦杨和欧洲黑杨群体间遗传分化程度小,这与群体间有较高的遗传一致度(I苦=0.9156~0.9817;I黑=0.9825~0.9972)的结果相符合。
     (4)苦杨的Fit和Fis均为负值,分别为-0.0860和-0.1695;欧洲黑杨的Fit和Fis也均为负值,分别为-0.5754和-0.6146。这表明苦杨和欧洲黑杨种群总体表现为杂合子过量的现象。
     (5)对苦杨、额河杨、欧洲黑杨3个树种共228个样本聚类分析,228个样本聚为了2个大类,第一大类是苦杨个体,第二大类是额河杨和欧洲黑杨个体,杂交种额河杨与欧洲黑杨位于同一个分支,证明额河杨应归属于黑杨组,同时也表明杂交种额河杨在基因组DNA水平上呈现黑杨的特征。苦杨种内个体间具有相当的遗传变异,而欧洲黑杨种内有许多个样本的遗传相似系数为1.00,完全聚在一起。
     (6)额河杨是苦杨和欧洲黑杨的天然杂种,其混生于苦杨林分中。额河杨的表型形态特征变异较大,有的外貌酷似黑杨,有的似苦杨,有的呈中间型,直接从形态上鉴别难以做到100%准确。通过表型认定为苦杨的样本K3-16与额河杨聚为一大类,通过表型认定为杂种额河杨的样本Ke2-2、Ke2-3和Ke3-18则与苦杨聚为一类,这说明额河杨与苦杨又发生了回交,导致形态多变,林分呈多代杂种的复合体,运用分子标记技术在DNA水平上鉴定物种比表型形态特征更为准确。
     3.采用Primer Walking法对杨属植物叶绿体DNA trnL-trnF间隔区片段进行PCR产物直接测序,对所获得的序列分析结果表明:发现有883个不变位点,108个变异位点(所占比例为11.96%);多态性位点20个(所占比例为2.21%),存在着插入或缺失(主要是插入或缺失A/T)以及碱基的替换(碱基替换形式有A-G/A-C/A-T/C-T/G-T);序列G+C平均含量为32.6%。所测的杨属植物cpDNA trnL-trnF间隔区序列具有较高的单倍型多样性(Hd =0.764)和核苷酸多样性(Pi=0.00396),表明该DNA序列片段区具有较丰富的遗传变异。中性检验所得Tajima's D值为0.39108,该统计值在P>0.10的水平上差异不显著,接受零假设(the null hypothesis),表明cpDNA trnL-trnF序列在杨属中呈中性进化。
     杨属5个树种(欧洲山杨、银白杨、苦杨、额河杨和欧洲黑杨)的cpDNA trnL-trnF间隔区序列同源性为89%,序列高度同源、为单系起源;所构建的系统发生树显示,欧洲山杨、银白杨以及苦杨划分为3个大类,欧洲黑杨位于系统树的基部;杂种额河杨与苦杨聚为一类,表明额河杨的cpDNA来自于其母本苦杨。
     杨属植物叶绿体DNA trnL-trnF间隔区序列鉴定出17种单倍型。白杨组中的欧洲山杨有2种单倍型(Hap_13、Hap_14),单倍型Hap_13在其群体分布中占优势地位;银白杨有4种单倍型(Hap_14、Hap_15、Hap_16、Hap_17),单倍型Hap_15在其群体分布中占优势地位,其中单倍型Hap_14为两个树种所共有,但分布频率很低。黑杨组中的欧洲黑杨有2种单倍型(Hap_1、Hap_3),单倍型Hap_1在其群体分布中占优势地位。青杨组中的苦杨鉴定出最多的单倍型,共有9种(Hap_2、Hap_5、Hap_6、Hap_7、Hap_8、Hap_9、Hap_10、Hap_11、Hap_12),单倍型Hap_2在其群体分布中占优势地位;杂种额河杨具有2种单倍型(Hap_2、Hap_4),与苦杨居群混生的杂种额河杨主要是具有单倍型Hap_2,而与欧洲黑杨H1居群混生的杂种额河杨单株He1-8、He1-12也是具有这一单倍型,与欧洲黑杨H4居群混生的杂种额河杨单株He4-2具有单倍型Hap_4。苦杨、额河杨2个树种都具有单倍型Hap_2,而欧洲山杨和银白杨2个树种都具有单倍型Hap_14。
     用2种分析方法-邻接法(neighbor-joining,NJ)和最大似然法(maximum parsimony,MP)分别对杨属5个树种的cpDNA trnL-trnF间隔区序列的17种单倍型进行系统发育分析并构建了系统树,不同方法所获得的系统树在拓扑结构上基本一致,但在自展支持率(Bootstrap value,BS值)上存在着差异。从单倍型构建的系统发生树可得知,所有杨属植物的单倍型组成了一个多系群,它们具有不同的假定祖先型;苦杨具有最多的单倍型变异;杨属各个组内的单倍型更倾向于聚为一支,但黑杨组的单倍型倾向于与青杨组的单倍型在系统进化上有更近的关系。
Large areas of the populus natural forests were distributed along the Erqis River in Xinjiang, which including the four Populus sections of Leuce、Aigeiros、Tacamahaca、Turanga, and the Populus tremula、Populus alba、Populus canescens、Populus nigra、Populus laurifolia、Populus×jrtyschensis just distribute naturally in this region of China. The Erqis River has abundant gene resource and idiographic value of the ecological and genetic research. The distributing pattern、breeding methods、genetic diversity and phylogenetic relationship of Populus natural forests were studied based on field surveys and experiments. Major results are described as follows:
     1. We analyzed the clonal structure and diversity of Populus sections of Leuce, then the results following:
     (1) Through the field survey, we found that the Leuce natural forests present a independently distributing pattern of male or female patch, many independent patches along the valley formed a large patch, and a number of major patches then formed a population. The study results at a microgeographical scale of single patch showed that all swatches in a single distributing patch of male or female were a identical clone, the single patch had only one genet, that was to say the structure of patch is monoclonal, and the Leuce natural forests propagated offspring by asexual clonal reproduction means (rooting) to maintain the population continuation.
     (2) The populations of Populus tremula and Populus alba had an abundant clonal diversity with the mean Simpson’s index was 0.987 and 0.983 based on a macrogeographical scale of the livelong valley. The high clonal diversity might be maintained if the populations were initially founded by multiple genets that differed genetically and the existent frond was the progeny of clonal genets by root clone.
     (3) Because the independently distributing patch of male or female was monoclonal structure and there was genetic variation among patches along the valley, we described the distributing pattern of the Leuce natural forests along the Erqis River based on the studying at microgeographical scale (single patch) and macrogeographical scale (the livelong valley). Because of human activities and environmental degradation, then habitat fragmentation made a large patch form many adjacent patches which would have been belonged to the same clone. In addition, the disjunct patches within the same populations was a same clone system, showed that the distance of root tillering of Populus tremula and Populus alba was long, and the clonal spatial distribution was large.
     (4) The Shannon index(I) and Nei index(h) of Populus tremula was 0.7659 and 0.3657 and the 3 populations were ranked as S1>S3>S2 according to genetic diversity based on He; The Shannon index(I) and Nei index(h) of Populus alba was 0.3199 and 0.2122 and the 4 populations were ranked asY4>Y3>Y1>Y2 according to genetic diversity based on He. The genetic diversity of Populus alba was significantly lower than the Populus tremula.
     2. We analyzed the population genetic diversity of Populus nigra and Populus laurifolia by SSR molecular marker, then the results following:
     (1) For Populus nigra, 89 alleles were detected based on 12 SSR primers and the average number of alleles per locus Na= 7.4167, the effective number of alleles Ne= 3.8872, the mean observed heterozygosity Ho= 0.4249, the mean expected heterozygosity He= 0.3940; Populus laurifolia, 24alleles were detected based on 12 SSR primers and the average number of alleles per locus Na=2.0000, the effective number of alleles Ne=1.3967, the mean observed heterozygosity Ho=0.3452, the mean expected heterozygosity He=0.2200. the mean expected heterozygosity (He) of Populus laurifolia and Populus nigra was less than the mean observed heterozygosity(Ho), indicating that their heterozygote was excess .
     (2) The Shannon index(I) and Nei index(h) of Populus laurifolia was 0.7659 and 0.3657 and the 6 populations were ranked as K3>K1>K5>K6>K2>K4 according to genetic diversity based on He; The Shannon index(I) and Nei index(h) of Populus nigra was 0.3199 and 0.2122 and the 4 populations were ranked as H2>H3>H4>H1 according to genetic diversity based on He. The genetic diversity of Populus nigra was significantly lower than the Populus laurifolia.
     (3) A low level of genetic differentiation among Populus laurifolia populations was detected(Fst=0.0714) ,which indicated that the variation within groups is a major source of genetic variation, and a higher estimate of gene flow(Nm=3.2533) coincided with a high level of genetic identity(I) among the populations(from 0.9156 to 0.9817); analogously, a low level of genetic differentiation among Populus nigra populations was detected(Fst=0.0243), which indicated that the variation within groups was a major source of genetic variation, and a higher estimate of gene flow(Nm=10.0585) coincided with a high level of genetic identity(I) among the populations(from 0.9825 to 0.9972).
     (4) The index of Fit and Fis of Populus laurifolia was -0.0860 and -0.1695 and the index of Fit and Fis of Populus nigra was -0.5754 and -0.6146, which indicated that their heterozygote was excess.
     (5) The clustering analysis suggested that 228 swatches were classified two filiations: the first filiation was Populus laurifolia and the second filiation was Populus nigra and Populus×jrtyschensis, which proved that Populus×jrtyschensis should be ranged to the Populus nigra group and it presented the characteristics of Populus nigra at the genomic DNA level. There were considerable genetic variation among the species of Populus laurifolia and the genetic similarity coefficient of many Populus nigra individuals was 1.00.
     (6) Populus×jrtyschensis, a natural hybrid of Populus laurifolia and Populus nigra, had considerable phenotypic variation. Some individuals looked like Populus nigra, some looked like Populus laurifolia and some were intermediate type, so it was difficult to identify from the modality. The sample of K3-16, originally identified be Populus laurifolia through the phenotype, was clustered to Populus×jrtyschensis, and the samples of Ke2-2 and Ke2-3 and Ke3-18, originally identified be Populus×jrtyschensis through the phenotype, were clustered to Populus laurifolia. This showed that there had backcross between Populus×jrtyschensis and Populus laurifolia, then resulting in complicated morphological variation and the stand was the compound types of many hybrid generations. Identification of species by using the DNA molecular markers was more accurate than phenotypic characteristics.
     3. The Populus plant chloroplast DNA trnL-trnF intergenic space sequence was amplified and sequenced by the primer walking technique based on PCR product fragments. The results showed that: there were 883 invariable loci and 108 variable loci (11.96%). The 20 polymorphic loci (2.21%) had insertion or deletion (A / T) and substitution (AG / AC / AT / CT / GT) and the content of sequence G + C was 32.6%. Relatively high level of haplotype diversity (Hd = 0.764) and nucleotide diversity (Pi = 0.00396) were detected in Populus cpDNA trnL-trnF sequence,which indicated that this DNA sequence had rich genetic variation. The Tajima's D index of neutral test was 0.39108 and accepted the null hypothesis, its difference was not significant at the level of P> 0.10, which showed that the evolution of cpDNA trnL-trnF sequence in Populus was neutral.
     The cpDNA trnL-trnF intergenic space sequence of 5 Populus species (Populus tremula、Populus alba、Populus laurifolia、Populus×jrtyschensis、Populus nigra) was highly homologous and monophyletic origin . The phylogenetic tree was clustered into three filiations of Populus tremula, Populus alba and Populus laurifolia, and the Populus nigra was situated at the base of the tree. Populus jrtyschensis, this hybrid was clustered together with Populus laurifolia, which showed that the cpDNA of Populus×jrtyschensis had an origin from its female parent Populus laurifolia.
     17 haplotypes were identified based on nucleotide variation. Populus tremula had 2 haplotypes (Hap_13, Hap_14), and Hap_13 was dominant; Populus alba had 4 haplotypes (Hap_14, Hap_15, Hap_16, Hap_17), and Hap_15 was dominant, and the Hap_14 was shared by the two species but its frequency was low; Populus nigra had 2 haplotypes (Hap_1, Hap_3), and Hap_1 was dominant; Populus laurifolia had the largest number of identified haplotype (Hap_2, Hap_5, Hap_6, Hap_7, Hap_8, Hap_9, Hap_10, Hap_11, Hap_12), and Hap_2 was dominant; Populus×jrtyschensis had 2 haplotypes (Hap_2, Hap_4). The 2 species of Populus laurifolia and Populus jrtyschensis all had the Hap_2 haplotype, and Populus tremula and Populus alba all had the Hap_14 haplotype.
     We analyzed and constructed phylogenetic tree of 17 haplotypes based on the neighbor-joining method (NJ) and the maximum likelihood method (MP). The phylogenetic tree obtained by different methods was basically coincident but had differences for Bootstrap value (BS). The results showed that all haplotypes formed a multiphyly cluster and had different presumptive ancestors; Populus laurifolia had the largest number of haplotype variation; the haplotypes in the same Populus Sect. were tend to cluster together and the haplotypes of Aigeiros and Tacamahaca had more closer phylogenetic relationship.
引文
[1]赵天赐,陈章水.中国杨树集约栽培.北京:中国科学技术出版社,1994
    [2]王世绩主编.杨树研究进展.北京:中国林业出版社,1995
    [3] H.D.Jr. Bradshaw, R.F. Steler. Molecular genetic of growth and development in Populos.I.Triploidy in hybrid poplars.Theoretical and Applied Genetics,1993,86:301-307
    [4] T.Gail.Populus: arabiposis for forestry.De we need a model tree?. Annals of Botany,2002,90:681-689
    [5]刘开华,潘旭,谢立新.额尔齐斯河水质现状.西北水资源与水工程,2002,13(3):46-49
    [6]新疆森林.新疆人民出版社,中国林业出版社,1990
    [7]徐伟英等.北疆额尔齐斯河河谷杨树林考察.中国杨树委员会杨树考察组,中国林科院林研所, 1982.9
    [8]杨昌友.植物研究. 1982, 2(2):112
    [9]陈聚恒,杨昌友.新疆额尔齐斯河河谷天然杨树林.第十八届国际杨树会议论文集(中国部分),中国林业出版社,1992:64-73
    [10] T.V.Callaghan, B.A.Carlsson, I.S.Jonsdottir, B.M.Svensson, S.Jonasson. Clonal plants and environmental-change: introduction to the proceedings and summary. Oikos , 1992, 63:341-347
    [11] K.Prach, P.Pyiek. Clonal plants—what is their role in succession. Folia Geobotanica et Phytotaxonomica, 1994, 29: 307-320
    [12] R.G.M. Van Der Hulst, T.H.M. Mes, J.C.M. Den Nijs, K.Bachmann. Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Molecular Ecology, 2000, 9(1):1-8
    [13] Zhihua Zhou, Makoto Miwa, Kazuhide Nara, et al. Patch establishment and development of a clonal plant, Polygonum cuspidatum, on Mount Fuji . Molecular Ecology, 2003, (6):1361-1373
    [14] C.T.Philbrick, D.H.Les. Evolution of aquatic angiosperm reproductive systems. Bioscience, 1996, 46:813-826
    [15] S.C.H. Barret, C.G. Eckert, B.C. Husband. Evolutionary processes in aquatic plants. Aquatic Botany, 1993, 44:105-145
    [16] van Groenendael J, de Kroon H. Clonal Growth in Plants: Regulation and Function. The Hague: SPB A cadmic Publishing, 1990
    [17]祝宁.植物种群生态学现状与进展.哈尔滨:黑龙江科学技术出版社, 1994
    [18] F. A Bazzaz, J. L.Harper. Demographic analysis of the growth of Linum usitafissius. New Phytologist, 1977, 78: 193-208
    [19]钟章成.植物种群的繁殖对策.生态学杂志,1995,14(1):37-42
    [20]苏智先,张素兰,钟章成等.植物生殖生态学研究进展.生态学杂志,1998,17(1):39-46
    [21]张运春,苏智先,高贤明.克隆植物的特性及研究进展.四川师范学院学报,2001,22(4):39-44
    [22] J. L.Harper. Population Biology of Plant. Londonand New York: A cademic Press, 1977
    [23]贺金生,陈伟烈,刘峰.神农架地区米心水青冈萌枝过程的研究.植物生态学报,1998,22 (5):389-391
    [24]陈尚,马艳,李自珍等.克隆植物种子繁殖和营养繁殖的适合度分析和度量.生态学报, 1999,19(2):287-290
    [25] H. Huber, H.During. No long-term costs of meristem allocation to flowing in stoloniferous Trif olium species. Evolutionary Ecology, 2001, 14: 731-748
    [26] T.Shimizu, Y.Hatanaka, H.Zenton, et al. The role of sexual and clonal reproduction in maintaining population in Fritillarlltia camtschatcensis. Ecological Research, 1998,13: 27-39
    [27]阮成江,何祯祥,周长芳.植物分子生态学.北京:化学工业出版社,2005:36
    [28] de Kroom H, van Groenendael J. The ecology and evolution of clonal plants. Leiden of the Netherlands: Backhuys Publishers, 1997: 235-248
    [29] A.M. Montalvo, S.G. Conard, M.T. Conkle, P.D.Hodgskiss. Population structure, genetic diversity, and clone formation in Quercus chrysolepis (Fagaceae). American Journal of Botany, 1997, 84(11): 1553-1564
    [30] N.Escaravage, S.Questiau, A.Pornon, B.Douhe, P.Taberlet. Clonal diversity in a Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers. Molecular Ecology,1998, 7(8):975-982
    [31] Chunlan Lian, Ryuya Oishi, Naoya Miyashita, et al. Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Molecular Ecology, 2003, 12(3): 609-618
    [32] E. A. Ainsworth, P. J. Tranel, B. G. Drake, S. P. Long. The clonal structure of Quercus geminata revealed by conserved microsatellite loci. Molecular Ecology, 2003, 12 (2): 527-532
    [33] Y. Suyama, K. Obayashi, I. Hayashi. Clonal structure in a dwarf bamboo (Sasa senanensis) population inferred from amplified fragment length polymorphism (AFLP) fingerprints. Molecular Ecology, 2000, 9(7): 901-906
    [34] T. Torimaru, N. Tomaru, N. Nishimura, S. Yamamoto. Clonal diversity and genetic differentiation in Ilex leucoclada M. patches in an old-growth beech forest. Molecular Ecology, 2003,12(4):809-818
    [35] S. A. Kreher, S. A. Fore, B. S. Collins. Genetic variation within and among patches of the clonal species, Vaccinium stamineum L. Molecular Ecology, 2000, 9(9):1247-1252
    [36]陈锦华,汪小凡,吕应堂.矮慈姑自然居群的克隆生长格局.武汉大学学报(理学版), 2003,49(4):523-527
    [37] A.J.Mclellan, Pratid, O.Kaltz, et al. Structure and analysis of phenotypic and genetic variation in clonal plants. In: de Kroon H, Van Groenenda J M. The Ecology and Evolution of Clonal Plants. Leiden: Backhuys Publishers, 1997
    [38] N.C. Ellstrand, M.L. Roose. Patterns of genotypic diversity in clonal plant species. American Journal of Botany, 1987,74:123-131
    [39] N.Aspinwal, T.Christian. Clonal structure, genotypie diversity and seed production in population of Filipendula rubra (Rosaceae) from the northcentral United Slates. American Journal of Botany,1992,79:294-299
    [40]陆建英,马瑞君,孙坤.珠芽蓼种群克隆多样性及克隆结构的初步研究.植物生态学报,2007,31(4):561-56
    [41]陆建英,杨晓明,马瑞君.青藏高原东缘鹅绒委陵菜种群克隆结构的研究.草业学报,2008,17(2):68-74
    [42]蔡凝枫,严宁,胡虹,刘涛.黄花杓兰云南中甸居群遗传结构及克隆多样性的分析.云南植物研究,2008,30(1):69-75
    [43] M. Maik, H. Morita, S. Oiki. The effect of geographic range and dichogamy on genetic variability and population genetic structure in Tricyrtis section Flavae (Liliaceae).American Journal of Botany,1999,86:287-292
    [44]J.H. Kirsten, C.J. Dawes,B. J.Cochrane. Randomly amplified polymorphism detection(RAPD)reveals high genetic diversity in Thalassia testudinun banks ex Konig (Turtlegrass).Aquatic Botany, 1998, 61:269-287
    [45] J. Jobling. Poplars for wood production and amenity. Forestry Commission Bulletin, HMSO, London, 1990, 92: 1-75
    [46] E.J. Esselman,Li Jianqiang,D. Crawford,J. L. Winduss, A.D. Wolfe. Clonal diversity in the rare Calamagrostis porteri ssp.insperata (Poaeeae):comparative results for allozymes and random amplified polymorphic DNA (RAPD)and intersimple sequence repeat(ISSR)markers.Molecular Ecology,1999,8: 443-451
    [47] M. Lynch. Destabiling hybridization, general purpose genotypes and geographic parthenogemis. Quar Rev Biol,1984,59: 257-290
    [48] D.E. Gill.,C. Lin,S.L. Perkins. Genetic mosaicism in plants and animals. Ann Rev Ecol Syst,1995,26:423-444
    [49] Y. Harada,S. Kawano,Y. Iwasa. Probability of clonal identity: inferring the relative success of sexual versus clonal reproduction from spatial genetic patterns. Journal of Ecology, 1997, 85: 591-600
    [50] J.B.C. Jack son, L.W. Buss, R C. Cook. Population Biology and Evolution of Clonal Organisms. New Haven: Yale University Press, 1985
    [51] L.C. Michaell, Hans Damman. Clonal growth and ramet performance in the woodland herd, A sarum canadense. Journal of Ecology, 1997, 85: 883-897
    [52] J.L. Doust, et al. Modules of production and reproduction in deciduous clonal shrub Rhus typhina. Ecology, 1988, 69 (3): 741- 750
    [53] O. Eriksson. Patterns of ramet survivorship in clonal fragments of the stoloniferous plant Potentilla anserine. Ecology, 1988, 69 (3): 736- 740
    [54]刘庆,钟章成.无性系植物种群生态学研究进展及有关概念.生态学杂志,1995,14(3):40-45
    [55] Hara T Van, der Toor J, Mook J H. Growth dynamics and size structure of shoots of Phragmites australis, a clonal plant. Journal of Ecology, 1993, 81: 47-60
    [56] de Kroon H, Kwant R. Density-dependent growth responses in two clonal herbs: regulation of shoot density. Oecologia, 1991, 86: 298-304
    [57] O. Eriksson. Ramet behavior and population growth in the clonal herb Potentilla anserine. Journal of Ecology, 1988, 76: 522-536
    [58] A.H. Fitter. Fractal characterization of root system architecture. Functional Ecology, 1992, 6: 632- 635
    [59] M.C. Cain. Models of clonal growth in Solidago attissima. Journal of Ecology, 1990, 78: 27-46
    [60] L. R. Little, M.R.T.Dale. A method for analyzing spatio-temporal pattern in plant establishment, tested on Populus balsamifera clone. Journal of Ecology, 1999, 87: 620-627
    [61]董鸣.异质性生境中的植物克隆生长:风险分摊.植物生态学报, 1996,20(6):543-548
    [62] B. Schmid. Clonal growth in grassland perennials III Genetic variation and plasticity between and within populations of Bells perennis and Prunella vid garis. Journal of Ecology, 1985, 73: 819-830
    [63] J. Stuefer, H. During, H.de. Kroon. High benefits of clonal integration in two stoloniferous species in response to heterogeneous light environment. Journal of Ecology, 1994, 82: 511- 518
    [64] A.J. Slade, et al. The effects of nutrient availability or foraging in the clonal herb Glechome hederacea. Journal of Ecology, 1987, 75: 639- 650
    [65]陈尚,马艳,李自珍等.克隆植物种子繁殖和营养繁殖的适合度分析和度量.生态学报, 1999,19(2):287-290
    [66]苏宗明,黄玉清,李先琨.广西元宝山南方红豆杉群落特征的研究.广西植物,2000,20(1):1-10
    [67]苏智先,张素兰,钟章成.植物生殖生态学研究进展.生态学杂志,1998,17(1):39-46
    [68] C. Brodie, G. Houle, M.J. Fortin. Development of a Populus balsamifera clone in sub arctic Quebec reconstructed from spatial analyses. Journal of Ecology, 1995, 83: 309-320
    [69] C.S. Chang, B. Bongarten, J. Hamrick. Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Cowecta, North Carolina. Journal of Plant Research, 1998, 111: 17-24
    [70] P. Nantel, D. Gagnon. Variability in the dynamics of northern peripheral versus southern populations of two clonal plant species, Helianthus divaricatus and Rhusarom atica. Journal of Ecology, 1999, 87: 748-760
    [71] Kemperman J, Barnes B. Clone size in American aspens. Canadian Journal of Botany, 1976, 54: 2603-2607
    [72] Culot A, Vekemans X, Lefebvre C, Homes J .Taxonomic identification and genetic structure of populations of the Populus tremula L., P. alba L. & P.×canescens (Ait.) sm. complex using morphological and electrophoretical markers. In: Population Genetics and Genetic Conservation of Forest Trees (eds Baradat Ph, Adams WT, Müller-Starck G), pp. 1995, 13-119. SPB Academic Publishing, Amsterdam, The Netherlands
    [73] Easton E. Genetic variation and conservation of the native aspen (Populus tremula L.) resource in Scotland. PhD Thesis, University of Edinburgh, UK, 1997
    [74] Rajora O, Dancik B. Genetic characterization and relationships of Populus alba, P. tremula and P.×canescens, and their clones. Theoretical and Applied Genetics, 1992, 84, 291-298
    [75] Castiglione S, Wang G, Damiani G et al. () RAPD fingerprints for identification and for taxonomic studies of elite poplar (Populus spp.) clones. Theoretical and Applied Genetics, 1993, 87, 54-59
    [76] Leena I., Suvanto, TARJA B., Latva-Karjanmaa. Clone identification and clonal structure of theEuropean aspen (Populus tremula). Molecular Ecology, 2005, 14: 2851-2860
    [77] Marie-Claire Namroud, Rewpark, Francine Tremalay, Yves Bergeron. Clonal and spatial genetic structures of aspen (Populus tremuloides Michx.). Molecular Ecology, 2005, 14: 2969-2980
    [78] K. E. Mock, C. A. Rowe, M. B. Hooten, J. Dewoody, V. D. Hipkins. Clonal dynamics in western North American aspen (Populus tremuloides). Molecular Ecology, 2008, 17: 4827-4844
    [79] D. Ally, K. R Itland, S. P. Otto. Can clone size serve as a proxy for clone age? An exploration using microsatellite divergence in Populus tremuloides. Molecular Ecology, 2008, 17: 4897-4911
    [80] Berthold Heinze, Barbara Fussi. Somatic mutations as a useful tool for studying clonal dynamics in trees. Molecular Ecology, 2008, 17: 4779-4781
    [81] Ally D. The cost of longevity: loss of sexual function in natural clones of Populus tremuloides. PhD Dissertation. University of British Columbia, Vancouver, Canada, 2008
    [82]张德强,张志毅,杨凯.杨树分子标记研究进展.北京林业大学学报,2000,22:79-84
    [83]张德强,张志毅,杨凯.分子标记技术在杨树遗传及分类中的应用.北京林业大学学, 2001, 23:76-80
    [84]李宽钰,黄敏仁,王明庥等.白杨派、青杨派和黑杨派的DNA多态性及系统进化研究.南京林业大学学报,1996, 20(1):6-11
    [85]李宽钰,黄敏仁,王明庥,黄丰厚.青杨遗传分化.植物学报, 1997, 39:753-758
    [86]苏晓华,张绮纹,张望东等.大青杨及其近缘种的遗传变异和系统关系研究.林业科学,1996,2:202-209
    [87]张绮纹,苏晓华,李金华等.美洲黑杨基因资源收存及其遗传评价的研究.林业科学,1999, 35(3):31-37
    [88] T.Michael, Stevens. Genetic variation in postfire aspen seedlings in Yellowstone National Park. Molecular Ecology, 1999, 8: 1769-1780
    [89] P. Faiver-Rampant, S. Castiglione, B. LeGuerroue, S. Bisoffi, F. Lefevre, M.Vi11ar. Molecular approaches to study of poplar systematics.Proceedings of the International poplar symposium, University of Washington, 1995, 45
    [90] N. Sanchez, J.M. Grau, J.A. Manzanera, et al. RAPD markers for the identification of Populus. Silvae Genetica, 1998, 47(2-3): 67-70
    [91] P. Arens, H. Coops. Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch avers. Molecular Ecology, 1998, 7: 11-18
    [92] M.O. Winfield. A study of genetic diversity in Populus nigra subsp. betulifolia in the Upper Severn area of the UK using AFLP markers. Molecular Ecology, 1998, 7: 3-10
    [93] M. T. Cervera, V. Storme , A. Soto, B. Ivens, M. Van Montagu, O. P. Rajora, W. Boerjan. Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers. Theor Appl Genet, 2005, 111: 1440–1456
    [94]徐莉,赵桂仿.微卫星DNA标记及其在遗传多样性研究中的应用.西北植物学报,2002,22:714-722
    [95]李云海,肖含等.用微卫星DNA标记检测中国主要杂交水稻亲本的遗传变异.植物学报,1999,41(10):1061-1066
    [96] S. Dayanandan, O.P. RAjora, K.S. Bawa. Isolation and characterization of microsatellites in trembling aspen (Populus tremuloides). Theoretical and Applied Genetics, 1998, 96:950-956
    [97] J.V.D. Schoot, M.Pospi Skova, B.Vosman,M.J.M.Smulders. Development and characterization of mocrosatellite markers in black poplar (Populus nigra L.). Theoretical and Applied Genetics, 2000, 10(1):317-322
    [98] Ericimbert. Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system. Journal of Ecology, 2003, 91:447-456
    [99] T.Cole.Christopher. Allelic and population variation of microsatellite loci in aspen (Populus tremuloides). New Phytologist, 2005, 16(7): 155-164
    [100]张香华,苏晓华,黄秦军,张冰玉.欧洲黑杨育种基因资源SSR多态性比较研究.林业科学研究, 2006,19(4):477-483
    [101]李世峰,张博,陈英等.美洲黑杨种质资源遗传多样性的SSR分析.南京林业大学学报(自然科学版),2006,30(4):10-14
    [102] C. Lexer, M. F. Fay, J . A . Joseph, M.S. Nica,B . Heinze. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression. Molecular Ecology ,2005,14:1045–1057
    [103] O.P. Rajora, M.H. Rahman. Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus x canadensis) cultivars. Theor Appl Genet, 2003, 106:470–477
    [104] T. FOSSATI, F . GRASSI, F . SALA and S . CASTIGLIONE. Molecular analysis of natural populations of Populus nigra L. intermingled with cultivated hybrids. Molecular Ecology , 2003, 12: 2033–2043
    [105]刘艳萍,郭志富,刘玉东等.应用SRAP标记分析新疆地区主要杨属树种的遗传多样性.植物生理学通讯,2008,44(2):25-228
    [106]卢孟柱,卞祖娴.杨树叶绿体DNA的分离和RFLP分析.林业科学研究,1992,5:465-468
    [107] M.Mejnartowicz. Inheritance of chloroplast DNA in Populus.Theoretical and Applied Genetics, 1991, 82(4): 477-480
    [108] O.P. Rajora, B.P. Dancik. Chloroplast DNA variation in Populus. Llntraspecific restriction fragment diversity within Populus deltoides, P.nigra, and P.maximowiczii. Theoretical and Applied Genetics, 1995, 90: 317-323
    [109] O. P. Rajora, B. P. Dancik. Chloroplast DNA variation in Populus. II. Interspecific restriction fragment polymorphisms and genetic relationships among Populus deltoides, P. nigra, P. maximowiczii, and P. x canadensis. Theor Appl Genet ,1995, 90:324-330
    [110] O. P. Rajora, B. P. Dancik. Chloroplast DNA variation in Populus. III. Novel chloroplast DNA variants in natural Populus x canadensis hybrids. Theor Appl Genet , 1995, 90:331-334
    [111] Mona Hamzeh, Selvadurai Dayanandan. Phylogeny of Populus(Salicaceae) based on nucleotide sequences of Cchloroplast trnT-trnF region and nuclear rdna. American Journal of Botany, 2004, 91(9): 1398–1408
    [112] N.M. Salch. Small mtDNA molecules ofwild abortive cytoplasmi c male sterility in rice. Theoretical and Applied Genetics, 1989, 7: 617-619
    [113]凌杏元,周培疆,朱英国.细胞质雄性不育分子机制的研究进展.植物学通报,2000,17:319-322
    [114] J.D. Palmer,L.A. Herbon. Plant mitochondrial DNA evolves rapidly in structure,but slowly in sequence.Journal of Molecular Evolution,1988,28:87
    [115] B. L.Ward,R. A. Anderson, A.J.Bendich. The mitochondrial genome is lager and variable in a family of plants(Cucurbitaceae).Cell,1981,25:793
    [116] J. W. Barrett, O.P. Rajora, F.C.Yeh, B. P. Dancik, C. Strobeck. Mitochondrial DNA variation and genetic relationships of Populus species. Genome, 1993,36: 87-93
    [117] H. Ris, U. Plaut. The restructure of DNA-containing areas in the chloroplast of Chlaraydomonas. Cell Biology, l962, l3: 383-39l
    [118] J. D. Palmer.Cumulative organization of chloroplast genomes. Ann Rev Genet,1985,19:325-354
    [119] J.Castelide,A.R.Templefon. Root probability for intraspecific gene trees under neutral coalescent theory.Mol Phylogenies Evol, 1994, 3:102-113
    [120] S.W. Graham, R.G. Olmstead. Utility of 17 Chloroplast genes for infirming the phylogeny of the basal angiosperms.American Journal of Botany, 2000, 87: 1712-1730
    [121] R.L. Small,J.A. Ryburn, R.C.Crown, et al..The tortoise and the hare:choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction on a recently diverged plant group . American Journal of Botany, 1998, 85:1301-l3l5
    [122]苏应娟,王艇,郑博等.根据cpDNA trnL-F非编码区序列变异分析黑桫椤海南和广东种群的遗传结构与系统地理[J].生态学报,2004,24(5):914-919
    [123] M.T. Clegg, B.S. Gant, G. H. Learn, et al. Rates and patterns of chloroplast DNA evolution. Proc Nad Acad Sci USA, 1994, 91:6795-6801
    [124] P.T. Taberlet,L. Gielly,G. Patou,J. Bouvet. Universal primers for amplification of three non-coding regions of chloroplast DNA.Plant Molecular Biology, 1991, 17:1105-1109
    [125] R.J. Bayer,J.R. Start.Tribal phylogeny of the Asteraceae based on two noncoding chloroplast DNA sequence,the trnL intron and trnL-trnF intergenic spacer.Annals of the Missouri Botanical Garden, 1998, 85:242-256
    [126] R.J. Bayer,C.F. Puttock,S. A. Kelchner. Phylogeny of South African Gnaphalieae(Asteraceae)based on two noncoding chloroplast DNA.American Journal of Botany, 2000, 87:259-272
    [127]卢孟柱,谢红丽.利用叶绿体DNA变异研究胡杨系统发育.西北植物学报,2000,20(6):1148-1154
    [128] Milton Groppo, JosE R.Pirani, Maria L.F.Salatino, Silvia R.Blanco, Jacquelyn A.Kallunki. PHYLOGENY OF RUTACEAE BASED ON TWO NONCODING REGIONS FROM CPDNA. American Journal of Botany, 2008, 95(8): 985-1005
    [129] J. Doebley, et a1. Restriction site variation in the chloroplast genome.Genetics, 1987, 7:139-147
    [130] K.J. Systama, et a1.Chloroplast DNA evolution and phylogenetla relationships in Clarkia sect Peripetasma (oliagmceae) Evolutionism,Theoretical and Applied Geneticst, l985,71: 417-429
    [131] B.A. Atchison, et al. Comparisoli of chloroplast DNA by specific fragmemation with EcoRI endoliucicase. Mol Gen Geli,l976, 148:263-269
    [132] Vedcl F. et a1.Specific cleavage of chloroplast DNA from higher plants by EcoR I restriction liucicase. Nature, 1976, 263: 440-441
    [133]王峰,李德铢,杨俊波.基于叶绿体TrnL-F序列和联台数据分析木通科的分子系统发育.植物学报,2002,44(8):971-977
    [134] Banks J. A. et al. Chloroplast DNA diversity is low in Aid plant,.Pmc Natl Acad Sci USA , 1985,82: 6950-6954
    [135] Elizabeth A. Zimmer, Eric H. Roalson, Laurence E. Skog, John K. Boggan, Alexande Idnurm. Phylogenetic relationships in the Gesnerioideae(Gesneriaceae) based on nrdna ITS and cpdna TrnL-F and TrnE-T spacer region sequences.American Journal of Botany, 2002, 89(2): 296–311
    [136] Pia Jarvinen, Anna Palme, Luis Orlando Morales, Mika Lannenpaa, Markku Keinanen, Tuomas Sopanen, Martin Lascoux. Phylogenetic relationships of Betula species(Betulaceae) based on nuclear ADH and chloroplast matk sequences. American Journal of Botany, 2004, 91(11): 1834-1845
    [137] Randall J. Bayer, David J. Mabberley, Cynthia Morton, Cathy H. Miller, Ish K. Sharma, Bernard E. Pfeil, Sarah Rich, Roberta Hitchcock, Steve Sykes. A molecular phylogeny of the Orance Subfamily(Rutaceae: Aurantioideae) using nine cpdna sequences. American Journal of Botany, 2009, 96(3): 668-685
    [138]阮成江,何祯祥,周长芳.植物分子生态学.北京:化学工业出版社, 2005:40
    [139]刘占林,李珊,阎桂琴,朱颐,赵桂仿.华山新麦草自然居群的遗传结构和种内遗传多态性研究.遗传学报,2001,28 (8):769-777
    [140] Parker K C, Hamrick J L. Genetic diversity and clonal structure in a columnar cactus, Lophocereus schotti. American Journal of Botany, 1992, 79: 86-96
    [141] Fager E W. Diversity: a sampling study. The American Nature, 1972, 106: 293-310
    [142] McLetchie D N, Garcia-Ramos G, Crowley P H. The lost ratio dynamics: a model for the dioecious liverwort Marchantia inflexa. Evolutionary Ecology, 2002, 15: 231 -254
    [143] Barret S C H,Shore J S.Isozyme variation in colonizin plants. In: Soltis DE,Soltis PS eds.Isozymes in Plant Biology.Chapman&Hall, Landon, 1989:106-126
    [144] Gray A. The vascular plant pioneers of primary successions: persistence and phenotypic plasticity. In: Miles J, Walton D eds.Primary Succession On Land. Blackwell, Oxford, UK, 1993: 179-191
    [145] Stocklin J, Baumler E.Seed rain, seedling estabhshment and clonal growth strategies on a glacier foreland. Journal of Vegetation Science, 1996, 7: 45-56
    [146] Klimes L, Klimesova J, Hendriks R, van Groenendael J. Clonal plant architectur: a comparative analysis of form and function. In: de Kroon H, van Groenendael J eds. The Ecology and Evolution ofClonal Plant.Backhuys Publishers,Leiden,the Netherlands, 1997: 1-29
    [147] Eriksson O, Bremer B. Genet dynamics of the clonal plant Rubus saxatilis. Journal of Ecology, 1993, 81: 533–542.
    [148] James C., Parks, Charles R., Werth. A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). American Journal of Botany, 1993, 80(5):537-544
    [149] Mclellan A J, Pratid, Kaltz O, et al. Structure and analysis of phenotypic and genetic variation in clonal plants. In: de Kroon H, Van Groenenda J M. The Ecology and Evolution of Clonal Plants. Leiden: Backhuys Publishers, 1997
    [150] Lynch M,Milligan BG. Analysis of population genetic structure witll RAPD markers. Molecular Ecology,1994,3: 91-99
    [151] D.E.Jelinski, W.M.Cheliak. Genetic diversity and spatial subdivision of Populus tremuloides (Salicaceae) in a heterogeneous landscape [J]. American Journal of Botany, 1992,79: 728-736
    [152]葛颂,洪德元.生物多样性研究理论和方法.北京:中国科学技术出版社. 1994
    [153] Yeh FC,Yang RC,Boyle T,Ye Z H,Mao JX. POPGENE,the User-friendly Shareware for Population Genetic Analysis . Molecular Biology and Biotechnology Centre , University of Alberta,Edmonton,Canada, 1997
    [154] Rohlf F J. NTSYS-PC Version 2.10. Applied Biostatistics lnc. , New York, 1994
    [155] Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 2004, 13:1143-1155
    [156] Hamrick J L, WGodt M J, Sherman-Broyles S L. Factors influencing genetic diversity in woody plant species. New Forests, 1992, (6): 95-024
    [157] Hamrick J L, Godt M J W. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London, Series B, 1996, 35(1):1291-1298
    [158]葛颂.同工酶与林木群体遗传变异研究.南京林业大学学报,1988,1:68-77
    [159]邹喻苹,葛颂,王晓东.系统与进化植物学的分子标记.北京:科学出版社, 2001
    [160] Slatkin M. Gene flow in natural populations. Annual Review of Ecology and Systematics, 1985, 16: 393-430
    [161]张文蘅,陈之端,陈虎彪,汤彦承.从叶绿体DNA trnL-F序列论双参属的归属问题.植物分类学报,2001,39(4):337-344
    [162]李春香,陆树刚,杨群.滇南桫椤的系统位置:来自叶绿体trnL内含子和DNA trnL-F间隔区序列的证据.云南植物研究,20O426(5):519-523
    [163]侯鑫,刘俊娥,赵一之,赵利清.基于ITS序列和trnL-F序列探讨小叶锦鸡儿、中间锦鸡儿和柠条锦鸡儿的种间关系.植物分类学报,2006,44 (2):26–134
    [164]于文光,樊守金,许崇梅等.基于叶绿体trnL-F序列以及matK序列探讨虎杖属与西伯利亚蓼的系统学位置.植物分类学报,2008,46(5):676–681
    [165]李春香,陆树刚.云南铁角蕨与泸山铁角蕨的关系:来自叶绿体rbcL、trnL-F和rps4-trnS序列的证据.植物分类学报,2006,44(3):296-303
    [166]王铁娟,韩国栋,柴兆芳.蒿属叶绿体DNA trnL-F的序列分析与系统发育的意义.内蒙古大学学报(自然科学版),2007,38(6):665-671
    [167]苏应娟,王艇,陈国培等.基于trnL-F序列数据利用贝叶斯法推测罗汉松科的系统发育.中山大学学报(自然科学版),2004,43(6):32-36
    [168]赵惠恩,汪小全,陈俊愉,洪德元.基于核糖体DNA的ITS序列和叶绿体trn T- trn L及trn L - trn F基因间区的菊花起源与中国菊属植物分子系统学研究.分子植物育种,2003,1( 5/6): 597-604
    [169] ZHUGE Qiang, DING Yu-long, XU Chen, ZOU Hui-yu1, HUANG Min-ren, WANG Ming-xiu. A preliminary analysis of phylogenetic relationships of Arundinaria and related genera based on nucleotide sequences of nrDNA (ITS region) and cpDNA (trnL-F intergenic spacer). Journal of Forestry Research. 2005, 16(1): 5-8
    [170]韩荣兰,郝刚,张奠湘.基于叶绿体DNA trnL内含子序列数据的檀香目科间系统发育关系的研究.热带亚热带植物学报,2004,12(5):393-398
    [171] WANG Feng, LI De-Zhu, YANG Jun-Bo. Molecular Phylogeny of the Lardizabalaceae Based on TrnL-F Sequences and Combined Chloroplast Data. Acta Botanica Sinica. 2002,44 (8): 971-977
    [172] LI Rui-Qi, CHEN Zhi-Duan, HONG Ya-Ping,I An-Ming. Phylogenetic Relationships of the“Higher”Hamamelids Based on Chloroplast trnL-F Sequences.Acta Botanica Sinica 2002,44(12):1462-1468
    [173]王玉金,刘建全.利用叶绿体DNA trn L-F序列初步探讨菊科风毛菊属的系统发育.植物分类学报,2004,42(2):136-153
    [174]王玛丽,陈之端,张宪春,陆树刚,赵桂仿.蹄盖蕨科的系统发育:叶绿体DNA trn L- F区序列证据.植物分类学报,2003,41(5):416-426
    [175]李春香,陆树刚.中国观音座莲植物的系统发育和起源时间:来自叶绿体rbcL和trn L-F序列的证据.科学通报,2006,51(23):2761-2766
    [176]王艇,苏应娟,郑博,李雪雁,陈国培,曾庆璐.中国桫椤科植物叶绿体trn L内含子和trn L-trn F基因间隔区序列的系统发育分析.热带亚热带植物学报,2003,11(2):137-142
    [177]李春香,陆树刚.云南铁角蕨与泸山铁角蕨的关系:来自叶绿体rbcL、trnL-F和rps4-trnS序列的证据.植物分类学报,2006,44(3):296-303
    [178] Dnoald J., Padegett, Donald H. Les, Carrette. Phylogenetic Relationships in Nuphar (Nymphaea): Evidence from Morphology, Chloroplast DNA, and Nuclear Ribosomal DNA. American Journal of Botany, 1999, 86(9): 1316-1324
    [179]牟少华,孙振元,韩蕾,彭镇华.不同种源马蔺的叶绿体DNA变异研究.核农学报.2005,19(6): 469-473
    [180] Liu JQ, Gao TG, Chen ZD, Lu AM. Molecular phylogeny and biogeography of the Qinghai-Tibetan Plateau endemic Nannoglottis (Asteraceae). Molecular Phylogenetics and Evolution, 2002, 23: 307-325
    [181] Liu JQ, Wang YJ, Wang AL, Hideaki O, Abbott RJ. Radiation and diversification within the Ligularia–Cremanthodium–Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Molecular Phylogenetics and Evolution. 2006, 38: 31-49
    [182] Wang A L, Yang M H, Liu J Q. Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. Annals of Botany, 2005, 96:489-498.
    [183] Wang Y J, Liu J Q, Miehe G. Phylogenetic origins of the Himalayan endemic Dolomiaea, Diplazoptilon and Xanthopappus (Asteraceae: Cardueae) based on three DNA regions. Annals of Botany, 2007, 98:182-196
    [184]李欣,刘占林,王祎玲,李思锋,赵桂仿.基于叶绿体DNA序列分析东亚七筋姑的遗传进化.西北植物学报,2008,28(6):1112-1117
    [185]赵卫国,张志芳,潘一乐等.桑树trnL-trnF基因间隔区序列的特点及分析.蚕业科学,2002,28(2):83-86
    [186] Lu S Y,Hong K H,Liu S L,et a1.Genetic variation and population differentiation of Michelia for Fllosana (Magnoliaceae)based on cpDNA variation and RAPD fingerprints:relevance to post - Pleistocene recolonization.Journal of Plant Research, 2002, l1 (5):203-216
    [187] Clegg MT, Gaut BS, Learn GH, Monton BR. Rates and patterns of chloroplast DNA evolution. Proceedings of the National Academy of Sciences, USA. 1994, 91: 6795–6801.
    [188]孟丽华,杨慧玲,吴桂丽,王玉金.基于叶绿体DNA trnL-F序列研究肋果沙棘的谱系地理学.植物分类学报,2008,46(1):32-40
    [189]张茜,杨瑞,王钦,刘建全.基于叶绿体DNA trnT-trnF序列研究祁连圆柏的谱系地理学.植物分类学报,2005,43(6):503-512
    [190] Soltis D E, Soltis P S, B G Milligan. Intraspecific chloroplast DNA variation systematic and phylogenetic implications. Molecular Systematics of Plants. New York, Chapman and Hall.1992, 117-150
    [191] TABERLET P. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Boilogy.1991, 17(5):1052-1091
    [192] CHEN J, TAUER C G, HUANG Y. Paternal chloroplast inheritance pattern in pine hybrids detected with trnL-trnF intergenic region polymorphism. Theoretical and Applied Genetics.2002,104 (8): 1307-1311
    [193] Taberlet P, Gelly L, Pautou G et al. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17: 1105-1109
    [194] Hall T A.BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nuc1.Acids.Syrup.Ser.,1999,41:95- 98
    [195] Rozas J,Rozas R.DNASP version 3.0:an integrated program for molecular population genetics and molecular evolution genetic analysis.Bioinformatics,l999,15: 174-l75
    [196] Felsenstein J.PHYLIP (Phylogeny Inference Package) Version 3.57.Computer program. Universityof Washington.l995
    [197] Tremblay N O, Schoen D J. Molecular phylogeography of Dryas integrifolia: glacial refugia and postglacial recolonization. Molecular Ecology. 1999, 8: 1187–1198
    [198] Excoffier L, Laval G, Schneider S. ARLEQUIN (version3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online.2005,1: 47–50
    [199]曾建,张利,凡星,张春,张海琴,周永红.仲彬草属植物ITS序列PCR产物直接测序与克隆测序比较分析.四川农业大学学报,2006,24(4):369-373
    [200] Chiang T Y , Schaal B A.Phylogeography of ten North American Hylocomimn splendens based on nrDNA ITS sequences.Mol. Ecol., l999, 8: 1037-l042
    [201] Petit R J,Pineau E,Demesure B,et a1.Chloroplast DNA footprints of postglacial recolonization by oaks.Proc. Natl. Acad. Sci. USA, l997, 94: 9996-10001
    [202] Demesure B,Comps B. Petit R J.Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. Evolution, l996, 50: 25l5-2520
    [203]史全良,诸葛强,黄敏仁等.用ITS序列研究杨属各组之间的系统发育关系.植物学报, 2001,43(3): 323-325
    [204]刘克凤.叶绿体DNA在植物种内的变异及其在植物地理学上的应用.生物学杂志,1996,70(20) 12-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700