温排水对象山港浮游生态系统的影响及其围隔实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电厂温排水对海洋生态系统的影响是目前海洋环境科学与海洋管理的重要问题之一,所以电厂温排水对受纳海域生态系统的影响逐渐引起重视。电厂温排水导致受纳海域环境的变化,进而影响到海洋生态系统的基本结构和功能。电厂温排水对海洋生态系统的影响主要是水体温度的升高。为了定量评价电厂温排水造成的生态损失、维持生态系统的健康水准和受损海洋生态系统的重建提供科学依据,探索电厂温排水对浮游生态系统结构和功能的损害机理。在科技部海洋公益性行业科研专项资金项目-滨海电厂污染损害监测评估及生态补偿技术研究的资助下,本文以浙江省象山港宁海国华电厂附近海域为例,通过室内模拟实验和调查监测,并利用围隔实验生态学的方法研究浮游生态系统对温排水的响应。比较分析浮游生态系统结构和功能参数的变化,评价该电厂附近海域浮游生态系统的健康状况,深入探讨海洋浮游生态系统对电厂温排水的响应过程和机制。
     本文的主要研究内容和结果是:
     1、通过室内热模拟实验,在理想条件下研究了水体温度升高对象山港浮游生物优势种中肋骨条藻、琼氏圆筛藻和太平洋纺锤水蚤的生长速率和死亡率等影响,分析探讨了优势种对水体温度升高的响应机制。发现象山港浮游生物优势种中肋骨条藻和琼氏圆筛藻的最适生长温度为分别为26℃和27℃。太平洋纺锤水蚤在水温33℃的热冲击下,死亡率高达80%。
     2、在现场的条件下,利用围隔实验生态学的方法研究海洋浮游生态系统对温排水的响应。比较浮游生态系统结构和功能参数的变化,分析电厂温排水对围隔中的浮游生态系统的生产者浮游植物、初级消费者浮游动物和分解者细菌的损害程度。
     (1)在25.20~26.40℃范围内,0.25℃的温升对围隔中各个粒径浮游生物的生物量,呼吸率和初级生产率的影响均不明显。
     (2)在25.20~26.40℃范围内,0.52℃的温升对围隔中小型和微型浮游生物的呼吸率和初级生产率均有一定的促进作用,但对其生物量的影响均不明显,对微微型浮游生物的生物量,呼吸率和初级生产率的影响都不明显。
     (3)在25.20~26.40℃范围内,0.52℃的温升使得围隔中浮游生态系统的TPP/TR(总初级生产量与总呼吸量的比值)和周转率分别提高了1.2倍和1.5倍,即提高该浮游生态系统的成熟度和代谢速率。
     3、现场综合调查监测研究宁海国华电厂象山港海域环境和资源的变动情况以及影响因子,对电厂温排水引起的生态结构变化的程度、影响范围和趋势性影响做出分析和评价。结果表明,离电厂越近的站点浮游生物的种类、生物量、香浓多样性指数越低,即是电厂温排水在一定程度上降低了浮游生物群落的多样性和生物量,甚至使得某些种类消失。温排水对浮游生态系统的影响程度的总体趋势为M1比M2显著。
     4、围隔生态实验和现场调查监测对浮游生态系统的结构和功能参数总体趋势分别是促进和抑制,表明这两区域之间的温度分布场存在一个浮游生态系统最适温度值。在后续研究中,需要结合温度分布和余氯分布来分析该现象。
     5、为定量评价电厂温排水造成的生态损失、维持生态系统的健康水准和受损海洋生态系统的重建提供科学依据,探索电厂温排水对浮游生态系统结构和功能的损害机理。
Affects of thermal effluent from power plant on the marine ecosystem is one of the important issues of the marine environmental science and marine management. Therefore, it was gradually attracted people's attention. The marine environment of around the sea area was changed by thermal effluent from power plant, then, the basic structure and function of the marine ecosystem was affected. There mainly is elevation of water temperature. In order to quantitatively evaluate the ecological damage caused by thermal effluent from power plant to maintain ecosystem health standards and the reconstruction of damaged marine ecosystems provide a scientific basis, then explore damage mechanism of the effect of thermal effluent from power plant on structure and function of the planktonic ecosystem. Under the funding of Marine Scientific Research Ministry of Science and Industry in the special fund for public welfare projects - monitoring and evaluation of coastal power plant pollution and ecological damage compensation technology, in this paper, take example of around the sea area of Ninghai Guohua power plants in Xiang Shan Bay in Zhejiang province, investigation through laboratory simulation and monitoring f by mesocosm experiments of pelagic ecology of ecosystem response to the thermal effluent from power plant. Comparative analysis parameter changes of structure and function of planktonic ecosystem. Establish biomass spectrum of plankton in Xiang Shan Bay, and evaluate health of pelagic ecosystem around the power plant by using method of indicators of the structure and function. Explore the response of marine planktonic ecosystem processes and mechanisms.
     The main research contents and results as follows:
     1.Through thermal simulation experiments under ideal conditions, the effect of elevation of water temperature on the Growth rate and mortality of Skeletonema costatum and Coscinodiscus jonesianus was studied. The response mechanism of the dominant species on the elevation of water temperature was analyzed. The result showed that optimum growth temperature of Skeletonema costatum and Coscinodiscus jonesianus are 26℃a nd 27℃.In the thermal shock of 33℃, the mortality rate of Acartia pacifica steuer as high as 80%.
     2.In the field conditions, response of marine planktonic ecosystem to thermal was studied by the method of mesocosm experimental. Comparison of parameter changes of structure and function of planktonic ecosystem, analysis level of damage of the producers of phytoplankton, the primary consumers of zooplankton and bacterial decomposition of planktonic ecosystem in the enclosure to thermal from power plant.
     (1)In the range of 25.20 ~ 26.40℃, effects of 0.25℃warming on the B, R and P of all plankton were not obvious, 0.52℃warming can elevate the R,P of microplankton and Nano-phytoplankton.
     (2) In the range of 25.20 ~ 26.40℃, effects of 0.52℃warming on the B, R and P of picoplankton were not obvious. (3) In the range of 25.20 ~ 26.40℃, The TPP/TR and turnover rate in the planktonic ecosystem were increased of 1.2 times and 1.5 times, separately..
     3.Comprehensive survey and monitoring of site power plant in Xiang Shan Bay Ninghai Guohua changes in the environment and resources and the impact factor of thermal from power plant caused by changes in ecological structure of the degree of scope and trend analysis and assessment of impact. The results showed that the more power from the power plant site near the type of plankton, biomass, Shannon diversity index, the lower, that is, the thermal effluent from power plant to some extent reduce the plankton community diversity and biomass, Even make certain species disappear.The overall trend of thermal effluent on planktonic ecosystems is the M1 over M2.
     4.Mesocosm experiments and field ecological survey and monitoring of the pelagic ecosystem structure and function parameters and the overall trend is promote and suppression, respectively, indicating that there is a field optimum temperature of planktonic ecosystem in the temperature distribution between the two regions. In the follow-up study, requires a combination of temperature distribution and the distribution of chlorine to analyze the phenomenon.
     5. Thermal from power plant in the quantitative evaluation of the ecological damage caused to maintain ecosystem health standards and the reconstruction of damaged marine ecosystems provide a scientific basis to explore the thermal from power plant on the planktonic ecosystem structure and function of the damage mechanism.
引文
[1] TSUCHIDA S. The relationship between upper temperature tolerance and final preferendum of Japanese marine fish.[ J]. Journal of Thermal Biology,1995,20 (1-2): 35-41.
    [2] Winter J V,Conner D A.Power Plant Siting.Van Nostand Reinhold Encironmental Engieering Series.Litton Educational Puvlishing,Inc.,New York,1978:61-81
    [3]胡文翔.象山港环境监测总结评价[J].海洋环境科学,1995,14(4):57-63
    [4] Li G.Different Types of Ecosystem Experiments [A].In: LALLI C M. Enclosed Experimental Marine Ecosystems: A Review and Recommendations [C].London:Springer-Verlag,1990.7-19.
    [5] Strickland J D H and Terhune L D B.The study of in situ marine photosunthesis using a large plastic bag.Limnology and Oceanography,1961,6:93-96
    [6] Harrison P.J.The manipulation of physical chemical and biological factors to select species from natural phytoplankton communities. In:Grice H.and Reeve J.eds.Marine Mesocosms,Springer-Verlag,New York,1982,275-289
    [7]Wong C.S.ed.Marine ecosystem enclosed experiments.Proceedings of a symposium held in Bejing,P R China,9-14
    [8] Harada S,Tatanabe M.,Kohata K.,etal.1996.Analysis of planktonic mesocosm ecosystem structure in coastal seas using large-scale strified mesocosm:A new approach to understanding the effects of physical,biochemical and ecological factors on phytoplankton species succession.Water Science Technology 34:219-226
    [9] YANG D F ,GAO Z H,CHEN Y, et al. Influence of seawater temperature on phytoplankton growth in Jiaozhou Bay,China[J]. Chinese Journal of Oceanology and Limnology,2004,22(2):166-175.
    [10] PANE L,FRANCESCHI E,DE NUCCIO L. Applications of thermal analysis on the marine phytoplankton,Tetraselmis suecica[J]. Journal of Thermal Analysis and Calorimetry,2001,66(1):145-154.
    [11] BAI J,ZHANG H F,Li K R,et al. Limiting factors of biomass and production of marine heterotrophic bacterioplankton [J].Periodical of Ocean University of China,2004,34(4):594-602.
    [12] KIRCHMAN D L,JAMES H R,RICHARD T B. Biomass and biomass production of marine heterotrophic bacteria along 140℃W in the equatorial Pacific:Effect of temperature on the microbial loop[J]. Deep Sea Res,1995,42(2-3):603-619.
    [13]杨东方,高振会,王培刚,等.营养盐Si和水温影响浮游植物的机制[J].海洋环境科学,2006,25(1):1-6.
    [14]周伟华,王汉奎,董俊德,等.三亚湾秋、冬季浮游植物和细菌的生物量分布特征及其环境因子的关系[J].生态学报,2006,26(8):2634-2639.
    [15]刘光兴,张志南.胶州湾北部浮游动物的生物量和生产力[J].青岛海洋大学学报,2000,30(2):58-64.
    [16]霍文毅,俞志明.胶州湾中肋骨条藻赤潮与环境因子的关系[J].海洋与湖沼,2001,32(3):311-1、318
    [17]王金辉.长江口邻近水域的赤潮生物[J].海洋环境科学,2002,21(2):37-41
    [18]苏惠美,雷淇祥.温度、光照度及盐度对中肋骨条藻生长率之影响[J].台湾水产学会刊,1990,17(3):213-222.
    [19] MZC2(Marine Zooplankton Colloquium2).Future marine zooplankton research-a perspective[J].Marine Ecology Progress Series,2001,222:297-308.
    [20] Longhurst A R.The structure and evolution of plankton communities[J]Progress in oceanography,1985,15(1):1-35.
    [21] Portner H O.Climate change and temperature-depenDent biogeography:oxygen limitation of thermal tolerance in animals[J].Naturwissenschafien,2001,88(4):137-146.
    [22] Portner H O.Climate change and the physiological basis of temperature depenDentbiogeography:systemic to molecular hierarchy of thermal tolerance in animals[J]Comparative Biochemistry and Physiology-Part A : Molecular &Integrative Physiology,2002,132(4):739-761.
    [23] Raymont J E G The Respiration of Some Planktonic Copepods.III.The Oxygen Requirements ofSome American Species[J].Limnology and Oceanography,1959 (4):479--491.
    [24] Hoffmeyer M S,Bianealana F,Berasategui A.Impact ofa powerplant cooling system on copepod and mesoplankton survival[J].Iheringia.Serie Zoologia,2005,95(3):31 l-318.
    [25]金琼贝,盛连喜,张然.温度对浮游动物群落的影响[J].东北师范大学学报(自然科学版),199l,(4):103-111.
    [26] GB/T 12763.6-2007,海洋调查规范海洋生物调查[S].北京:中国标准出版社,2007.
    [27] HARRIS G P. Picoplankton Ecology,Function and Fluctuations[J]. Chpman and Hall,London,UK,1986,221-235.
    [28] WILLIAMS. Microbial contribution to overall marine plankton metabolism:direct measurements of respiration[J]. Oceanologica Acta,1981,4:359-364.
    [29] SCHROEDER GL .Autotrophic and heterotrophic production of microorganisms in intensely-manured fish ponds and related fish yields[J]. Aquaculture.1978,14:303-325.
    [30]SHANNON C E,WEAVER W.The mathe matical theory of communication[M].Urbana IL:University of Illinois Press.1949.
    [31]PIELOU E C.An introduction to Mathematical Ecology[M].New York:Wiley-Interscience,1969.
    [32]MARGALEF R.Information theory in ecology[J].International Journal of General Systems,1985,3:36-71.
    [33]赵文,李晓东,徐纪军.轮虫培育池不同粒级藻类对浮游植物生物量和生产量的贡献[J].水产学报,2004,28(2):167-174.
    [34]IKEDA T. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature[J] Marine Biology,1985,85:1-11.
    [35] ODUM E P.The strategy of ecosystem development.Science,1969,104:262-270.
    [36]陈尚,朱明远等,2000,磷富营养化对长江口海洋浮游生态系统影响的围隔实验研究,海洋学报,22: 272-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700