深部岩溶隧道溃水成灾机理及其工程处治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶灾害是我国山区隧道建设中常见的地质灾害之一,也是目前工程界公认的世界级难题之一。本文在大量文献调研的基础上,采用试验研究、理论分析和数值模拟等相结合的研究方法,结合宜万铁路马鹿箐隧道岩溶溃水的工程实际,对深部高压富水隐伏岩溶隧道溃水的基本概念、特征规律、形成机理、风险控制及综合整治等方面进行了较为系统和深入的研究。论文主要研究内容和成果如下:
     ①通过对马鹿箐隧道历次突涌水情况及其特征分析,将大体量且有一定静储量的高压岩溶水在隧道内以流体(伴随有泥、巨石)高速运移形式瞬间释放的涌水定义为岩溶溃水;基于马鹿箐隧道历次溃水事故的分析,得到岩溶溃水的基本特征,且界定了岩溶溃水的范围值。
     ②结合马鹿箐隧道溃水灾害的基本特征,深入分析了深部岩溶隧道溃水发生的概率和危害程度与区域岩溶发育规模、单体溶腔的岩溶发育规模、地下水循环分带、地下水排泄与补给、溶腔填充物、岩溶形态与隧道的空间关系等因素的关系;揭示了诱发溃水的岩溶地质规律,提出了深部岩溶隧道溃水灾害的地质成因。在此基础上,进一步提出了岩溶溃水高风险的隧道建设时应特别关注的地质因素及其预报和评估方法。
     ③对隧道岩溶溃水力学机制和临近通过岩溶时隧道围岩稳定性进行了深入分析,在此基础上,对穿越填充型溶腔的隧道围岩稳定性进行了数值模拟研究。揭示了溶腔沉积层厚度、隧道开挖宽度和溶腔水压力等对岩溶隧道围岩稳定和溃水风险的影响规律。
     ④对导致隧道溃水发生的各种风险因素进行识别,构建了能够较全面反映具有溃水风险的隧道安全性评价指标体系,然后通过专家调查,建立参评因子的判断矩阵及各级权重比较矩阵,并求得各因子的权重值。基于模糊数学理论建立具有溃水风险的隧道安全性评价模型及安全综合评价的评判标准,通过对马鹿箐隧道岩溶溃水灾害的风险评判,检验了评价所建模型合理性。
     ⑤针对如何降低岩溶隧道溃水风险的问题,提出了泄水消能工法作为治理特大体量高压富水充填型隐伏溶腔的技术体系,通过管道泄水和洞室泄水的工程试验研究,得到合理的泄水消能的工程方法。并在马鹿箐隧道溃水灾害综合治理中得到成功应用。
Karst is one of the common geological hazards in the construction of mountain tunnel in China, and is also generally acknowledged one of the world-wide problems in domestic and international project. Based on the data collection and extensive literature study, the researches carried out in this paper will use a combination method including testing research, theoretical analysis and numerical simulation, and according to the supper karst water burst of Maluqing Tunnel in Yi Wan Railway, researches include properties、formation mechanism、risk control and comprehensive treatment of super karst water bursting in deeply buried and concealed karst caverns with high pressure and rich water are carried out systematically and deeply. The main contents and results of researches in this paper are as follow:
     Through analyzing the situation and characteristics of all previous water bursting in Maluqing Tunnel, a special water burst accoMPanied with high pressure water burst、earth burst and rock burst is defined as super karst water burst; Based on the analysis of super karst water burst disaster, the basic properties of super karst water burst are obtained, and the range of it is defined.
     ②According to the analysis of basic properties of super karst water burst in Maluqing Tunnel, the relationship between probabilities, degree of the supper karst water burst of deeply buried tunnel and the scale of karst water that includes scale of regional karst、scale of karst in signal cavern, zonation of groundwater circulation、groundwater discharge and recharge、deposit in the cavern、the relation between karst morphology and space tunnel is studied systematically and deeply; Law of karst geology that induces super karst water burst and geological original of super karst water burst in deeply buried tunnel are presented. On this basis, the geology factors and forecasting and assessment methods of it which need to be attended specially with the construction of super karst water burst tunnel are presented too.
     ③Through analyzing the mechanical mechanism of super karst water burst and surrounding rock stability of the tunnel when passing cavern closely, simulation for surrounding rock stability of the tunnel passing filling cavern closely is carried out, which reveals the iMPact law of thickness of deposit in the cavern、width of the tunnel and water pressure of the cavern on the surrounding rock stability of karst tunnel and super karst water burst risk.
     ④Through indentifying the risk factors that led to super karst water burst, the safety evaluation index system for the tunnel with super karst water burst risk is established, and what’s more, based on the expert survey, the judge matrix of factors involved in the evaluation and coMParison matrix of each level weight are established, and the weights of each factors is obtained. Based on the fuzzy mathematics theory, safety evaluation model and criteria of comprehensive safety evaluation for the tunnel with super karst water burst is presented, and through assessing the risk of super karst water burst disaster in Maluqing Tunnel, it is indicated that the evaluation model for it is reasonable.
     ⑤For the problem how to reduce the risk of supper karst water burst in tunnel, a technology system—hydraulic energy technology, which is the treatment technology for concealed karst cavern with high pressure and deposit is presented, and the technology that contains water release test、analysis on the cavern、interface locking、drainage system planning、special controlled blasting、forecasting monitoring and the supporting measures is applied in the comprehensive disaster management of super karst water burst in Maluqing Tunnel successfully.
引文
[1]高新强.高水压山岭随道衬砌水压力分布规律研究[D].成都:西南交通大学,2005.
    [2]金美海.高速铁路隧道穿越富水大断层施工灾害控制研究[D].重庆:重庆交通大学,2008.
    [3]李付法.锦屏水电站辅助洞突水、突泥机理及预测预报研究[D].成都:西南交通大学,2006.
    [4] AfredBogli,1980,KarsthydrologyandPhysiealsPrleology,Newyork.
    [5] AleottiP.,ChowdhuryR.,1999,Landslide hazard assessment: summary review and new Perspectives. BullEngGeolEnv, 58:21-44.
    [6] BauM,UsuiA,PraeejusB,et.,1998,Geoehemistry of Low-Tem-PeratureM/ater-Roek Interaetion: Evideneefrom Natural water,Andesite,and Iron-Oxyhydroxide PreeiPitates at Nishiki-NumaIron-SPring,Hokkaido,JaPan[J]. ChemicalGeology,151,293-307.
    [7] Bernard A.T.Th.De PutterL.Andre’and other, 2002,Trace element(Th,U,Pb,REE) behaviour in a cryPtokarstic halloysite and kaolinite deposit from Southern Beigium: importance of“accessory”mineral formation for radioaetive Pollutant trapping[J],Applied Geoehemistr, Volume:17, lssue:10(10).
    [8] ConnorJ.Haugh,2001,hydrogeology and ground-water flow simulation of a karst ground water basin in the Valley and Ridge Physiographic Province near Hixson,Tennessee, geological survey karst interest group proeeedings[J]. Water-resourees investigations report.01-4011.
    [9] Dreybrodt W.,1990,The role of dissolution kinetics in the development of karst aquifers in the limestone: A model simulation of karst evolution[J].Geology.,98(5).
    [10] DreybrodtW.,1996,Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models[J].Water Resources Research,32(9).
    [11] Dreybrodt W.,1992,Dynamics Of Karstifieation: A Model Applied To Hydraulic Struetures In Karst Terranes [J],Hydrogeology Journal,Volume:l,Issue:3(-1).
    [12] F.Magri,U.Bayer,C.Jahnke et.,2003,Deep reaching fluid-flow in the cebtral European basin system [J].Geophysical Research Abstracts,(5).
    [13] Geog Kaufmann,JeanBraun,1999,Karst aquifer evolution in fraetured rocks[J].Water Resources Researeh,35(11).
    [14] GuptaSK,CRCole,GFPinder,1984,A finite-elementthree-dimensional groundwater modelfor a multiaquifer system[J].Water Resources Researeh,20(5):553-563.
    [15] Hanshow B B,Back W.,1979,Major Geoechemical Proeesses in the Evolution of Carbonate Aquifer Systems[J].Hydrol.,(43):287~312.
    [16] Hanshow B B,Back w.and Deike R.G.,1971,A geochemical hypothesis for dolomitization by groundwater,[J].Eeon.Geol,(66):710-724.
    [17] James N.R,Choquette PW.,1988,Paleokarst[M], Springer-Verlag,New York.
    [18] Levieh V.G.,1962, Phsiochemical hydrodynamics [J].Prentice-Hall,N.J.,700.
    [19] Makendry J.E.et. , 1993 , The role of geography in extending biodilversity grap analysis.[J]Appl,Geogr,13(2):89-96.
    [20] Neuman,S.P.,1973,Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision proeess under uncertainy [J],Water Resource Research,9(4):1006-1021.
    [21] ZhouW.,2001, Numerical simulatione of two-phase flow in Conceptualized fractures, Environmental Geolog 40(7):797-808.
    [22] YuanDaoxian,1997, Sensitivity of karst proeess to environmental change along the PEPⅡ[J],Quaternary International,(37).
    [23] Wu Jianfeng,ZhuXueyu,ljuJianl,1999i,Using genetic algorithm based simulated annealing penalty function to solve groundwater management model[J].SCIENCEIN CHINA(seriesE),42(5):521-529.
    [24] Wolfgang Dreybrodt,1988, Proeesses in karst systems[M].Springer-Verlag Berlin Herdelberg NewYork.
    [25] William White B.,2003,conceptual models for karstic aquifers[J].speleogenesis and environment of karst aquifers,1(l).
    [26] Willam W-G,Yeh.,1986,Review of parameter identification proeedures in groundwater hydrology:the inverse problem[J]. Water Resource Research,22(2):95-108.
    [27] White,1977,Conceptual models for carbonate aquifers:r evisited.In:Dilamarter,R..and Csallany,S.C.(Eds.):Hydrologic Problems in Karst Terrains[J].Western Kentueky UniVersity, Bowling Green,KY,W.B,176-187.
    [28] White,1969, Conceptual rnodels forlimestone aquifers:Groundwater,W.B.,7(3):15-21.
    [29]刘高飞.渝怀铁路隧道岩溶治理技术方法研究[D].成都:西南交通大学,2007.
    [30]金新锋.宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D].北京:中国地质科学院,2007.
    [31] Randall C.Orndorff,David J.Weary,Stanka Sebela,geologic framework of the ozarka of south-central Missouri—contributions to a conceptual model of karst,geological survey karstinterest group proceedings,water-resources investigations report 01-4011,2001.
    [32] F.Gabrovsck,W.Dreybrodt,a model of the early evolution of karst aquifers in limestone in the dimensions of length and depth,Journal of hydrology,240 (2001):206~224.
    [33] Michael zhiqiang yang,efic c.drum,stability evaluation for the siting of municipal landfills in karst,Engineering geology,65(2002):185-195.
    [34] M.Hauns,P.Y.Jeannian,O.Atteia,dispersion,retardation and scale effect in tracer breakthrough curves in karst conduits,Journal of hydrology,241(2001):177~193.
    [35] Chris Grove,Joe Meiman,Joel Despain,Liu Zaihua,Yuan Daoxian,karst aquifers as atmospheric carbon sinks:an evolving global network of research sites,us geological survey karst interest group proceedings,Shepherdstown,west Virginia,August,20~22,2002.
    [36] Rudolf Liedl,Martin Sauter,Dirk Huckinghaus,Torstern Clemens,Georg Teutsch,simulation fo the development of karst aquifers using a coupled continuum pipe flow model,Water Resources Research,2003(3).
    [37] Philipp Hauselmann,Pierre–Yves Jeannin,Thomas Bitterli,Relationships between karst and tectonics:case–study of the cave system north of Lake Thun (Bern,Switzerland),Geodinamica ACTA 12(1999).
    [38] L.Plan , K.Decker , R.Faber , attributed sinks–a GIS–tool quantifying morphological vulnerability parameters in karstic catchment area,geophysical research abstract,10280,2003(vol5),European geophysical society 2003.
    [39] Pascal Fenart,N.N.Cat,Claude Drogue,Doan Van Canh,Sverin Pistre,influence of tectonics and neotectonics on the morphogenesis of the peak karst of Halong Bay,Vietnam,Geodinamica Acta(Paris),1999.12:3~4.
    [40] Randall C.Orndofff, George E.Harlow, hydrogeologic framework of the northern Shenandoah valley carbonate aquifer system, us geological survey karts interest group proceedings,Shepherdstown, west Virginia, August, 20~22, 2002.
    [41] Richard W.Harrison,Wayne L.Newell,Mehmet Necder,structure and genesis karstification along an active fault zone in Cyprus,us geological survey karst interest group proceedings,Shepherdstown,west Virginia,August,24~26,2002.
    [42]何发量,李苍松,陈成宗.岩溶地区长大隧道涌水灾害预测预报技术[J].水文地质工程地质,2001(5):63-68.
    [43]易志雄.醴陵市区岩溶发育规律与岩溶地基工程分类[J].湖南地质,1998(2):21-26.
    [44]王建秀,杨立中,何静.岩溶塌陷演化过程中的水-土-岩相互作用分析[J].西南交通大学学报,2001(3):54-59.
    [45]徐复兴,曾克峰.岩溶地区洞穴堆积物研究[J].云南水力发电,2000(4):47-53.
    [46] Randalle.orndorff, DavidJ.weary, StankaSebela, geologic framework ofthe ozarka of south-entral Missouri-contributions to a conceptual model of karst, geological survey karstinterest group proeeedings, water-resources investigations report 01-4011, 2001.
    [47]巫锡勇,王鹰,罗健.侵蚀性环境水形成与地下水运动特征的关系研究[J].铁道学报,1998(4):23-27.
    [48]陈成宗,何发亮.大瑶山隧道九号断层的特性与工程对策[J].岩石力学与工程学报,1992(1):67-73.
    [49]谢树庸.岩溶区四大工程地质问题综述[J].贵州水力发电,2001(4):21-27.
    [50]邹成杰,光耀华等.水利水电岩溶工程地质[M].北京:水利水电出版社,1994.
    [51]任美愕等.岩溶学概论[M].商务印刷社,1983.
    [52]王建秀,杨立中,何静.大型地下工程岩溶涌(突)水模式的水文地质分析及其工程应用[J].水文地质工程地质,2001(4):43-49.
    [53]张清,田盛丰等.隧道及地下工程岩溶危害预报的专家系统[J].岩石力学与工程学报.1992,11(3):85-90.
    [54]卢文喜,地下水运动数值模拟过程中边界条件问题探讨[J].水利学报,2003. (3):33-36
    [55]曹玉清,胡宽容.岩溶化学环境水文地质[M].长春:吉林大学出版社.1994.
    [56]何发亮,李苍松,陈成宗.岩溶地区长大隧道涌水灾害预测预报技术[J].水文地质工程地质.2001, 5:34-39.
    [57]陈成宗,何发亮.隧道工程地质与声波探测技术[M].成都:西南交通大学出版社,2004
    [58]赵明阶,徐容,许锡宾.岩溶区全断面开挖隧道围岩变形特性模拟[J].同济大学学报(自然科学版).2004,32(6):710-715.
    [59]盛建龙,涂成立.复杂岩溶地质条件下的隧道施工及地质预测方法[J].矿山压力与顶板管理.2002, 3:25-29
    [60]吴梦军,许锡宾,刘绪华,敖建华.岩溶对公路隧道围岩稳定性的影响研究[J].地下空间.2003,23(1):59-62.
    [61]吴梦军.隧底岩溶对围岩稳定性影响的数值模拟研究.2004年岩溶地区隧道修筑技术专题研讨会[M].人民交通出版社.2004,10.
    [62]韩行瑞,白山云等.我国典型岩溶隧道突水分析及专家评判系统的探讨,2004年岩溶地区隧道修筑技术专题研讨会[M].人民交通出版社.2004,10.
    [63]黄书汉,钱孝星.岩溶地下水研究的回顾与展望[J].水利水电科技进展.1997,17(4):12-19.
    [64]韩行瑞.岩溶隧道涌水及其专家评判系统[J].中国岩溶.2004,23(3):35-41.
    [65]王梦恕.对岩溶地区隧道施工水文地质超前预报的意见[J].铁道勘察,2004(1):7-9.
    [66]傅鹤林.隧道衬砌荷载计算理论及岩溶处治技术[M].长沙:中南大学出版社,2005.
    [67]余波.深理隧洞中的岩溶地基工程地质问题及地基处理[J].岩石力学与工程程学报,2001(3):403~407.
    [68]徐则民,黄润秋.深埋特长隧道及其施工地质灾害[M].成都:西南交通大学出版社,2000.
    [69]李彪,梁富清.高速公路隧道施工中的岩溶问题研究[J].工程力学,2000(增刊).
    [70]铁道部第二勘察设计院.岩溶工程地质[M].北京:中国铁道出版社,1984.
    [71]袁道先.中国岩溶学[M].北京:地质出版社,1993.
    [72]南京大学地质教研室编.工程地质学[M].北京:地质出版社,1982.
    [73]张英骏,缪钟灵,毛健全等.应用岩溶学及洞穴学[M].贵阳:贵州人民出版社,1985.
    [74]王建秀,朱合华.岩溶隧道长期排水对围岩参透性的影响[J].岩土力学,2004.
    [75]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [76]于学馥,郑颖人,刘怀恒.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [77]刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999
    [78]陶振宇.岩石力学的理论于实践[M].北京:水利出版社,1981.
    [79]王泳嘉,冯夏庭.关于计算岩石力学发展的几点思考[J].岩土工程学报,1996,8(4):103~104.
    [80]李宁,G.Swoboda.当前岩石力学数值方法的几点思考[J].岩石力学与工程学报,1997,16(5):502~505.
    [81]李宁,段庆伟,杨志伟等.乌江思林水电站地下厂房洞群的数值仿真分析[J].水力发电学报,1996(1):43~50.
    [82]邹成杰.鲁布革.电站引水隧洞的岩溶发育特征及其工程意义[J].中国岩溶,1991(1)12(5):715~719.
    [83]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003
    [84]徐生林.公路隧道施工围岩稳定性监测预报系统与隧道工程数值模拟研究[D].上海:同济大学,2000
    [85]赵明阶,敖建华,刘绪华.岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J].岩石力学与工程学报,2004,23(2):213~217.
    [86]毛邦燕,许模.矿区水库渗漏影响评价问题模糊综合评价研究[J].人民长江,2007, 38(6):103-106
    [87]赵明阶.隧道顶部岩溶对围岩稳定性影响的数值分析[J].岩土力学,2003,24(3):445~449.
    [88]史世雍,梅世龙,杨志刚.隧道顶部溶洞对围岩稳定性的影响分析[J].地下空间与工程学报,2005,1(5):698~702.
    [89]李晓红,康勇,靳晓光,唐伯明等.浅议复杂条件下深埋长隧涌突水的防治[J].西部探矿,2004,(2).
    [90]杨保安,张红军,谢万瑜等.华蓥山隧道西段泄水洞工程及其对治理隧道暴雨涌突水的作用[J].世界隧道, 1999(5):24-27.
    [91]熊学军.大瑶山隧道病害研究及治理[J].中国铁路,1997(10):39-42.
    [92]唐田.用橡胶防水板做隧道防水层的实践[J].公路,1994(9):50-52.
    [93]姚云晓.青山隧道渗涌水原因分析及治理措施[J].岩土工程界,2004(10):66-70.
    [94]席光勇.深埋特长隧道(洞)施工涌水处理技术研究[D].成都:西南交通大学,2005.
    [95]蒋良文,易勇进,杨翔,陶伟明.渝怀铁路圆梁山隧道桐麻岭背斜东翼岩溶涌水突泥灾害与整治方案比选[J].地球科学进展,2004,19(增):340-345.
    [96]蒙彦,雷明堂.岩溶区隧道涌水研究现状及建议[J].中国岩溶,2003(4).12.
    [97]刘国,毛邦燕,许模.复杂岩溶介质的概化初探[J].物化探计算技术,2007,29(5):439-442
    [98]叶英.岩溶隧道施工超前地质预报方法研究[D].北京:北京交通5大学,2006.
    [99]金新锋,夏日元,梁彬.宜万铁路马鹿箐隧道岩溶突水来源分析[J].水文地质工程地质,2007(2):71-74.
    [100]铁道第四勘察设计院宜万铁路建设指挥部.宜万线重点岩溶隧道专家组现场调研—地质汇报材料[R].武汉:铁道第四勘察设计院, 2006:1-2, 82-84.
    [101]宋战平.隐伏溶洞对隧道围岩-支护结构稳定性的影响研究[D].西安:西安理工大学,2006.
    [102]谭代明,漆泰岳,莫阳春.侧部岩溶隧道围岩稳定性数值分析与研究[J].岩石力学与工程学报,2009,28(2):3497~3503.
    [103]刘招伟.圆梁山隧道岩溶突水机理及其防治对策[D].北京:中国地质大学,2004.
    [104]朱合华,丁文其.地下结构施工过程的动态仿真模拟分析[M].岩石力学与工程学报,1999,18(5):558~562
    [105]肖明等.西龙池抽水蓄能电站地下厂房围岩稳定三维非线性分析[J].岩石力学与工程学报,2000,19(5):634~639
    [106]马玉扩.隧洞稳定性数值试验及现场监测对比研究[D].西安:西安理工大学,2003.
    [107]张志强.软弱夹层对隧道稳定性的影响研究[D].西安:西安理工大学,2004.
    [108]李晓红著.隧道新奥法及其量测技术[M].北京:科学出版社,2002
    [109]吴梦军,赵明阶,刘绪华等.岩溶区公路隧道围岩稳定性模型试验研究[J],中国岩石力学与工程学会第七次学术大会论文集,北京:中国科学技术出版社,2002.
    [110]史世雍,梅世龙,杨志刚.隧道顶部溶洞对围岩稳定性的影响分析[J].地下空间与工程学报,2005,1(5):698~702.
    [111]徐则民,黄润秋.特长岩溶隧道涌水预测的系统辨识方法[J].水文地质工程地质,2002(4).
    [112]刘之葵,梁金城,朱寿增等.岩溶区含溶洞岩石地基稳定性分析[J].岩土工程学报2003,25(5):629~63.
    [113]刘铁雄.岩溶顶板与桩基作用机理分析与模拟试验研究[D].长沙:湖南大学,2004.
    [114]刘波,韩彦辉编著. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [115]谭政.地下充水空间对隧巷工程的危害模拟与控制研究[D].湖南:中南大学,2007.
    [116]郑阿奇主编. Visualc++实用教程[M].北京:电子工业出版社,2000.8.
    [117]夏炜洋.基于灰色理论和神经网络技术的边坡稳定性分析研究[D].西南交通大学硕士论文,2005.3.
    [118]白明洲,王家鼎.地下洞室中裂隙岩体围岩稳定性研究的模糊信息优化处理方法[J].成都理工学院学报,1999,26(3):291-294.
    [119]孙建国,李天斌,黄润秋,王芳其.地下工程围岩分类模糊推理系统设计[J].工程地质学报,2003,11(03):269-274.
    [120]孙亚玲,刘沛林,谷拴成,王洪臣.利用模糊综合评判评价巷道围岩稳定性[J].西安矿业学院学报,1999,19:49-53.
    [121]许树柏.层次分析法原理[M].天津:天津大学出版社,1988.
    [122]刘士雨.地下工程围岩稳定性模糊综合评价及其应用研究[D].南昌:华东交通大学,2009.
    [123]杨伦标,高英仪编著.模糊数学原理及应用[M].广州:环岸理工大学出版社,2001.
    [124]欧志坚.公路山岭隧道施工安全风险辨识研究[D].重庆:重庆交通大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700