斜拉桥结构受力性能检测及安全评价技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前斜拉桥的主跨跨径已突破千米量级,在向着长大、轻型化方向发展,但作为多次超静定柔性结构,其设计、施工以及检测评价仍存在需进一步完善的技术问题,如索塔锚固区局部承压、施工阶段索力优化、成桥及运行后工作性能评价办法等均有待于深化研究。本文依托大佛寺长江大桥检测试验项目,对索塔桥梁结构性能检测技术与相关理论问题进行了研究,包括其结构模态识别方法、索塔锚固区受力性能、数值模拟施工、成桥运营下索力和主梁受力分析等,并将研究成果用于了实际工程,取得了良好的效果。本文的主要创新成果如下:
     1.基于连续Morlet小波变换理论,给出了带宽参数的抗频混条件,提出了变带宽参数连续小波变换方法,达到了时域下频域分辨率的要求,减小了数据预测延拓数量;并进一步采用基于径向基神经网络的自回归模型方法,解决了实测自由衰减信号的有效长度不足等问题。大佛寺长江大桥工作性能实测表明,提出的变带宽参数连续小波变换方法优于传统的特征系统实现算法。
     2.提出了斜拉桥索塔锚固区受力分析的力学模型与方法。用该方法对大佛寺长江大桥斜拉桥索塔锚固区进行空间应力分析,结果表明,所提出的方法可较好的实现对索塔锚固区应力状态的数值模拟。
     3.基于Midas/Civil软件中Cable Force Tuning功能,进行了斜拉桥索力调整功能的二次开发,实现了斜拉桥索力调整的精细化。用该二次开发后扩充功能的软件,计算所得大佛寺长江大桥成桥的索力与设计值符合较好。
     主要结论:
     1.变带宽参数的连续小波变换方法能准确的对非平稳信号进行延拓,小波变换方法的识别结构模态的结果具有较高的精度。
     2.对大佛寺长江大桥斜拉桥索塔锚固区采用新型的布束方式,可以充分发挥钢束的预拉力性能。
     3.对Midas/Civil中斜拉桥调整索力功能的二次开发后,提高了对大佛寺长江大桥的计算的精度,并计算得到了大佛寺长江大桥主梁施工阶段各梁段累计计算挠度值,以及最不利工况的结构内力变化趋势,实用性强。
     4.用本文研究成果,对大佛寺大桥动力特性和动力响应进行了检测,得出了该大桥发生车桥耦合振动的可能性极小、其动力性能正常、结构仍具有良好的性能、满足桥梁正常使用要求的重要结论,为工程实际提供了关键技术支撑。
The main span length of cable stayed bridges has gone beyond the1,000meters,which indicated a trend towards constructing longer, bigger and lighter cable stayedbridges. However, there are many technical challenges in the design, construction andtesting assessment of this multiple indeterminate flexible structure, such as the partialpressure on the anchorage zone of the cable support tower, optimal design of the cabletension during construction stage and the evaluation of the load carrying capacity ofthe completed bridge, all of which are demanding prompt solution. Taking advantageof the completed-bridge dynamic detection experiment project of Dafosi YangtzeRiver Bridge, this paper presents a theoretical study on structural modal identification,an analysis on the partial stress on the anchorage zone of the cable support tower andan analysis on the cable force and internal force of the main beam under numericallysimulated construction condition and operational condition. Then a field test researchis carried out on the structural dynamic response of practical project in operationalstage using modal identification theory developed in this paper. The maincontributions of the research are as follows:
     1. Considering the kinetic characteristics of a bridge structure and on the basis ofthe time-frequency characteristics of the continuous Morlet wavelet transformfunction and the anti-frequency alias condition of bandwidth parameters, a continuouswavelet transform method with varying bandwidth parameters has been proposed,which satisfies the requirement for frequency domain resolution in time frequencywindow and minifies the quantity of data prediction continuation. Furthermore, anautoregressive model method based on RBF neural network, which solves problemslike inadequate effective length of the measured free decaying responses, has been putforward as well. A comparison between the identification result of the eigensystemrealization algorithm and that of the wavelet transform method regarding to the localdynamic numerical simulation of the mid-span of Chongqing Dafosi Yangtze RiverBridge shows that the latter is better and this finding was later verified by measureddata.
     2. Mechanics model and methods for the forces on the anchorage zone of the cable supporttower have been proposed. Results from the analysis of the Chongqing Dafosi Yangtze RiverBridge show that the stress at the anchorage zone of the cable support tower could be obtained bythe numerical simulation.
     3. A further development was made to the Cable Force Tuning function in Midas/Civil, withwhich the cable force of the completed bridge was calculated. The deviation between thecalculation and the design value is very small. Main conclusions are as follows:
     1.The continuous wavelet transform method of variable bandwidth parametercould accurately strip the non-stationary signals, and the recognition structure modewhich comes from the wavelet transform method has higher precision.
     2.The new strand arrangement adopted at the anchorage zone of cable-stayedbridge cable tower in the Dafoshi Yangtse River Bridge can give full play to thepre-tension performance of the steel strands.
     3.After the further development for the cable-stayed bridge adjustment cableforce functions in Midas/Civil, the precision of calculated results of Dafoshi YangtseRiver Bridge is improved. Accumulative calculation deflection values of the beamsegments of all girders of Dafoshi Yangtse River Bridge at the construction stage andthe change trend of the structural internal force value under the most unfavorableworking conditions are obtained, therefore it is highly practical.
     4.Based on the achievements of the paper, the dynamic characteristics testing anddynamic response testing of Dafoshi Yangtze River Bridge were made. The testingresults show that the possibility of the vehicle-bridge coupling vibration is very littleand the dynamic performance of the bridge span structure is normal. It is concludedthat the structure of the bridge has good performance characteristics and meets therequirements for normal service.
引文
[1]武召奇.斜拉桥施工控制研究[D].长安大学.2008.
    [2]王存国.甬江特大桥索塔锚固区有限元分析及节段模型试验[D].西南交通大学.2010
    [3]唐堂.高低塔不对称斜拉桥合理状态索力研究及程序设计[D].重庆交通大学2008
    [4]韩富庆.大跨度斜拉桥施工控制[D].合肥工业大学.2002
    [5]朱海峰.大跨径混凝土斜拉桥施工过程仿真分析[D].重庆交通大学.2008
    [6]徐红梅.民族服饰文化传承中的图像记录研究--以互助上土族服饰为例[D].西南大学.2011
    [7]卜富清.基于人工神经网络的图像识别和分类[D].成都理工大学.2010
    [8]梁君,赵登峰.工作模态分析理论研究现状与发展[J].电子机械工程.2006,22(6):7~8,32
    [9]赵志刚.紫金斜拉桥索塔锚固段局部应力分析与试验研究[D].中南大学,2007.
    [10]张海文.矮塔斜拉桥索鞍局部混凝土应力分析[D].西南交通大学.2008
    [11]陈金刚.斜拉桥索塔锚固区焊钉连接件模型试验研究[D].同济大学.2005
    [12]沈璐.吉林兰旗大桥索塔锚固区预应力设计研究[D].大连理工大学.2007
    [13]周明永.绥芬河斜拉桥节段模型试验研究[D].哈尔滨工程大学.2008
    [14]项贻强,易绍平,杜晓庆等.南京长江二桥南汊桥斜拉索塔节段足尺模型的研究[J].土木工程学报.2000,33(1):15~22
    [15]卓卫东,房贞政.预应力混凝土桥塔斜索锚固区空间应力分析[J].同济大学学报.1999,27(2):203~206
    [16]项贻强,陈国强.鄱阳湖口大桥索塔节段足尺模型试验与分析研究[J].中国公路学报.2000,13(4):74~77
    [17]刘钊,孟少平,刘智,等.润扬大桥北汊斜拉桥索塔节段足尺模型试验研究[J].土木工程学报.2004,37(6):35~40
    [18] Koh B H,Dyke S J. Structural health monitoring for flexible bridge structures usingcorrelation and sensitivity of modal data[J].2007,Computers and Structures,85(3-4):117-130.
    [19]朱宏平,翁顺.运用小波分析方法进行结构模态参数识别.振动与冲击,2007,26(4):2~13
    [20] Gentile C, Gallino N. Ambient vibration testing and structural evaluation of a historicsuspension footbridge[J]. Mechanical Systems and Signal Processing,2003,17(5):965-988.
    [21]左鹤声,彭玉莺.振动试验模态测试[M].北京:中国铁道出版社.1995.
    [22] Petrin F, Giuliano F, Bontempi F.2007. Comparison of time domain techniques for theevaluation of the response and the stability in long span suspension bridges[J].Computers andStructures,2007,85(11-14):1032-1048.
    [23]刘会,张亮亮,杨转运,刘保伟等.采用不同方法识别结构模态参数的比较[J].重庆大学学报.2010,33(6):60~66
    [24]王卫华.模态参数识别方法及应用研究[D].国防科技大学,2007.
    [25] Wu Z H, Huang N E. Ensemble empirical mode decomposition: A noise assisted data analysismethod[J].Advances in adaptive data analysis,2009,1:1-41.
    [26]陆冬,汤宝平,何启源,等.模态参数识别中频响函数估计的最小二乘优化[J].重庆大学学报(自然科学版),2007,30(3):6-10.
    [27]罗光坤,张令弥.基于Morlet小波变换的模态参数识别研究[J].振动与冲击,2007,26(7):135-138.
    [28]王卫华,刘会.利用LSCE方法识别桥梁气动导数研究[J].实验流体力学,2009,23(1):85-88.
    [29]谷东伟.数控机床主轴系统动态特性分析[D].长春理工大学.2010
    [30] Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers.NeuralProcessing Letters.1999,9(3):293~300
    [31]张俊.工程实用的飞行器低速风洞连续扫描试验技术研究[D].国防科学技术大学,2007.
    [32]俞云书.结构模态试验分析[M].北京:中国宇航出版社,2000.
    [33]杨杰,耿遵敏,谭雪琴.基于复模态的结构有限元动态模型修正理论[J].振动与冲击,2002,21(1):34-39.
    [34]黄琴,王彤,张海黎.基于随机减量的运行模态频域分析方法[J].南京航空航天大学学报,2011,43(3):45-48.
    [35]肖世富,刘信恩,杜强.基于模态试验的连接结构状态表征参数研究[J].振动与冲击,2011,30(4):425-429.
    [36]杨宏斌.高齿准双曲面齿轮的理论和实验研究[D].西北工业大学,2000.
    [37]余晃晶等.小波降噪阈值选取的研究[J].绍兴文理学院学报,2004.
    [38]严平,李胡生,葛继平,等.基于模态应变能和小波变换的结构损伤识别研究[J].振动与冲击,2012,31(1):121-126.
    [39] Bendat J S, Piersol A G. Engineering Application of Correlation and Spectral Analysis[C].Second Edition. New York: John Wiley&Sons,1993.
    [40] Brincker R, Zhang L M and Andersen P. Output-Only Modal Analysis by Frequency DomainDecomposition[J]. Noise and Vibration Engineering,2001,3:717-723.
    [41] Cole H A. On-line failure detection and damping measurement of aerospace structures byrandom decrement signatures[R]. NASA CR-2205,1973
    [42] P. V. Overschee, B. De Moor. Subspace algorithms for the stochastic identificationproblem[J]. Automatica,1993,29(3):649-660.
    [43] Edwin Reyndersa, Rik Pintelon and Guido De Roeek. Uneertainty bounds on ModalParameters obtained from stochastic subspace identifieation[J]. Mechanical systems andsignal proeessing,2008,22:948-969.
    [44] James G H, Carne T G and Lauffer J P. The Natural Excitation Technique for modalparameter extraction from operating structures[J]. Modal Analysis: Int J Analytical andExperimental Modal Analysis,1995,10(4):260-277.
    [45] Ibrahim S R. Modal identification techniques assessment and comparison. Proc. Of3thIMAC,1985:831-839.
    [46] Leuridan J M, Brown D L and Allernang R J. Time domain parameter identification methodsfor linear modal analysis: a unifying approach[J]. Journal of Vibration, Acostics, stress, andReliability in Design,1986,108:1-8.
    [47] Juang J N, Pappa R S. An Eigen system Realization Algorithm (ERA) for modal parameteridentification and model reduction [J]. Guidance, Control, and Dynamics,1985,8(5):620-627.
    [48]贺瑞,秦权.改进的NExT-ERA时域模态识别法的误差分析[J].清华大学学报(自然科学版),2009,49(6):787-794.
    [49] W. J. Staszewski. Identification of damping in MDOF systems using time-scaledecomposition[J], Journal of Sound and Vibration,1997,203(2):283-305.
    [50] Kardies J, Ta M N and Berthillier M. Modal parameter estimation based on the wavelettransform of output data[J]. Archive of Applied Mechanics,2004,73:718-733.
    [51] B. F. Yan, A. Miyamoto and E. Bruhwiler. Wavelet transform-based modal parameteridentification considering uncertainty[J]. Journal of Sound and Vibration,2006,291:285–301.
    [52]朱宏平,翁顺.运用小波分析方法进行结构模态参数识别[J].振动与冲击,2007,26(4):2-13.
    [53]罗光坤,张令弥.Morlet小波用于环境激励下的模态参数识别研究[J].地震工程与工程振动.2007,27(4):109-115.
    [54] Torrence C, Compo G P. A Practical Guide to Wavelet Analysis[J]. Bulletin of the AmericanMeteorological Society,1998,79(1):61-78.
    [55] Kijewski T, Kareem A. Wavelet Transforms for System Identification and AssociatedProcessing Concerns[C].15th ASCE Engineering Mechanics Conference. New York:Columbia University,2002:1-8.
    [56]伊廷华,李宏男,王国新.基于小波变换的结构模态参数[J].振动工程学报,2006,19(1):51-56.
    [57] Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers[J]. NeuralProcessing Letters,1999,9(3):293-300.
    [58] Moody J E, Darken C J. Fast Learning in Networks of Locally-tuned Processing Units[J].Neural Computation,1989,1:281-294.
    [59] Ljung L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-HalPTR,1999.
    [60] Mukherjee S,Gupta V K. Wavelet-based Characterization of Design Ground Motions.Earthquake Engineering and Structure Dynamics,2002,31(10):1173~1190
    [61] Spanos P D, Failla G. Evolutionary Spectra Estimation Using Wavelets. Journal ofEngineering Mechanics.2004,130(9):952~960
    [62] Moody J E, Darken C J. Fast Learning in Networks of Locally-tuned Processing Units.Neural Computation.1989,1:281~294
    [63] Suarez L E, Montejo L A. Generation of Artificial Earthquakes Via the Wavelet Transform.International Journal of Solids and Structures.2005,42(5):5905~5919
    [64] Spanos P D, Tezcan J, Tratskas P. Stochastic Processes Evolutionary Spectrum Estimation ViaHarmonic Wavelets. Computing Methods Application Mechanics engineering.2005,194(12):1367~1383
    [65]朱永等.大佛寺长江大桥健康监测系统[J].土木工程学报,2005.
    [66]王锋君,项贻强.斜拉桥索塔节段足尺模型试验与分析研究[J].桥梁建设,2001(2):8-11.
    [67]王为刚.斜拉桥索塔井字型预应力锚固区空间应力分析[D].重庆交通大学.2008
    [68]刘兆丰,孟鑫,赵人达等.长寿长江公路大桥索塔节段足尺模型试验研究[J].公路交通科技.2009,26(8):77~83.
    [69]马俊,陈彦江,盛洪飞等.斜拉桥桥塔锚固区足尺寸模型试验与理论研究[J].公路交通科技.2007,24(1):74~77.
    [70]黄炎.工程弹性力学[M].北京:清华大学出版社,1982.
    [71]江理平,唐寿高,王俊民.工程弹性力学[M].上海:同济大学出版社,2003.
    [72]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995.
    [73]夏志皋,江理平,唐寿高.弹性力学及其数值方法[M].上海:同济大学出版社,1993.
    [74]杜庆华,余寿文,姚振汉.弹性力学[M].北京:科学出版社,1986.
    [75]杨绪灿,金建三.弹性力学[M].北京:高等教育出版社,1987.
    [76]杨桂通.弹性力学[M].北京:高等教育出版社,1998.
    [77]徐芝纶.弹性力学简明教程(第三版)[M].北京:高等教育出版社,2002.
    [78]宋军,王福敏,耿波等.基于接触理论的矮塔斜拉桥索塔锚固区应力分析[J].重庆交通大学学报(自然科学版)2011,30(3):354-356.
    [79]胡亚琴.沪崇苏越江大桥索塔锚固区钢混结合面接触分析[J].中外公路,2008,28(5):174-177.
    [80]苏庆田,秦飞.组合索塔锚固区水平受力机理的理论与试验[J].同济大学学报(自然科学版),2011,39(8):1120-1125.
    [81]陶齐宇,刘扬.斜拉桥索塔锚固区前壁竖向拉-压杆模型[J].公路交通科技,2011,28(9):46-52.
    [82] Burdet, O. Analysis and Design of Post-Tensioned Anchorage Zones Concrete Bridges.Ph.D. thesis, Unversity of Texas at Austin.1990
    [83] Byung-Wan Jo, Yunn-Ju Byun, Ghi-Ho Tae. Strucutral Behavior of Cable Anchorage Zonesin Presrtessed Concrete Cbale-Stayed Bridge. Cna.J.Civ.Eng.2002,29:171~180.
    [84] CHANG Guoqiang, WU Bo, LIU Kang, et al. Discussion on Non-uniform ity of U-LoopedPrestressing Tendons Elongation at Tower Anchorage Zone. Journal of Chongqing JiaotongUniversity.2009,28(5):826~829
    [85]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62-2004)[S].北京:人民交通出版社,2004
    [86]中华人民共和国交通部.公路斜拉桥设计细则(JTG/T D65-01-2007)[S].北京:人民交通出版社,2007
    [87]陶齐宇,李永乐,黄道全,等.斜拉桥索塔锚固区小半径预应力束理论伸长值研究[J].公路交通科技.2009,26(7):64~68
    [88]李永斌.大跨径刚构—连续组合梁桥结构计算与预应力损失研究[D].武汉理工大学.2005.
    [89]肖勇刚,高涛.斜拉桥塔柱锚固区预应力损失研究[J].长沙交通学院学报.2008,24(1):19~21
    [90] Jo Byung-Wan, Byun Yunn-Ju, Tae Ghi-Ho. Structural Behavior of Cable Anchorage Zonesin Prestressed Concrete Cable-Stayed Bridge. Canadian Journal of Civil Engineering.2002,29(1):171~180
    [91] Lundgren K, Magnusson J. Three-Dimensional Modeling of Anchorage Zones in ReinforcedConcrete. Journal of Engineering Mechanics.2001,127(7):693~699
    [92]徐亚光.斜拉桥钢-混组合索塔锚固结构受力分析及模型试验研究[D].西南交通大学.2010.
    [93] Oh Byung Hwan, Lim Dong Hwan, Park Sung Soo. Stress Distribution and CrackingBehavior at Anchorage Zones in Prestressed Concrete Members. ACI Structural Journal.1997,94(5):549-557.
    [94]刘毅.箱形截面索塔锚固区及下塔柱应力分析研究[D].重庆交通大学.2008
    [95] LEE Y, YI S T, KIM M S and KIM J K. Evaluation of a Basic Creep Model with Respect toautogenous shrinkage. Cement Concrete Resarch.2006,36:1268~1278
    [96]李敏.斜拉桥主塔拉索锚固区锚下局部受力分析[D].东北林业大学.2007
    [97] Sofi M, Mendis P, Baweja D. Behaviour of Post-Tensioning Anchorage Zones in Early AgeConcrete: Experimental study. Futures in Mechanics of Structures and Materials-Proceedings of the20th Australasian Conference on the Mechanics of Structures andMaterials, ACMSM20: Toowoomba, QLD. Australia,2008:485~491
    [98]汪昕,吕志涛.斜向索力下钢-混凝土组合索塔锚固区荷载传递与分配关系分析[J].东南大学学报:自然科学版.2006,36(4):585~589
    [99] CHEN D W, THAM L G, LEE P K. Determination of Initial Forces in Prestressed ConcreteCable-stayed Bridges for Given Design Deck Profiles Using the Force EquilibriumMethod.Computers&Structures.2000,74(1):1~9.
    [100]单炜,万利军.四方台松花江大桥索塔锚固区环向应力分析与试验[J].东北林业大学学报.2005,35(4):76~80
    [101]单炜.异形截面斜拉桥索塔锚固区节段受力性能研究[D].东北林业大学.2005
    [102]万利军.斜拉桥索塔锚固区塔壁环向应力体系研究[D].东北林业大学.2007
    [103] Meier U. Proposal for a Carbon Fibre Reinforced Composite Bridge Across the Strait ofGibraltar at its Marrowest Site. Proc. the Institution of Mechanical Engineers. Part B:Management and Engineering Manufacture,1987,201(2):73~78
    [104]彭强.观音岩长江大桥斜拉桥索塔锚固区受力性能研究[D].重庆交通大学.2010
    [105] Wu Z, Wang X. Investigation on a1000-m Scale Cable-Stayed Bridge with FiberComposite Cables. In: The Fourth international conference on FRP composites in civilengineering (CICE-4), Zurich, Switzerland July22–24;2008(CD-ROM).
    [106]白光亮.大跨度斜拉桥索塔锚固区结构行为与模型试验研究[D].西南交通大学.2009
    [107]方志,汪剑.预应力混凝土箱梁桥竖向预应力损失的实测与分析[J].土木工程学报,2006,39(5):78-84.
    [108]汪剑,方志.预应力混凝土箱梁桥竖向预应力损失的理论分析与试验研究[C]//第十七届全国桥梁学术会议论文集[A].2006,重庆:中国土木工程学会.
    [109]安金星.大跨度斜拉桥施工控制与仿真计算[D].西南交通大学.2006
    [110]甘露.高低塔斜拉桥施工控制仿真计算[D].重庆大学.2007
    [111]周可夫. PC斜拉桥施工仿真计算与控制[D].长安大学.2005
    [112] Lertsima, Chartree. Three-Dimensional Finite Element Modeling of a Long-SpanCable-Stayed Bridge for Local Stress Analysis. Structural Engineering and Mechanics.2004,18(1):113~124
    [113]王应军,梅曙辉,李卓球等.基于ANSYS的武汉长江二桥非线性有限元分析[C]//2006湖北省中青年力学工作者学术年会论文集[A].宜昌:三峡大学,华中科技大学.
    [114]项贻强,徐兴,施笃铮.文晖路斜拉桥的空间分析计算[A]//中国土木工程学会桥梁及结构工程分会第十五次年会论文集[C].2002,上海:中国土木工程学会.
    [115]聂建国,陶慕轩,徐升桥.斜拉桥塔梁弹性连接拉索锚固块局部受力性能分析[C]//全国第十一届混凝土结构基本理论及工程应用学术会议论文集[A].2010,长沙:中国土木工程学会,中国建筑学会.
    [116]房贞政,卓卫东.三县洲斜拉桥塔梁固结节点空间应力分析[A]//中国土木工程学会桥梁及结构工程学会第十三届年会论文集[C].1998,上海:中国土木工程学会.
    [117]谭发茂.新加坡兀兰高架桥设计--谈谈用三维空间理论和等效荷载法进行预应力混凝土桥梁设计[A]//中国公路学会1997年桥梁学术讨论会论文集[C].1997,长沙:中国公路学会.
    [118] www.okok.org. ANSYS中预应力的模拟方法[A]//2004中华钢结构论坛论文集[C].2004,北京:中华钢结构论坛组委会.
    [119]刘艳萍,杨新华,杨文兵.预应力钢筋混凝土局部有限元分析的ANSYS二次开发[J].华中科技大学学报(城市科学版),2005,22(z1):87-90.
    [120]中华人民共和国铁道部.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-2005)[S].北京:中国铁道出版社,2005
    [121]王存国,刘兆丰,赵人达.甬江斜拉桥索塔锚固区应力分析[J].公路工程.2009,34(6):135~139
    [122]聂志飚.马岭河特大桥塔梁同步施工控制关键技术研究.华中科技大学.2009
    [123]宁平华.结合梁斜拉桥塔梁临时固结装置研究[J].中外公路.2004,24(4):72~74
    [124]苏小松.双环独塔斜拉桥施工控制研究与实践[D].重庆交通大学.2011
    [125]唐红元.斜拉桥预应力混凝土索塔关键问题研究[D].东南大学.2006
    [126]张门哲.大跨预应力混凝土斜拉桥施工控制及索塔温度效应分析[D].湖南大学.2004
    [127]黄震.大跨度PC斜拉桥施工控制及温度效应分析[D].重庆交通大学.2010
    [128]沈火明,肖新标.插值振型函数法求解移动荷载作用下等截面连续梁的动态响应[J].振动与冲击.2005,24(2):27~30
    [129]徐广民,刘炎海,蔺鹏臻等.三索面斜拉桥索塔锚固区的应力场分析[J].兰州交通大学学报.2008,27(4):33~36
    [130]叶柯.金塘大桥索塔锚固区段剪力连接行为研究[D].西南交通大学.2008
    [131]杜蓬娟,张哲,刘春城,石磊.斜拉桥索力张拉过程的最优控制[J].计算力学学报.2005,22(3):326~329
    [132]付军.预应力混凝土子母斜拉桥索力及施工优化研究[D].武汉理工大学.2006
    [133]潘杰.大跨度混合梁斜拉桥无应力构形的应用研究[D].长沙理工大学.2010
    [134]周孟波.桥梁施工控制-无应力状态法理论与实践[M].北京:人民交通出版社,2007.
    [135]叶梅新,韩衍群,张敏.基于ANSYS平台的斜拉桥调索方法研究[J].铁道学报.2006,28(4):128~131
    [136]陈金龙.确定PC斜拉桥合理成桥状态的索力和预应力耦合优化方法[D].中南大学,2010.
    [137]胡安林.斜拉桥合理施工状态索力研究[D].重庆交通大学.2009
    [138]梅葵花,孙胜江.斜拉索的静力设计计算[J].中外公路.2007,8,27(4):121-124
    [139]梁鹏,肖汝诚,张雪松.斜拉桥索力优化实用方法[J].同济大学学报(自然科学版),2003,31(11):1270-1274.
    [140]张文献,刘旭光,李东炜.斜拉桥成桥及施工阶段的索力优化[J].东北大学学报(自然科学版),2009,30(8):1201~1204.
    [141]张勋.刚构体系斜拉桥索力优化方法与动力性能研究[D].广西大学,2010.
    [142]刘浩天.斜拉桥索力优化及多点随机地震响应分析[D].大连理工大学,2009.
    [143]李朝阳,丁少凌,吴忠华等.南昌洪都大桥北主桥斜拉索索力调整方法探讨[A]//中国公路学会桥梁和结构工程分会2007年全国桥梁学术会议论文集[C].2007,广州:中国公路学会,广东省公路学会.
    [144]李宇,陈少峰.峪道河矮塔斜拉桥拉索初张力优化[J].科学技术与工程,2010,10(17):4312-4315.
    [145]陶海,沈祥福.斜拉桥索力优化的强次可行序列二次规划法[J].力学学报,2006,38(3):381-384.
    [146]辛克贵,冯仲.大跨度斜拉桥的施工非线性倒拆分析[J].工程力学.2004,21(5):31~35.
    [147]薛成凤,白延芳,赵雷.大跨度混凝土斜拉桥施工控制正装和倒拆仿真分析[J].铁道建筑,2009(8):1-4.
    [148]高锡亮.斜拉桥索力研究—考虑未配合闭合力做斜拉桥施工阶段正装分析[D].长安大学,2010.
    [149]吴东升.大跨独塔斜拉桥计算分析研究[D].西南交通大学,2005.
    [150]孙胜江,姜自英,高剑等.正装优化法确定斜拉桥合理施工状态[J].长安大学学报(自然科学版).2008,28(5):63~66
    [151]柴小鹏,吴红林.利用正装迭代法确定斜拉桥合理施工状态[J].科学技术与工程,2011(22):5470-5473.
    [152]杨煊,周水兴.斜拉桥施工阶段初张索力计算方法研究[J].重庆交通大学学报(自然科学版).2008,27(1):32~36
    [153]马文田,韩大建.混凝土斜拉桥施工控制的最佳成桥状态法[J].华南理工大学学报(自然科学版),1999,27(11):7~13
    [154]任瑞雪.混合梁斜拉桥施工全过程几何非线性影响分析与施工控制[D].长沙理工大学.2009
    [155]王双胜.预应力混凝土斜拉桥施工控制仿真分析[D].西南交通大学.2007
    [156]陈国红.大跨度钢斜拉桥锚箱式索梁锚固结构计算方法与力学特性研究[D].同济大学,2009.
    [157]陈常松.超大跨度斜拉桥施工全过程几何非线性精细分析理论及应用研究[D].中南大学.2007
    [158]庄守明.斜拉桥索力优化与合理施工状态研究[D].石家庄铁道学院.2006
    [159]颜全胜,韩大建.番禺大桥斜拉桥的施工控制[J].华南理工大学学报(自然科学版),2001,29(10):93-97.
    [160]唐红艳.大跨度斜拉桥无应力状态法施工控制理论研究与运用[D].重庆交通大学,2008.
    [161]江辉,李宇,杨庆山等.浅源强震下RC梁式桥横向碰撞参数研究[J].振动与冲击,2012,31(4):53-59.
    [162]中华人民共和国行业标准.公路桥涵养护规范(JTG H11-2004)[S].北京:人民交通出版社,2004.
    [163]中华人民共和国行业标准.城市桥梁养护技术规范(CJJ99-2003)[S].北京:中国建筑工业出版社,2003.
    [164]重庆市地方标准.重庆市城市桥梁养护技术规程(DB50/231-2006)[S].北京:中国计划出版社,2006.
    [165]范文斌.基于荷载试验的桥梁整体安全性研究[D].中南大学,2008.
    [166]殷新锋.汽车荷载作用下梁式桥与斜拉桥的动态响应分析[D].湖南大学,2010.
    [167]邓玮玮.桥梁动载试验自振特性测试与冲击荷载测试的研究[D].合肥工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700