CFRP索长大跨斜拉桥结构非线性动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在桥梁工程中,传统钢拉索的锈蚀、承载效率问题随着结构跨度增加显得日益突出,新型缆索替代材料的研究成为研究热点之一。具有高强、轻质、抗疲劳、耐腐蚀等优良性能的碳纤维增强复合材料(CFRP)作为长大跨径斜拉桥的拉索,既可以充分利用其高强性能,又能基本解决传统斜拉索的上述问题,还可以有效的降低斜拉桥上部结构自重,有效提升拉索承载效率和斜拉桥跨越能力。目前,国内外CFRP索长大跨斜拉桥结构非线性动力学方面的系统研究相对较少。本文结合国家自然科学基金资助项目‘CFRP索预应力大跨结构(桥梁与房屋)非线性分析与控制(50678074)”和“基于高性能材料CFRP索的超大跨桥梁原型设计与相关问题研究(51078170)”的研究,通过国内首座CFRP索斜拉试验桥试验分析与非线性动力学理论研究,探索CFRP索长大跨斜拉桥结构非线性动力学性能,以期为CFRP索长大跨结构的开发应用研究提供科学依据。本文主要完成了以下工作:
     (1) CFRP索非线性静动力特性及参数分析
     拉索是斜拉桥的主要受力构件,相比于塔梁结构具有轻、柔和低阻尼等特点。由于斜拉索自重垂度的影响,拉索呈现出强非线性的特征。根据斜拉索计算分析理论,详细探讨了基于悬链线单元的CFRP拉索静动力学分析的方法体系,将其用于分析不同长度、不同应力水平的CFRP索静动力特性及参数分析,并与传统钢拉索进行了静动力特性对比分析,得到了一些有意义的结论。
     (2) CFRP索试验桥静载试验研究及有限元对比分析
     对国内首座CFRP索斜拉人行试验桥进行了静载试验研究,详细介绍了静载试验的主要内容和方法,进行CFRP索斜拉桥有限元分析,并将有限元分析的理论计算结果与该桥的试验实测结果进行了对比分析,为长大跨CFRP索有限元模型的建立提供基础数据和参考依据。
     (3) CFRP索斜拉试验桥动态性能试验及其动力学特性分析
     在已有静载试验数据的基础上,进行了试验桥动态性能试验研究,详细介绍了试验桥模态试验的激励方式、信号采集系统和测试方法及主要测试内容和数据处理等内容,并将有限元动态性能分析结果与试验实测结果进行了对比分析,明确CFRP索斜拉桥的动态特性;在实测动态特性数据基础上,对CFRP索斜拉试验桥与同跨度的钢索斜拉桥的动力学特性和地震响应情况进行了对比分析。
     (4) CFRP索长大跨斜拉桥非线性动力特性及地震响应分析
     建立主跨千米级的CFRP索斜拉桥和钢索斜拉桥有限元动力学分析模型,对比分析了CFRP索及钢索长大跨斜拉桥的动力学特性,利用时程分析法分析了CFRP索长大跨斜拉桥竖向位移、主跨跨中弯矩、塔顶位移等内容的地震响应时程及响应峰值;并与传统钢索长大跨斜拉桥响应结果进行对比分析,探讨了CFRP索长大跨斜拉桥的抗震性能。
     (5) CFRP索长大跨斜拉桥地震响应控制研究
     选取目标函数(梁端纵向位移、主梁跨中竖向位移、桥塔顶纵桥向位移、桥塔底弯矩以及减震装置的内力和变形),分析了设置弹性和非线性粘滞阻尼器装置的CFRP索长大跨斜拉桥的响应特点,通过参数灵敏度分析,在对目标函数值灵敏度分析的基础上,确定了CFRP索长大跨斜拉桥结构合理的弹性连接刚度k、阻尼系数C和速度指数a,并对比分析了两种减震措施对CFRP索及钢索长大跨斜拉桥的减震效果。
     研究结果表明:CFRP索及其长大跨斜拉桥结构的非线性动力学性能相比传统钢索及其长大跨斜拉桥结构在基本动力学特性上存在较大差异,尤其是扭转基频与规范中的计算结果差异较大;斜拉桥采用塔梁固结体系时,扭转振型出现的可能性更小;CFRP索斜拉桥的自振频率较钢索斜拉桥高,CFRP索试验桥的地震响应曲线峰值小于钢索斜拉桥,抗震性能优于传统钢索斜拉桥结构,在满足同样的减震要求时,CFRP索长大跨斜拉桥对减震装置设计参数的要求较低,在相同的阻尼器参数下,CFRP索长大跨斜拉桥减震效果优于传统钢索斜拉桥结构。本文主要研究内容可为CFRP材料更好更快地应用于长大跨(桥梁、房屋)结构提供理论依据与技术支撑。
With the trend that the span of cable-stayed bridge becomes longer and longer, not only the cable corrosion and bearing efficiency but also the structural weight become increasingly prominent for the project of cable-stayed bridge. To replace traditional steel used in the cable, new material found as Carbon fiber reinforced composite (CFRP), which has the excellent characteristic of high strength, lightweight, anti-fatigue, corrosion resistance, etc, becomes a research hotspot. Using CFRP as cables of the long span cable-stayed bridge can not only take advantage of its high strength properties and solve the corrosion problems of the traditional steel cable, but also efficiently reduce the superstructure weight of cable-stayed bridge, improve the bearing efficiency of cable and get longer spanning capacity, so CFRP used as cable has a obviously competitive advantage. However, nonlinear dynamics system study of long-span CFRP cable-stayed bridge is hardly found at present. Analyzing the experiment study of the nation's first CFRP cable-stayed bridge and the study of nonlinear dynamics theory, the paper explores the nonlinear dynamics performance and expects to provide scientific basis for the development and application of CFRP long span structure, which is based on the support of the National Natural Science Fund Project "CFRP prestress span structures (bridges and buildings) Nonlinear Analysis and Control (50678074)"and "Prototype design and related problems research of super long span bridge with high performance CFRP cables(51078170)". This paper completes the following tasks:
     (1)Nonlinear static and dynamic characteristics and parameter analysis of CFRP cable
     Compared with beam structure, cable considered as the main load-bearing component of cable-stayed bridges has the characteristics of light, soft and low damping, showing strongly nonlinear characteristics under the influence of cable droops. Based on catenaries element, the methods of analyzing dynamics and static characteristics are discussed according to the calculation theory of cable. What's more, the methods are also applied to the dynamics and static characteristics and the parameter analysis of CFRP cable under different length and stress level and compared with the result of traditional steel cable. The results illustrate a series of meaningful conclusions.
     (2) Static experiment of CFRP cable-stayed testing bridge and finite element analysis
     To analyze the static characteristics of the CFRP cable-stayed bridge, the paper studies static experiment on the CFRP cable-stayed footbridge, introducing both the main contents, methods of the experiment and establishing finite element model. Comparing related analysis results with the results obtained from experiment, basic data and the reference are provided for establishing the finite element model of long span CFRP cable-stayed bridge.
     (3) Mode experiment and dynamic characteristics analysis of CFRP cable-stayed testing bridge
     Based on the static experimental data, mode experiment research is made in detail concerning the excitation mode, signal acquisition system, test methods, and test content and data processing etc. Then the mode experimental results are compared with those obtained from finite element dynamic analysis to confirm the dynamic characteristics of the CFRP cable-stayed bridge. Lastly, with regard to the dynamic characteristics and seismic response, the comparison between CFRP cable-stayed bridge and steel cable-stayed bridge with the same span is conducted.
     (4) Nonlinear dynamic characteristics and seismic response analysis of long span CFRP cable-stayed bridge
     Two finite element dynamic analysis models of cable-stayed bridges with the lkm main span are established. One cable is steel, the other is CFRP. The dynamic characteristics between them are compared. Based on time history analysis method, differences of seismic response time history and response peak are analyzed between long span CFRP cable-stayed bridge and steel cable-stayed bridge. The exploration to the seismic performance of long span CFRP cable-stayed bridge is discussed.
     (5) Seismic response control research of long span CFRP cable-stayed bridge
     The paper focuses on elastic connection and viscous damper selecting several objective functions such as longitudinal displacement at the end of the main beam, vertical displacement at the middle of the main span, longitudinal displacement on the top of towers, bending moment and axial force at the bottom of towers and internal force and deformation of seismic reduction devices. Based on the sensitivity analysis in both the parameters and the objective functions'values, the flexible connection stiffness k, damping coefficient C and speed index a are selected reasonably. At the same time, the effects of two measures for seismic response control applied in the two kinds of cable-stayed bridges are analyzed and compared.
     It is shown that the dynamic characteristics of CFRP cable and long span CFRP cable-stayed bridge differs from the steel cable and long span steel cable-stayed bridge. The natural torsion frequency of long span CFRP cable-stayed bridge has an obvious difference with the result calculated from specification. The Cable-stayed bridge with tower beam consolidation system, the possibility of torsion vibration mode is less likely to appear. Natural frequency of CFRP cable-stayed bridge is relatively higher than steel cable-stayed bridge under the same span condition. Seismic response peak value of CFRP cable-stayed bridge is relatively less than that of steel cable-stayed bridge. Seismic performance of CFRP cable-stayed bridge is superior to that of steel cable-stayed bridge. Meeting the same requirements of seismic response control, CFRP cable-stayed bridge has a lower requirement for design mechanic parameters than steel cable-stayed bridge. Under the same damper parameters, damping effect of the CFRP cable-stayed bridge is superior to that of steel cable-stayed bridge. The main research contents in this paper could offer theoretical basis and technical support to better and faster application of CFRP material in long span bridges or buildings.
引文
[1.1]项海帆,陈艾荣.《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策[C].中国土木工程学会桥梁及结构工程学会第十四届年会论文集,2005.
    [1.2]穆祥纯.城市大跨径桥梁将设世纪回顾与展望.中国土木工程学会桥梁及结构工程学会第十四届年会论文集[C],2005.
    [1.3]周念先.桥梁方案比选[M].上海:同济大学出版社,1997.
    [1.4]周念先.对特大跨径索桥若干问题的商榷[J].江苏交通工程,1993,(3):1-5.
    [1.5]顾安邦.桥梁工程(下册)[M].北京:人民交通出版社.
    [1.6]范立础.桥梁工程(下册)[M].北京:人民交通出版社.1990.
    [1.7]王伯惠.斜拉桥结构发展和中国经验(上册)[M].北京:人民交通出版社.2003.
    [1.8]刘士林.斜拉桥设计[M].J北京:人民交通大学出版社.2006.
    [1.9]严国敏.现代斜拉桥[M].四川:西南交通大学出版社.2000.
    [1.10]邬晓光.斜拉桥极限跨度分析[J].重庆交通学院学报,1996,15(3):36-38.
    [1.1l]杨允表,石洞.复合材料在桥梁工程中的应用[J].桥梁建设,1997,(4):1-4.
    [1.12]曾宪桃,车惠民.复合材料FRP在桥梁工程中的应用及其前景[J].桥梁建设,2000,(2):66-70.
    [1.13]孙杰,孙峙华,胡荣根.碳纤维复合材料在桥梁工程中应用及其前景[J].公路交通技术,2004,(1):46-60.
    [1.14]张锡祥,顾安邦.复合材料用于大跨斜拉桥发展展望[J].重庆交通学院学报,1995,(1):14-19.
    [1.15]齐玉军,冯鹏,叶列平.FRP索与钢索的求解计算和极限跨度[J].土木建筑与环境工程,2011,33(4):52-59.
    [1.16]程庆国等.关于大跨度斜拉桥儿何非线性问题.全国桥梁结构学术论文集(下册)[C],上海:同济大学出版社,1992:929-934.
    [1.17]高丹盈,李趁趁,朱海堂.纤维增强塑料筋的性能与发展[J].纤维复合材料,2002,(4):37-40.
    [1.18]张元凯,肖汝诚.FRP材料在大跨度桥梁结构中的应用展望[J].公路交通科技,2004, (4):59-62
    [1.19]Mitsubishi Chemical Corporation. Lead line carbon fiber rods [J]. Technical data. Japan, 1992.
    [1.20]Brahim Benmokrane, Burong Zhang, Adil Chennouf. Tensile properties and pullout behavior of AFRP and CFRP rods for grouted anchor applications [J]. Construction and Building Materials 14(3):157-170.
    [1.21]Leili Van Den Einde, Lei Zhao, Frider Seible. "Use of FRP Composites in Civil Structural Applications" [J]. Construction and Building Materials,2003,(17):389-403.
    [1.22]Noisterning,J.F. Carbon Fiber Composites as Stay Cable For Bridges" [J]. Applied Composite Materials.2000,(7):139-150.
    [1.23]Nik Winkler, Pascal Klein. Carbon Fiber Products (CFP)-A Construction Material for the Next Century [J]. Proceedings of the 13th FRP Congress,1998:69-72.
    [1.24]臧华,刘钊,吕志涛,梅葵花.CFRP筋用作斜拉桥拉索的研究与应用进展[J].公路交通科技,2006,(10)70-74.
    [1.25]李晓莉.CFRP材料在超大跨度斜拉桥拉索中的应用研究[J].武汉理工大学学报,2006,(02):30-33.
    [1.26]梅葵花,吕志涛.CFRP在超大跨悬索桥和斜拉桥中的应用前景[J],桥梁建设,2002,(02):75-77.
    [1.27]Chen Shaohong. Structural and aerodynamic stability analysis of long-span cable-stayed bridges [D]. Ottawa:Carleton University,1999.
    [1.28]KREMMIDAS S C. Improving Bridge Stay Cable Performance under Static and Dynamic Loads [D]. San Diego Loads, America:University of Caledonia,2004.
    [1.29]张新军,应磊东.超大跨CFRP索斜拉桥的力学性能分析[J].公路交通科技.2008,25(10):74-78.
    [1.30]张新军,应磊东.应用碳纤维缆索的大跨度悬索桥抗风稳定性研究[J].土木工程学报,2006,39(12):79-82.
    [1.31]谢旭,高金盛,苟吕焕,等.应用碳纤维索的大跨度斜拉桥结构振动特性[J].浙江大学学报,2005,39(5):728-733.
    [1.32]苟吕焕,谢旭,高金盛,等.应用碳纤维索的大跨度斜拉桥静力学特性分析[J].浙江大学学报,2005,39(1):137-142.
    [1.33]张志成,谢旭等.大跨度斜拉桥拉索设计方法及碳纤维索的应用[J].浙江大学学报,2007,41(9):39-46.
    [1.34]谢旭,朱越峰,中永刚.大跨度钢索和CFRP索斜拉桥车桥耦合振动研究[J].工程力学(增刊),2007,24:53-61.
    [1.35]梅葵花,吕志涛,孙胜江CFRP拉索的非线性参数振动特性[J].中国公路学报,2007,20(1):52-57.
    [1.36]梅葵花.CFRP拉索斜拉桥的研究[D].南京:东南大学,2005.
    [1.3]李正仁.关于在直布罗陀海峡最窄处建造碳纤维强化复合材料桥的建议[J].国外桥梁,1990,(4):45-50.
    [1.38]方志,郭棋武,刘光栋,等.碳纤维复合材料(CFRP)斜拉索的应用[J].中国公路学会桥梁与结构工程学会2001年桥梁学术讨论会论文集.北京:人民交通出版社,2001.
    [139]THOMAS KELLER. Recent all-composite and hybrid fiber reinforced polymer bridges and buildings [C]. Progress in Structural engineering and Material,2001,3 (2):132-140.
    [1.40]JOHN P BUSEL,KAREN LINDSAY. On the road with John Busel: A lock at the world's bridges [J]. CDA/Composite Design & Application,1997,(1):14-23.
    [1.41]邹晓文.法国拉胡安市一座合成材料缆索斜拉桥[J].中国三峡建设,2003,(12):47.
    [1.42]沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,1997.
    [1.43]Abdel-Ghaffar A.M, Khalifa M.A. Importance of cable vibration in dynamics of cable-stayed bidges[J]. Journal of Engineering Mechanics,1991,117(11):2571-2589.
    [1.44]Caetano E, Cunha A, Taylor C.A. Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part I: modal analysis[J].Earthquake Engineering and Structural Dynamics,2000,29:481-498.
    [1.45]Inoue K, Sugimoto H, Morishita K. Etal. Study on additional mass to the cable-stayed bridge as a countermeasure against great earthquake[J]. Journal of Structural Mechanics and Earthquake Engineering,2002,703(1-59): 29-38.
    [1.46]Abdel-Ghaffar A.M. Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings[J]. Computers & Structures,1995,54(3):461-492.
    [1.47]Wu Q, Takahashi K, Okabayashi T, etal. Response characteristics of local vibrations in stay cables on an existing cable-stayed bridge[J].Journal of Sound and Vibration,2003,261: 403-420.
    [1.48]Faraday. Further observations on associated cases in electric induction of current and static effects[J], Journal of the Franklin Institute,1855,59(6):402-409.
    [1.49]YAMAGUCHI H,FUJINO Y. Stayed cable dynamic and its vibration control[C]. Bridge Aerodynamics. Rotterdam: Balkema,1998: 235-253.
    [1.50]康厚军,赵跃宇,蒋丽忠.参数振动和强迫振动激励下超长拉索的面内非线性振动[J]。中南大学学报(自然科学版),2011,42(8):2439-2445.
    [1.51]杨素哲,陈艾荣.超长斜拉索的参数振动[J],同济大学学报(自然科学版,2005,33(10):1303-1308.
    [1.52]李静辉,贾杰.大跨度斜拉桥拉索非线性参数振动研究[J],黑龙江大学自然科学学报,2012,29(5):566-572.
    [1.53]陈水生.大跨度桥梁斜拉索的振动及被动、半主动控制[D]. 杭州:浙江大学,2002.
    [1.54]李凤臣.大跨度桥梁斜拉索的参数振动及索力识别研究[D]. 哈尔滨:哈尔滨工业大学,2009.
    [1.55]李凤臣,田石柱,欧进萍.大跨度斜拉桥拉索的参数振动[J].沈阳建筑大学学报:自然科学版,2008,24(5):737-742.
    [1.56]于岩磊.风作用下大跨斜拉网格结构参数振动及其模态跃迁研究[D].哈尔滨:哈尔滨工业大学,2010.
    [1.57]黄侨,李忠龙,吴红林等,哈尔滨四方台斜拉桥成桥静模态试验研究[J].桥梁建设,2006,1:16-18.
    [1.58]汪功伟,大跨度预弯组合梁式桥荷载试验研究[J].建筑施工,2009,1:55-58.
    [1.59]任 华,李新平,广州大桥主桥静载试验与分析[J].广东公路交通,2004,4:32-35.
    [1.60]徐礼华;许锋;曾浩等,CFRP筋体外加固铁路预应力混凝土简支梁桥设计及试验研究[J].工程力学,2013,30(2):89-95.
    [1.61]李书华,张福祥,陈韶.静载试验在既有桥梁鉴定中的应用[J].华北地震科学.2008,26(3):53-56.
    [1.62]自光亮,蒲黔辉,薛爱.某双曲拱桥静模态试验与加固方法[J].铁道建筑,2008,(9):39-42.
    [1.63]吕长荣,宋郁民,刘媛.缺失资料刚架拱桥的荷载试验及性能评定[J].水利与建筑工程学报.2008,6(3):68-70.
    [1.64]Grace N F, Abdel S G Behavior of externally draped CFRP tendons in prestressed concrete bridges [J].PCI Journal,1998,43(5): 88-101.
    [1.65]Rostasy F S, Budelmann H. Principles of design of FRP tendons and anchors for post-tensioned concrete [C]. Fiber-Reinforced Plastic Reinforcement for Concrete structures, ACI. Farmington Hills, Mich,1993:633-649.
    [1.66]Brahim B, Burong Z, Adil C. Tensile properties and pullout behavior of AFRP and CFRP rods grouted anchor applications [J]. Constructions and Building Materials,2000,14: 157-170.
    [1.67]陈常松,田仲初,郑万泔,颜东煌.大跨度混凝土斜拉桥模态试验技术研究[J].土木工程学报,2005,38(10):72-75.
    [1.68]章献.独塔斜拉桥动力特性的有限元分析及试验研究[J].桥梁建设,2005,(4):13-15.
    [1.69]张浩,陈应波.大跨斜拉桥模态测试与分析[J].武汉理工大学学报,2007,29(4):79-82.
    [1.70]王涛,黄平明.斜拉桥模态试验研究[J].太原理工大学学报,2007,38(5):401-404.
    [1.7l]刘云,钱振东.润扬大桥北汊斜拉桥的动力分析模型和动力特性的研究[J].交通运输工程与信息学报,2006,4(1):99-103.
    [1.72]龙晓鸿,李黎,唐家祥,等.澳凼第三大桥斜拉桥的动力特性及线性地震反应分析[J].工程力学,2004,21(6):166-171.
    [1.73]吕志涛,梅葵花.国内首座CFRP索斜拉桥的研究[J1.十木工程学报,2007,40(1):54-59.
    [1.74]刘荣桂,李成绩,蒋峰,等.碳纤维斜拉索的静力参数特性分析[J].哈尔滨工业大学学报,2008,40(4):615-619.
    [1.75]刘荣桂,李成绩,龚向华,等.碳纤维斜拉索的动力参数特性分析[J].哈尔滨工业大学学报,2008,40(8):1284-1288.
    [1.76]谢旭,朱越峰CFRP拉索设计对大跨度斜拉桥力学特性的影响[J].工程力学,2007,24(11):113-120.
    [1.77]张新军,应磊东.超大跨度CFRP索斜拉桥的力学性能分析[J].公路交通科技,2008,25(10):74-78.
    [1.78]Bruno D, Greco F, Lonetti P. Dynamic impact analysis of long span cable-stayed bridges under moving loads [J]. Engineering Structures,2008, April,30(4):1160-1177.
    [1.79]姜增国,付涛.斜拉桥减震控制研究[J].公路,2007,(11):7-11.
    [1.80]徐秀丽,刘伟庆,王滋军,等.大跨斜拉桥结构消能减震设计方法研究[J].桥梁建设,2005,(4):9-12.
    [1.81]韩万水,黄平明,兰燕.斜拉桥纵向设置粘滞阻尼器参数分析[J].地震工程与工程振动,2005,25(6):146-151.
    [1.82]亓兴军,李小军.大跨飘浮体系斜拉桥减震控制研究[J].振动与冲击,2007,26(3):79-82.
    [1.83]Christoffersen Jens (COWI), Jensen Henrik Elgaard, Hauge Lars, Bjerrum John. Innovative Cable-stayed Bridge [J]. Concrete (London), Jul.-Aug.,1998,32(7):32-34.
    [1.84]Grace Nabil F, Navarre Frederick C. Design Construction of Bridge Street Bridge—First CFRP Bridge in the United States [J]. PCI Journal, Sep.-Oct.,2002,47(5):20-36.
    [2.1]沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,1997.
    [2.2]李寿英,顾明,陈政清.阻尼器对拉索风雨激振的控制效果研究[J].工程力学,2006,24(8):1-8.
    [2.3]刘万峰.粘性剪切型阻尼器在斜拉桥拉索减振中的研究[D].西安:西安公路交通大学,1999.
    [2.4]COSTA A, MARTINSJAC, BRANCOF. Oscillations of bridge stay cables induced by periodicmotions of deck or towers[J]. Journal of Engineering Mechanics.1996, (7): 613-621.
    [2.5]亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(8):14-22.
    [2.6]J. L. Lilien, A. Pinto Da Costa. Vibration amplitudes caused by parametric excitation of cable stayed structures[J]. Journal of Sound and vibration.1994,174 (2):69~90.
    [2.7]Chris Geurts, Ton Vrouwenvelder, Piet van Staalduien, Jaco Reusink (Netherlands). Numerical modelling of rain-wind-induced vibration:Erasmus Bridge, Rotterdam [J]. Structural Engineering International,1998.
    [2.8]Fujiwara T, Tamakoshi T, Ueda T, etal. Characteristics of vibration of a complex multi-cable stayed bridge[J]. Journal of Structural Engineering, JSCE 1993(39A): 831-839(in Japanese).
    [2.9]日本本州四国联络桥公团第三建设局向岛工事事务所.多多罗大桥振动实验结果速报[R].1998,12,11.
    [2.10]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
    [2.11]布占宇,吕忠达,徐爱敏,等.考虑索局部振动的斜拉桥动力特性研究—杭州湾跨海大桥 北航道桥动力特性分析[J].浙江大学学报:工学版,2005,39(1):143-147.
    [2.12]布古宇.斜拉桥地震响应分析中的索桥耦合振动和阻尼特性研究[D].杭州:浙江大学,2005.
    [2.13]Abdel-Ghaffar A.M, Khalifa M.A. Importance of cable vibration in dynamics of cable-stayed bidges[J]. Journal of Engineering Mechanics,1991,117(11):2571-2589.
    [2.14]Caetano E, Cunha A, Taylor C.A. Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part Ⅰ: modal analysis[J].Earthquake Engineering and Structural Dynamics,2000,29:481-498.
    [2.15]Caetano E, Cunha A, Taylor C.A. Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part Ⅱ:seismic response[J].Earthquake Engineering and Structural Dynamics,2000,29:499-521.
    [2.16]Inoue K, Sugimoto H, Morishita K. Etal. Study on additional mass to the cable-stayed bridge as a countermeasure against great earthquake[J]. Journal of Structural Mechanics and Earthquake Engineering,2002,703(1-59):29-38.
    [2.17]Abdel-Ghaffar A.M. Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings[J]. Computers & Structures,1995,54(3): 461-492.
    [2.18]Wu Q, Takahashi K, Okabayashi T, etal. Response characteristics of local vibrations in stay cables on an existing cable-stayed bridge[J] Journal of Sound and Vibration,2003,261: 403-420.
    [2.19]Faraday. Further observations on associated cases in electric induction of current and static effects[J], Journal of the Franklin Institute,1855,59(6):402-409.
    [2.20]YAMAGUCHI H,FU JINO Y. Stayed cable dynamic and its vibration control [C]. Bridge Aerodynamics. Rotterdam: Balkema,1998: 235-253.
    [2.21]康厚军,赵跃宇,蒋丽忠.参数振动和强迫振动激励下超长拉索的面内非线性振动[J]。中南大学学报(自然科学版),2011,42(8):2439-2445.
    [2.22]杨素哲,陈艾荣.超长斜拉索的参数振动[J],同济大学学报(自然科学版,2005,33(10):1303-1308.
    [2.23]李静辉,贾杰.大跨度斜拉桥拉索非线性参数振动研究[J],黑龙江大学自然科学学报,2012,29(5):566-572.
    [2.24]陈水生.大跨度桥梁斜拉索的振动及被动、半主动控制[D]. 杭州:浙江大学,2002.
    [2.25]李凤臣.大跨度桥梁斜拉索的参数振动及索力识别研究[D]. 哈尔滨:哈尔滨工业大学,2009.
    [2.26]李凤臣,田石柱,欧进萍.大跨度斜拉桥拉索的参数振动[J].沈阳建筑大学学报:自然科学版,2008,24(5):737-742.
    [2.27]于岩磊.风作用下大跨斜拉网格结构参数振动及其模态跃迁研究[D].哈尔滨:哈尔滨工业大学,2010.
    [2.28]梅葵花,吕志涛.CFRP在超大跨悬索桥和斜拉桥中的应用前景[J].桥梁建设,2002(2):75-78.
    [2.29]NIK WINKLER, PASCALKLEIN. Carbon fiber products(CFRP)-a construction material for the next century[C]. Proceedings of the 13th FIP Congress, Amster-dam: A.A.Balkema Publishers,1998: 69-72.
    [2.30]夏桂云,李传习,张建仁.斜拉索非线性分析[J].长沙交通学院学报,2001,17(1):47-50.
    [2.31]Ahmadi-Kashani K, Bell AJ. The analysis of cables subject to uniformly distributed loads[J]. Engineering Structures,1988,10: 174-184.
    [2.32]杨琪,李乔.大跨度斜拉桥静力、动力和稳定智能仿真分析[J].中南公路工程,2001,26(3):32-35.
    [2.33]Gambhir ML, Batchelor BA. Finite element for 3-D pre-stressed cable nets[J]. International Journal for Numerical Methods in Engineering,1977, (11):1699-1718.
    [2.34]Ozdemir H. A finite element approach for cable problems[J]. International Journal of Solids and Structures,1979,15:427-437.
    [2.35]袁行飞,董石麟.二节点曲线索单元非线性分析[J].工程力学,1999,16(4):59-64.
    [2.36]唐建民.基于欧拉描述的两节点索单元非线性有限元法[J].上海力学,1999,20(1):89-94.
    [2.37]唐建民,卓家寿.拉索弯顶结构非线性分析的混合有限元增量法[J].计算力学学报,2000,17(1):81-88.
    [2.38]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    [2.39]李国平.斜拉索非线性分析的状态修正法[J].同济大学学报,2000,28(1):14.
    [2.40]唐建民,何署廷.悬索结构非线性有限元分析[J].河海大学学报,1998,26(6):45-49.
    [2.41]Ali HM, Abdel-Ghaffar AM. Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings[J]. Computers and Structures,1995,54(3):461-492.
    [2.42]唐建民,董明,钱若军.张拉结构非线性分析的五节点等参单元[J].计算力学学报,1997,14(1):108-113.
    [2.43]O'Brien T. Francis AJ. Cable movements under two-dimensional loading[J]. Journal of Structural Engineering,1964,90(ST3): 89-123.
    [2.44]O'Brien T. General solution of suspended cable problems[J]. Journal of Structural Engineering,1967,93(STl):1-26.
    [2.45]Peyrot AH, Goulois AM. Analysis of flexible transmission lines[J]. Journal of Structural Engineering,1978,104: 763-779.
    [2.46]Peyrot AH, Goulois AM. Analysis of cable structures[J]. Computers and Structures,1979, 10:805-813.
    [3.1]林元培,章曾焕;马骉等,上海市黄浦江卢浦大桥设计[J].土木工程学报,2005,38(1):71-77.
    [3.2]吕忠达,杭州湾跨海大桥关键技术研究与实施[J].土木工程学报,2006,39(6):78-82.
    [3.3]张雄文,任回兴,苏通大桥5800t钢吊箱整体沉放技术[J].中国工程科学,2010,12(2):22-25.
    [3.4]马骉,颜爱华,邓青儿等,上海闵浦大桥设计与构思[J].上海建设科技,2010,5:1-4.
    [3.5]华新,韩大章,周彦锋等,泰州长江公路大桥中塔结构行为特点及设计特色[J].公路,2010,11:59-63.
    [3.6]黄侨,李忠龙,吴红林等,哈尔滨四方台斜拉桥成桥静模态试验研究[J].桥梁建设,2006,1:16-18.
    [3.7]汀功伟,大跨度预弯组合梁式桥荷载试验研究[J].建筑施工:,2009,1:55-58.
    [3.8]任华,李新平,广州大桥主桥静载试验与分析[J].广东公路交通,2004,4:32-35.
    [3.9]徐礼华;许锋;曾浩等,CFRP筋体外加固铁路预应力混凝土简支梁桥设计及试验研究[J].工程力学,2013,30(2):89-95.
    [3.10]李书华,张福祥,陈韶.静载试验在既有桥梁鉴定中的应用[J].华北地震科学.2008,26(3):53-56.
    [3.11]白光亮,蒲黔辉,薛爱.某双曲拱桥静模态试验与加固方法[J].铁道建筑,2008,(9):39-42.
    [3.12]吕长荣,宋郁民,刘媛.缺失资料刚架拱桥的荷载试验及性能评定[J].水利与建筑工程学报.2008,6(3):68-70.
    [3.13]Grace N F, Abdel S G. Behavior of externally draped CFRP tendons in prestressed concrete bridges [J].PCI Journal,1998,43(5):88-101.
    [3.14]Rostasy F S, Budelmann H. Principles of design of FRP tendons and anchors for post-tensioned concrete [C]. Fiber-Reinforced Plastic Reinforcement for Concrete structures, ACL Farmington Hills, Mich,1993:633-649.
    [3.15]Brahim B, Burong Z, Adil C. Tensile properties and pullout behavior of AFRP and CFRP rods grouted anchor applications [J]. Constructions and Building Materials,2000,14: 157-170.
    [3.16]堪润水,胡钊芳.公路桥梁荷载试验[M].北京:人民交通出版社.2003.
    [3.17]胡大琳.桥涵工程试验检测技术[M].北京:人民交通出版社.2000.
    [4.1]刘士林,于似舜.斜拉桥设计[M].北京:人民交通出版社,2006,06.
    [4.2]章关永主编.桥梁结构试验[M].北京:人民交通出版社,2002.
    [4.3]左鹤声,彭玉莺.主编.振动试验模态分析[M].中国铁道出版社,1995.
    [4.4]李德葆,主编.振动模态分析及其应用[M].宇航出版社,1989.
    [4.5]陈常松,田仲初,郑万泔,颜东煌.大跨度混凝土斜拉桥模态试验技术研究[J].土木工程学报,2005,38(10):72-75.
    [4.6]章献.独塔斜拉桥动力特性的有限元分析及试验研究[J].桥梁建设,2005,(4):13-15.
    [4.7]张浩,陈应波.大跨斜拉桥模态测试与分析[J].武汉理工大学学报,2007,29(4):79-82.
    [4.8]王涛,黄平明.斜拉桥模态试验研究[J].太原理工大学学报,2007,38(5):401-404.
    [4.9]韩之江.桥梁结构脉动测试分析与应用[J].山西交通科技,2002,(2):48-50.
    [4.10]Christoffersen Jens (COWI),Jensen Henrik Elgaard, Hauge Lars,Bjerrum John. Innovative cable-stayed bridge[J].Concrete (London),1998,32(7):32-34.
    [4.11]Grace Nabil F, Navarre Frederick C. Design construction of bridge street bridge-First CFRP bridge in the United States [J]. PCI Journal,2002,47(5):20-35.
    [4.12]梅葵花,吕志涛.CFRP在超大跨悬索桥和斜拉桥中的应用前景[J].桥梁建设,2002,(2):75-78.
    [4.13]梅葵花,吕志涛,张继文,等.碳纤维复合材料索斜拉桥的设计与测试[J].长安大学学报(自然科学版),2007,27(6),48-52.
    [4.14]刘荣桂,李成绩,蒋峰,等.碳纤维斜拉索的静力参数特性分析[J].哈尔滨工业大学学报,2008,40(4):615-619.
    [4.15]刘荣桂,李成绩,龚向华,等.碳纤维斜拉索的动力参数特性分析[J].哈尔滨工业大学学报,2008,40(8):1284-1288.
    [4.16]刘荣桂,许飞,蔡东升,等.CFRP拉索斜拉桥静载试验分析[J].中国公路学报,2009,22(2):48-52.
    [4.17]刘荣柱,许飞CFRP拉索试验桥锚具的有限元分析[J].工业建筑,2009,39(436):61-65.
    [4.18]梅葵花,吕志涛,孙胜江CFRP拉索的非线性参数振动特性[J].中国公路学报,2007,20(1):52-57.
    [4.19]吕志涛,梅葵花.国内首座CFRP索斜拉桥的研究[J].土木工程学报,2007,40(1):54-59.
    [4.20]胡大琳.桥涵工程试验检测技术[M].北京:人民交通出版社.2000.
    [4.21]梅葵花,吕志涛,张继文,刘钊.碳纤维复合材料索斜拉桥的设计与测试[J].长安大学学报(自然科学版),2007,27(6):48-52.
    [4.22]陈常松,田仲初,郑万泔,等.大跨混凝土斜拉桥模态试验技术研究[J].土木工程学报,2005,38(10):72-75.
    [4.23]Rizzo P, Lanza di Scalea F. Acoustic emission monitoring of carbon- fiber-reinforced-polymer bridge stay cables in large-scale testing [J]. Experimental Mechanics,2001,41(3):282-290.
    [4.24]郑万泔.振动及动态信号采集分析系统软件CRAS-V6.1使用说明书[M].2004.
    [4.25]国家交通部发布.公路斜拉桥设计细则[M] (JTG/T D65-01-2007).北京:人民交通出版社,2007.
    [4.26]张新军,应磊东.应用碳纤维缆索的大跨度悬索桥抗风稳定性研究[J].土木工程学报,2006,39(12):79-82.
    [5.1]邱新林.大跨斜拉桥空间非线性地震反应分析[J].华东公路,2000,6(3)
    [5.2]许飞.CFRP索斜拉桥的静动力性能研究[D].江苏大学,2009,70-81.
    [5.3]刘云,钱振东.润扬大桥北汉斜拉桥的动力分析模型和动力特性的研究[J].交通运输工程与信息学报,2006,4(1):99-103.
    [5.4]龙晓鸿,李黎,唐家祥,等.澳凼第三大桥斜拉桥的动力特性及线性地震反应分析[J].工程力学,2004,21(6):166-171.
    [5.5]吕志涛,梅葵花.国内首座CFRP索斜拉桥的研究[J].土木工程学报,2007,40(1):54-59.
    [5.6]刘荣桂,李成绩,蒋峰,等.碳纤维斜拉索的静力参数特性分析[J].哈尔滨工业大学学报,2008,40(4):615-619.
    [5.7]刘荣桂,李成绩,龚向华,等.碳纤维斜拉索的动力参数特性分析[J].哈尔滨工业大学学报,2008,40(8):1284-1288.
    [5.8]谢旭,朱越峰.CFRP拉索设计对大跨度斜拉桥力学特性的影响[J].工程力学,2007,24(11):113-120.
    [5.9]张新军,应磊东.超大跨度CFRP索斜拉桥的力学性能分析[J].公路交通科技,2008,25(10):74-78.
    [5.10]Bruno D, Greco F, Lonetti P. Dynamic impact analysis of long span cable-stayed bridges under moving loads [J]. Engineering Structures,2008, April,30(4):1160-1177.
    [5.11]杜丽妹.徐州和平大桥动力特性分析[D].西南交通大学,2007,15-18.
    [5.12]刘钊.系杆拱桥的结构优化设计及抗震性能研究[D].东南大学,2001.
    [5.13]李国豪.桥梁结构稳定与振动[M].中国铁道出版社,1996.
    [5.14][美]R.克拉夫,J.彭津;王光远等译校.结构动力学(第二版修订版)[D].北京:高等教育出版社,2006.11.
    [5.15]张喜刚.苏通大桥总体设计[J].公路,2004,7(7):01-11.
    [5.16]N.J.Ginsing. Anchored and Partially Stayed Bridges. Proceeding of the International Symposium on Suspension Bridges. Lisbon,1966.
    [5.17]项海帆,现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005.
    [5.18]项海帆,陈艾荣.《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策[C].中国土木工程学会桥梁及结构工程学会第十四届年会论文集,2005.
    [5.19]龚仁明.超大跨度斜拉桥方案设计.同济大学学报[J].1999,(2):229-233.
    [5.20]王伯惠.斜拉桥结构发展和中国经验(上册)[M].北京:人民交通出版社.2003.
    [5.21]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2005,10.
    [5.22]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001,05.
    [5.23]钟万勰,林家浩,吴志刚,孙东科,张亚辉.大跨度桥梁分析方法的一些进展[J].大连理工大学学报,2000,40(2):127-135.
    [5.24]叶爱君,胡世德,范立础.大跨度桥梁抗震设计实用方法[J].土木工程学报,2001,24(1):1-5.
    [5.25]闫冬,袁万城.大跨度斜拉桥的抗震概念设计[J].同济大学学报(自然科学版),2004,32(10):1344-1348.
    [5.26]龙晓鸿.斜拉桥及连续梁桥空间地震响应分析[D].湖北:华中科技大学结构工程专业,2004,1-7.
    [5.27]李忠献,黄健,丁阳等.不同地震激励下大跨度斜拉桥的地震反应分析[J].中国公路学报,2005,18(3).
    [5.28]张翠红,吕令毅.大跨度斜拉桥在多点随机地震激励作用下的响应分析[J].东南大学学报(自然科学版),2004,34(2):249-252.
    [5.29]秦权.孙晓燕,贺瑞,等.苏通桥对非一致地震地面运动的反应和人工波质量的讨论[J].工程力学,2006,23(9):71-83.
    [5.30]武芳文.大跨度斜拉桥随机地震响应分析及其动力可靠度研究.博士学位论文[D].四川:西南交通大学桥梁与隧道工程系,2004,28-40.
    [5.31]布占宁.斜拉桥地震响应分析中的索桥耦合振动和阻尼特性研究.博士学位论文[D].杭州:浙江大学桥梁与隧道工程系,2005.
    [5.32]史志利.大跨度桥梁多点激励地震反应分析与MR阻尼器控制研究.博士学位论文[D].天津:天津大学结构工程系,2003.
    [5.33]张治成,谢旭,张鹤.应用碳纤维索的斜拉桥地震响应分析[J].工程力学(S),2008,25(Ⅰ):158-165.
    [5.34]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007,06.
    [5.35]包立新,李小珍,卫星,等.宜宾长江公路大桥斜拉桥抗震性能评价[J].工程力学,2008,25(2):174-182.
    [6.1]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社,2003.
    [6.2]周云.黏滞阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006,11.
    [6.3]叶爱君,胡世德,范立础.超大跨度斜拉桥的地震位移控制[J].土木工程学报,2004,37(12):38-43.
    [6.4]姜增国,付涛.斜拉桥减震控制研究[J].公路,2007,(11):7-11.
    [6.5]徐秀丽,刘伟庆,于滋军,等.大跨斜拉桥结构消能减震设计方法研究[J].桥梁建设,2005,(4):9-12.
    [6.6]韩万水,黄平明,兰燕.斜拉桥纵向设置粘滞阻尼器参数分析[J].地震工程与工程振动,2005,25(6):146-151.
    [6.7]亓兴军,李小军.大跨飘浮体系斜拉桥减震控制研究[J].振动与冲击,2007,26(3):79-82.
    [6.8]Christoffersen Jens (COWI), Jensen Henrik Elgaard, Hauge Lars, Bjerrum John. Innovative Cable-stayed Bridge [J]. Concrete (London), Jul.-Aug.,1998,32(7):32-34.
    [6.9]Grace Nabil F, Navarre Frederick C. Design Construction of Bridge Street Bridge-First CFRP Bridge in the United States [J]. PCI Journal, Sep.-Oct.,2002,47(5):20-36.
    [6.10]梅葵花,吕志涛CFRP在超大跨悬索桥和斜拉桥中的应用前景[J].桥梁建设,2002,(2):75-78.
    [6.11]刘荣桂,李成绩,蒋峰,等.碳纤维斜拉索的静力参数特性分析[J].哈尔滨l:业大学学报,2008,40(4):615-619.
    [6.12]刘荣桂,李成绩,龚向华,等.碳纤维斜拉索的动力参数特性分析[J].哈尔滨工业大学学报,2008,40(8):1284-1288.
    [6.13]吕志涛,梅葵花.国内首座CFRP索长大跨斜拉桥的研究[J].土木工程学报,2007,40(1):54-59.
    [6.14]刘荣桂,许飞,蔡东升,等CFRP拉索斜拉桥静载试验分析[J].中国公路学报,2009,22 (2):48-52.
    [6.15]刘荣桂,周士金,许飞,等.CFRP拉索斜拉桥模态试验与分析[J].桥梁建设,2009,(3):29-32.
    [6.16]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007,06.
    [6.17]Ruangrassamee Anat, Kawashima Kazuhiko. Seismic Response Control of a Cable-stayed Bridge by Variable Dampers [J]. Journal of Earthquake Engineering,2006,10(1):153-166.
    [6.18]Chang Chia-Ming, Loh Chin-Hsiung. Seismic Response Control of Cable-stayed Bridge Using Different Control Strategies [J]. Journal of Earthquake Engineering,2006,10 (4): 481-508.
    [6.19]梁智垚,李建中.大跨度公铁两用斜拉桥阻尼器参数研究[J].同济大学学报(自然科学版).2007,35(6):728-733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700