影响土壤中Cr(Ⅵ)吸持与Cr(Ⅲ)氧化的主要土壤理化性质分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cr(Ⅵ)对土壤的污染取决于Cr(Ⅵ)在土壤中的环境化学行为,如还原-氧化、吸附等等;而这些化学反应的发生从根本上又取决于具体土壤的理化性质。所以,土壤的理化性质不仅决定了Cr(Ⅵ)在土壤中的化学反应,又决定了Cr(Ⅵ)在土壤中的迁移与归宿。通过研究Cr(Ⅵ)在16种中国土壤上的吸持动力学和等温线,并结合相关分析和通径分析的统计学方法,得到如下结论,Cr(Ⅵ)在酸性土壤中吸持量较大,且吸持动力学可以用一级动力学方程和抛物线方程描述,土壤pH、活性Fe(Ⅱ)含量和物理粘粒含量与一级动力学模型中平衡时土壤对Cr(Ⅵ)的表观吸持量qe参数和抛物线模型中表观吸附扩散速率常数k呈正相关关系;而Cr(Ⅵ)在碱性土壤中吸持量较小,其动力学呈现“波动”趋势,不能用动力学方程描述。从土壤对Cr(Ⅵ)的等温线和吸持量上来划分,自然土壤大致可以分为4类:1)Cr(Ⅵ)还原型土壤;2)Cr(Ⅵ)吸附-还原型土壤;3)少量Cr(Ⅵ)吸附型土壤;4)痕量反应土壤。土壤pH是决定Cr(Ⅵ)在土壤中吸持的最重要的因素,活性Fe(Ⅱ)含量为第二重要因素,络合态铁和物理粘粒含量对Cr(Ⅵ)的吸持只产生有限的影响,CaCO_3含量和CEC影响较小,而有机质含量、无定形铁含量和易还原锰含量对Cr(Ⅵ)的吸持量基本没有影响,所以判定未知土壤中Cr(Ⅵ)的吸持能力时,土壤pH和活性Fe(Ⅱ)含量起到了绝对重要的作用。
     由于土壤pH是影响Cr(Ⅵ)在土壤中吸持的最重要的因素,所以本文主要研究了pH影响Cr(Ⅵ)在黄棕壤上的吸持机理,发现pH与Cr(Ⅵ)的总吸持、吸附和还原均为线性的负相关关系,且还原量随pH的变化是吸附量变化的3倍左右,即还原随土壤pH的变化较吸附敏感的多,所以,pH主要影响Cr(Ⅵ)在土壤中的还原量。并发现土壤pH通过影响土壤还原剂的溶解是pH影响土壤Cr(Ⅵ)吸持的一个重要机理。所以,土壤pH对Cr(Ⅵ)吸持的影响机理总结为:1)酸性条件更有利于Cr(Ⅵ)的吸附,2)土壤中Cr(Ⅵ)的主要还原剂有机质和含铁矿物只有在酸性条件下会还原Cr(Ⅵ),3)较低的pH有利于土壤中的还原物质溶解到土-水溶液中,4)土壤pH显著影响了Cr(Ⅵ)的氧化还原电位。同时,本文还发现土壤溶液中的NO_3~-、Cl~-和Br~-,它们都是影响Cr (Ⅵ)在黄棕壤上吸持最弱的阴离子;阳离子对吸持量的影响顺序为K~(+)= Ca~(2~(+)) > Mg~(2~(+)) > Na~(+);这些阳离子影响Cr(Ⅵ)在黄棕壤上的吸持,主要因为K~(+)、Ca~(2~(+))和Mg~(2~(+))可以改变土-水体系的pH而间接影响Cr(Ⅵ)在黄棕壤上的吸持(吸附和还原),而且,K~(+)、Ca~(2~(+))和Mg~(2~(+))离子本身会提高了Cr(Ⅵ)在黄棕壤上的吸附。
     另一方面,土壤中的Cr(ⅡI),无论是土壤本底的Cr(ⅡI),还是Cr(Ⅵ)还原生成的Cr(ⅡI),都可能被土壤中的MnO_2氧化为毒性较强的Cr(Ⅵ);而土壤中的有机酸是土壤中重要的组分,这些有机酸易于与三价金属Cr(ⅡI)发生络合反应,这就会使土壤中Cr(Ⅲ)的氧化反应发生变化。本文通过研究有机酸对Cr(Ⅲ)氧化的影响,以及有机酸-Cr(Ⅲ)络合体的氧化特性发现,在pH 5-8范围内,柠檬酸对Cr(Ⅲ)在MnOx上的氧化表现为明显的抑制作用,而草酸、酒石酸和葡糖酸只在pH = 5时有一定的抑制作用。有机酸在酸性条件下的影响机理为,1)还原络合δ-MnO_x;2)与Cr(Ⅲ)络合生成难氧化的有机-Cr(Ⅲ)络合物;3)还原体系中生成的Cr(VI);而在碱性条件下的抑制主要途径为有机酸与Cr (Ⅲ)生成少量的有机-Cr(Ⅲ)络合物所致。但是,无论是上述的何种机理,有机酸中的–COOH都是影响Cr(Ⅲ)氧化过程中尤为重要基团,随着-COOH浓度的增加,有机酸的络合Cr(Ⅲ)和其还原Cr(VI) (或MnO_2)能力都增强,从而达到最终抑制Cr(Ⅲ)氧化的效果。同时研究表明,有机酸-Cr(Ⅲ)络合体的氧化能力为:柠檬酸- Cr(Ⅲ) <酒石酸- Cr(Ⅲ) <草酸- Cr(Ⅲ) <葡糖酸- Cr(Ⅲ) < Cr(Ⅲ)。所以土壤中的有机酸与Cr(Ⅲ)离子发生络合反应,则可降低Cr(Ⅲ)离子在环境中的氧化,另一方面,即使有机酸不发生络合反应,自然界的游离有机酸也会对Cr(Ⅲ)离子的氧化产生抑制作用,所以有机酸的存在都会大大降低了土壤中Cr(Ⅲ)离子的氧化性能;但另一方面,低分子有机酸可能增加了自然界中沉淀态Cr(Ⅲ)的移动,可使其到达土壤中锰氧化物的表面,从而增加了Cr(Ⅲ)的氧化。所以自然界的有机酸对Cr(Ⅲ)氧化的影响是一把双刃剑,这主要取决于Cr(Ⅲ)在土壤中的存在形态。
The risk of Cr(Ⅵ) pollution in soils depend on its reactions such as sorption, reduction-oxidation, precipitation, which in turn is intimately related to the specific soil properties. In this study, 16 kinds of Chinese soils were selected to study the effect of soil properties on Cr(Ⅵ) attenuation, and the combination of correlation analysis and path analysis were used to analyze the soil properties factors. There was significant different Cr(Ⅵ) attenuation in these soil. Usually, higher Cr(Ⅵ) attenuation exists in low pH soils and its kinetics can be fitted by the first-order equation and the intra particle diffusion model, and soil pH, the content of active Fe(Ⅱ) and clay were correlated with qe (first-order equation) and k (intra particle diffusion model). While alkaline soils always have little or no Cr(Ⅵ) attenuation, and its kinetics cannot be described by any kinetic equations. Based on different Cr(Ⅵ) attenuation, the soils could be divided into 4 types: 1) reduction dominated soil; 2) reduction-adsorption soil; 3) slight adsorptive soil; 4) no reaction soil. Cr(Ⅵ) uptake by soil was correlation with soil properties such as soil pH, the content of Organic matters, Fe(Ⅱ) , OM-Fe, CaCO_3 and Clay. Of which, the soil pH play the most important direct role in Cr(Ⅵ) chemical attenuation, active Fe(Ⅱ) content was the secondary factory, the content of complex iron and clay were the third factors, the content of CaCO_3 and CEC exhibited little effect Cr(Ⅵ) attenuation, while the content of organic maters, the armorphurs and easily reducible manganese have no influence on Cr(Ⅵ) attenuation. Thus, we could estimate the Cr(Ⅵ) attenuation in unknown soils based on soil pH and the concentration of active Fe(Ⅱ) in soil.
     Based on the fact of that soil pH play the most impotant role in Cr(Ⅵ) attenuation, the mechanism of pH effected Cr(Ⅵ) attenuation in yellow-brown soil was investigated.The soil pH correlated with Cr(Ⅵ) reduction, adsorption and total uptake. And the Cr(Ⅵ) reduction was more sensitive than Cr(Ⅵ) adsorption as pH changes, since pH changed 1 unit, the amount of Cr(Ⅵ) reduction changed was 3 times than the amount of Cr(Ⅵ) adsorption changed. Low pH could effect the soil reductants dissolution from soil matrix was an important mechanism of pH effect on Cr(Ⅵ) reduction.Thus, the mechanisms of pH effect on Cr(Ⅵ) attenuation were summarized: 1) low pH could increase Cr(Ⅵ) adsorption on soil, 2) the reductants such as the organic matters and iron minerals only can react directly with Cr(Ⅵ) at low pH, 3) low pH could increase dissolution reductants power from soil matrix which was an indirectly way in increasing Cr(Ⅵ) reduction.,4) The other important reasons was the fact that low pH could raise redox potential of the Cr(Ⅵ)/Cr(Ⅲ) and change Cr(Ⅵ) to a very strong oxidant. In this experiment, we also observed that the anion NO_3~-, Cl~- and Br~- exhibited little effect on Cr(Ⅵ) uptake by soils, while cation such as K~(+), Ca~(2~(+)), Mg~(2~(+)), Na~(+) showed influence on Cr(Ⅵ) attenuation, which was because that these cations could lower the soil pH and can directly increase Cr(Ⅵ) adsorption on soil.
     On the other hand, Cr(Ⅲ) in soils,wether the nature Cr(Ⅲ) or from Cr(Ⅵ) reduction, may re-oxidize by MnO_2. And the organic acid was an important composontion of soil, since these organic acids can complex cations with valent of ~(+)2 or ~(+)3, thus the organic acids can complex Cr(Ⅲ) and inevitably affect on soil Cr(Ⅲ) oxidation. The organic acids influence on Cr(Ⅲ) oxidation were studied. At pH ranged from 5 to 8, citric acid exhibited strong inhibition of Cr(Ⅲ) oxidation by MnO_2, while oxalic acid, gluconic acid and tartaric acid only inhibited Cr(Ⅲ) oxidation at pH 5. The reaons of these organic acid effect at acid condation were 1) organic acid may reducte or complex withδ-MnO_2, 2) organic acid can complex with Cr(Ⅲ), 3) organic acid may reduce the Cr(Ⅵ) which was produced from Cr(Ⅲ) oxidation; while at alkaline system, this mechanism was limited to that organic acid can complex with Cr(Ⅲ). No matter which of the mechinsm mentioned above, -COOH play important role in affecting on Cr(Ⅲ) oxidation, with increase concentration of -COOH, the organic acid will more easily to complex with Cr(Ⅲ) and to reduce Cr(Ⅵ) orδ-MnO_2, thus inhibit the Cr(Ⅲ) oxidation. The organic acid-Cr(Ⅲ) complex have the lower oxidation potential than Cr(Ⅲ) ion with this order: citici acid-Cr(Ⅲ) < tartaric acid- Cr(Ⅲ) < oxalic acid-Cr(Ⅲ) < gluconic-Cr(Ⅲ) < Cr(Ⅲ) ion. Thus, whether organic acid complex with Cr(Ⅲ) or not, soil organic acid could inhibit the Cr(Ⅲ) ion oxidation. On the other hand, soil organic acid also could increase the Cr(Ⅲ) precipitation dissolution, leading Cr(Ⅲ) mobility to the surface of MnO_2, and increasing Cr(Ⅲ) oxidation. Thus soil organic acid was a double-edged sword, inhibition or increasing oxidation was decided by the species of Cr(Ⅲ) exist in soils.
引文
鲍士旦.2000.土壤农化分析.北京:中国农业出版社.
    卞永荣,蒋新,王代长,赵振华,孙磊,陈亮,周道斌.2004.五氯酚在酸性土壤表面的吸附-解吸特征研究.土壤, 36(2):181-186.
    陈英旭. 1992.铬的土壤化学.土壤学进展.(5):8-13.
    陈英旭,朱祖祥,何增耀. 1993.土壤、矿物对Cr (VI)的吸附机制的研究.农业环境保护, 12(4):150-152.
    储玲,王友保,丁佳红,李征,刘登义. 2005.铜对三叶草-土壤酶系统的影响.应用生态学报, 16(12),2413-2417.
    戴伟,陈晓东.北京低山地区土壤酶活性与土壤理化性质的关系.河北林学院学报, 1995, 10(1): 13-18.
    关松荫. 1980.土壤酶与土壤肥力.土壤通报, 1(6): 41-44.
    关松荫,张德生,张志明. 1986.土壤酶及其研究法.北京:农业出版社: 297-313.
    和文祥,朱铭莪,张一平. 2000a.土壤酶与重金属关系的研究现状.土壤与环境, 9(2): 139-142.
    和文祥,陈会明,冯贵颖,朱铭莪. 2000b.汞隔砷元素污染土壤的酶检测研究.环境科学学报, 20(3): 338-343.
    黄大辉,彭懿紫,黄天进,蔡巨广,莫永生,曾超珍. 2004.杂交水稻主要性状的多重逐步回归和通径分析.广西农业生物科学, 23(2): 100-103.
    黄峥,闵航,吕镇梅,金文明,袁海平. 2006.铜离子与铜镉离子复合污染对稻田土壤酶活性的影响研究.浙江大学学报(农业与生命科学版), 32(5): 557-562.
    焦坤和李德成. 2003.蔬菜大棚条件下土壤性质及环境条件的变化.土壤,(2): 94-97.
    蒋以超和张一平. 1993.土壤化学过程的物理化学.北京:中国科学技术出版社: 110-128.
    李爱琴,唐宏建,王阳峰. 2006.环境中铬污染的生态效应及其防治.中国环境管理干部学院学报, 2006, 16(1): 74-77.
    林匡飞,徐小清,金霞,项雅玲. 2005a土壤硒污染对土壤酶的生态毒理效应.中国环境科学(增刊),25: 94-97.
    林匡飞,徐小清,郑利,邵志慧,项雅玲.2005b.土壤锗污染对土壤酶活性的生态毒理效应.土壤学报, 42(1): 106-110.
    敬艳辉和邢留伟. 2006.通径分析及其应用.统计教育,(2): 24-26.
    刘富刚. 2008.德州市农田土壤生态环境问题与对策.安徽农业科学, 36(22): 9642-9643.
    刘桂秋,冯雄汉,谭文峰,刘凡.2002.几种土壤铁锰结核对Cr(Ⅲ)的氧化动力学特性.华中农业大学学报,21(5):450-454.
    刘云国,李欣,徐敏,甘海明. 2002.土壤重金属镉污染的植物修复与土壤酶活性.湖南大学学报(自然科学版), 29(4): 108-113.
    刘婉和李泽琴. 2007.水中铬污染治理的研究进展.广东微量元素科学, 14(9): 5-9.
    吕晓男,孟赐福,麻万诸. 2007.重金属与土壤环境质量及食物安全问题研究.中国生态农业学报, 15(2): 198-200.
    孟立君,吴凤芝. 2004.土壤酶研究进展.东北农业大学学报, 35(5): 622-626.
    戚道孟和王伟. 2007.我国土壤污染防治的立法思考. 2007年中国法学会环境资源法学研究会年会论文集: http://www.riel.whu.edu.cn/article.asp?id=30010.
    任冠军.2009.无处不在的重金属污染. http://news.163.com/special/00012Q9L/zhongjinshu 100129.html.
    沈阿林,李学垣,吴受荣. 1997.土壤中低分子有机酸在物质循环中的作用.植物营养与肥料学报, 1997, 3(4): 363-370.
    盛海彦. 2004.铬渣在灰钙土淋溶中铬(VI)吸附量的初步研究[J].青海大学学报(自然科学版), ,22(04): 41-44.
    夏家淇和骆永明. 2006.关于土壤污染的概念和3类评价指标的探讨.生态与农村环境学报, 22(1): 87-90.
    徐冬梅,刘广深,王黎明,刘维屏. 2004.重金属汞对土壤酸性磷酸酶的影响及其机理.环境科学学报, 24(5): 865-870.
    杨红飞,严密,姚婧,王友保,刘登义. 2007.铜、锌污染对油菜生长和土壤酶活性的影响.应用生态学报, 18(7): 1484-1490.
    杨苏才,南忠仁,曾静静. 2006.土壤重金属污染现状与治理途径研究进展.安徽农业科学, 34(3): 549-552.
    杨万勤,王开运. 2002.土壤酶研究动态与展望.应用与环境生物学报, 2002, 8(5): 564-570
    杨正亮,冯贵颖. 2002.重金属对土壤脲酶活性的影响.干旱地区农业研究, 20(3): 41-13.
    杨志新,冯圣东,刘树庆. 2000.镉、锌、铅单元素及其复合污染与土壤过氧化氢酶活性关系的研究.土壤与环境,9(1): 15-18.
    杨志新,冯圣东,刘树庆. 2005.镉、锌、铅单元素及其复合污染与土壤过氧化氢酶活性关系的研究.中国生态农业学报, 13(4): 138-141.
    易秀. 2004.嵝土土不同发生层铬(Ⅵ)吸附特性及还原容量研究.干旱地区农业研究, 22(4): 215-220.
    张桂山,贾小明,马晓航,钱忠,史春余,张夫道. 2004.山东棕壤重金属污染土壤酶活性的预警研究.植物营养与肥料学报, 10(3): 272-276.
    张天伦,崔艳超,徐恒玉.2004.通径分析在EXCEL上的实现.农业网络信息,(8): 36-37.
    郑喜珅,鲁安怀,高翔,赵谨,郑德圣. 2002.土壤中重金属污染现状与防治方法.土壤与环境, 11(1): 79-84.
    周礼恺,张志明,曹承绵,李荣华. 1985.土壤的重金属污染与土壤酶活性.环境科学学报, 5(2): 176-183.
    朱月珍. 1982.土壤中六价铬的吸附与还原.环境化学, 1(5): 359-364.
    Abdel-Samad, H. and Watson, P. R. 1997. An XPS study of the adsorption of chromate on goethite (α-FeOOH). Applied Surface Science, 108(3): 371-377.
    Aide, M. T. and Cummings, M. F. 1997. The influence of PH and phosphorus on the adsorption of chromium (VI) on boehmite. Soil Science, 162(8): 599-603.
    Alowitz, M. J. and Scherer, M. M. 2002. Kinetics of nitrate, nitrite, and Cr(vi) reduction by iron metal. Environmental Science and Technology, 36(3): 299-306.
    Amacher, M. C., Selim, H. M. and Iskandar, I. K. 1988. Kinetics of chromium(VI) and Cadmium retention in soils; a nonlinear multireaction model. Soil Science Society of America Journal, 52(2).
    Apte, A. D., Verma, S., Tare, V. and Bose, P. 2005. Oxidation of Cr(III) in tannery sludge to Cr(VI): Fieldobservations and theoretical assessment. Journal of Hazardous Materials, 121(1-3): 215-222.
    Apte, A. D., Tare, V. and Bose, P. 2006. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. Journal of Hazardous Materials, 128(2-3): 164-174.
    Banks, M. K., Schwab, A. P. and Henderson, C. 2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62(2): 255-264.
    Baron, D. and Palmer, C. D. 1998. Solubility of KFe(CrO4)2·2H2O at 4-75°C. Applied Geochemistry, 13(8): 961-973.
    Bartlett, R. and James, B. 1979. Behavior of chromium in soils: III. Oxidation. Journal of Environmental Quality, 8(1): 31-35.
    Bartlett, R. J. and Kimble, J. M. 1976. Behavior of chromium in soils: II. Hexavalent forms. Journal of Environmental Quality, 5(4): 383-386.
    Bartlett, R. J. 1991. Chromium cycling in soils and water: Links, gaps, and methods. Environmental Health Perspectives, 92: 17-24.
    Bhutani, M. M., Mitra, A. K. and Kumari, R. 1992. Adsorption of51Cr(VI) on manganese dioxide from aqueous solution. Mikrochimica Acta, 107(1-2): 19-26.
    Blowes, D. W., Ptacek, C. J. and Jambor, J. L. 1997. In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: Laboratory studies. Environmental Science and Technology, 31(12): 3348-3357.
    Bolan, N. S., Adriano, D. C., Natesan, R. and Koo, B. J. 2003. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. Journal of Environmental Quality, 32(1): 120-128.
    Brigatti, M. F., Franchini, G., Lugli, C., Medici, L., Poppi, L. and Turci, E. 2000. Interaction between aqueous chromium solutions and layer silicates. Applied Geochemistry, 15(9): 1307-1316.
    Buerge, I. J. and Hug, S. J. 1997. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environmental Science and Technology, 31(5): 1426-1432.
    Buerge, I. J. and Hug, S. J. 1998. Influence of organic ligands on chromium(VI) reduction by iron(II). Environmental Science and Technology, 32(14): 2092-2099.
    Buerge, I. J. and Hug, S. J. 1999. Influence of mineral surfaces on chromium(VI) reduction by iron(II). Environmental Science and Technology, 33(23): 4285-4291.
    Canfield, D. E., Thamdrup, B. and Hansen, J. W. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57(16): 3867-3883.
    Carbonaro, R. F., Gray, B. N., Whitehead, C. F. and Stone, A. T. 2008. Carboxylate-containing chelating agent interactions with amorphous chromium hydroxide: Adsorption and dissolution. Geochimica et Cosmochimica Acta, 72(13): 3241-3257.
    Choi, J., Jung, Y. and Lee, W. 2008. Fe(II)-initiated reduction of hexavalent chromium in heterogeneous iron oxide suspension. Korean Journal of Chemical Engineering, 25(4): 764-769.
    Chuan, M. C. and Liu, J. C. 1996. Release behavior of chromium from tannery sludge. Water Research, 30(4): 932-938.
    Chung, J. B. and Sa, T. M. 2001. Chromium oxidation potential and related soil characteristics in arable upland soils. Communications in Soil Science and Plant Analysis, 32(11-12): 1719-1733.
    Covelo, E. F., Andrade Couce, M. L. and Vega, F. A. 2004. Competitive adsorption and desorption of cadmium, chromium, copper, nickel, lead, and zinc by humic umbrisols. Communications in Soil Science and Plant Analysis, 35(19-20): 2709-2729.
    Dai, R., Liu, J., Yu, C., Sun, R., Lan, Y. and Mao, J. D. 2009. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite). Chemosphere, 76(4): 536-541.
    Deng, B. and Stone, A. T. 1996. Surface-catalyzed chromium(VI) reduction: Reactivity comparisons of different organic reductants and different oxide surfaces. Environmental Science and Technology, 30(8): 2484-2494.
    Deng S P, Tabatabai M A. 1995. Cellulase activity of soil effect of trace elements.Soil Biol Biochem, 27(7): 977-979.
    Eary, L. E. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environmental Science and Technology, 22(8): 972-977.
    Eary, L. E. and Rai, D. 1991. Chromate reduction by subsurface soils under acidic conditions. Soil Science Society of America Journal, 55(3): 676-683.
    Echeverría, J., Morera, T. and Garrido, J. 1999. Metal-induced chromium(VI) sorption by two calcareous soils. Australian Journal of Soil Research, 37(3): 431-443.
    Eckert, J. M., Stewart, J. J., Waite, T. D., Szymczak, R. and Williams, K. L. 1990. Reduction of chromium(VI) at sub-μg l-1 levels by fulvic acid. Analytica Chimica Acta, 236(2): 357-362.
    Edmond Eary, L. and Rai, D. 1987. Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environmental Science and Technology, 21(12): 1187-1193.
    Farmer, J. G., Thomas, R. P., Graham, M. C., Geelhoed, J. S., Lumsdon, D. G. and Paterson, E. 2002. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites. Journal of Environmental Monitoring, 4(2): 235-243.
    Fendorf, S. E., Fendorf, M., Sparks, D. L. and Gronsky, R. 1992. Inhibitory mechanisms of Cr(III) oxidation byδ-MnO2. Journal of Colloid And Interface Science, 153(1): 37-54.
    Fendorf, S. E. and Zasoski, R. J. 1992. Chromium(III) oxidation byδ-MnO2. 1. Characterization. Environmental Science and Technology, 26(1): 79-85.
    Fendorf, S. E., Zasoski, R. J. and Burau, R. G. 1993. Competing metal ion influences on chromium(III) oxidation by birnessite. Soil Science Society of America Journal, 57(6): 1508-1515.
    Fendorf, S. E. 1995. Surface reactions of chromium in soils and waters. Geoderma, 67(1-2): 55-71.
    Fendorf, S. E. and Li, G. 1996. Kinetics of chromate reduction by ferrous iron. Environmental Science and Technology, 30(5): 1614-1617.
    Fukuoka, H., Shigemoto, N., Inomo, H. and Shiraki, W. 2008. Chromate adsorption on iron oxyhydroxides with different crystal forms in the presence of soil materials. Journal of Chemical Engineering of Japan, 41(2): 69-75.
    Gould, J. P. 1982. The kinetics of hexavalent chromium reduction by metallic iron. Water Research, 16(6): 871-877.
    Gu, B. and Chen, J. 2003. Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochimica et Cosmochimica Acta, 67(19): 3575-3582.
    Guha, H., Saiers, J. E., Brooks, S., Jardine, P. and Jayachandran, K. 2001. Chromium transport, oxidation,and adsorption in manganese-coated sand. Journal of Contaminant Hydrology, 49(3-4): 311-334.
    Han, F. X., Su, Y., Maruthi Sridhar, B. B. and Monts, D. L. 2004. Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant and Soil, 265(1-2): 243-252.
    He, Y. T. and Traina, S. J. 2005. Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation. Environmental Science and Technology, 39(12): 4499-4504.
    Hellerich, L. A. and Nikolaidis, N. P. 2005. Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to sub-wetland groundwater environment. Water Research, 39(13): 2851-2868.
    Hua, B., Deng, B., Thornton, E. C., Yang, J. and Amonette, J. E. 2007. Incorporation of chromate into calcium carbonate structure during coprecipitation. Water, Air, and Soil Pollution, 179(1-4): 381-390.
    Hug, S. J., Laubscher, H. U. and James, B. R. 1997. Iron(III) catalyzed photochemical reduction of chromium(VI) by oxalate and citrate in aqueous solutions. Environmental Science and Technology, 31(1): 160-170.
    Hutchison J.M., Seaman J.C., Aburime S.A and Radcliffe. D.E. 2003. Chromate Transport and Retention in Variably Saturated Soil Columns. VADOSE ZONE, (2): 702-714.
    Hwang, I., Batchelor, B., Schlautman, M. A. and Wang, R. 2002. Effects of ferrous iron and molecular oxygen on chromium(VI) redox kinetics in the presence of aquifer solids. Journal of Hazardous Materials, 92(2): 143-159.
    Icopini, G. A. and Long, D. T. 2002. Speciation of aqueous chromium by use of solid-phase extractions in the field. Environmental Science and Technology, 36(13): 2994-2999.
    James, B. R. and Bartlett, R. J. 1983a. Behavior of chromium in soils. VI. Interactions between oxidation-reduction and organic complexation. Journal of Environmental Quality, 12(2): 173-176.
    James, B. R. and Bartlett, R. J. 1983b. Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. Journal of Environmental Quality, 12(2): 177-181.
    James, B. R. 1994. Hexavalent chromium solubility and reduction in alkaline soils enriched with chromite ore processing residue. Journal of Environmental Quality, 23(2): 227-233.
    Jardine, P. M., Fendorf, S. E., Mayes, M. A., Larsen, I. L., Brooks, S. C. and Bailey, W. B. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environmental Science and Technology, 33(17): 2939-2944.
    Jones, D. L., Dennis, P. G., Owen, A. G. and Van Hees, P. A. W. 2003. Organic acid behavior in soils - Misconceptions and knowledge gaps. Plant and Soil, 248(1-2): 31-41.
    Kareus, S. A., Kelley, C., Walton, H. S. and Sinclair, P. R. 2001. Release of Cr(III) from Cr(III) picolinate upon metabolic activation. Journal of Hazardous Materials, 84(2-3): 163-174.
    Khan, F. A. and Puls, R. W. 2003. In situ abiotic detoxification and immobilization of hexavalent chromium. Ground Water Monitoring and Remediation, 23(1): 77-84.
    Kim, C., Zhou, Q., Deng, B., Thornton, E. C. and Xu, H. 2001. Chromium(VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics. Environmental Science and Technology, 35(11): 2219-2225.
    Kim, J. G. and Dixon, J. B. 2002. Oxidation and fate of chromium in soils. Soil Science and Plant Nutrition, 48(4): 483-490.
    Kim, J. G., Jung, P. K., Moon, H. S. and Chon, C. M. 2002a. Reduction of hexavalent chromium by pyrite-rich andesite in different anionic solutions. Environmental Geology, 42(6): 642-648.
    Kim, S. D., Park, K. S. and Gu, M. B. 2002b. Toxicity of hexavalent chromium to Daphnia magna: Influence of reduction reaction by ferrous iron. Journal of Hazardous Materials, 93(2): 155-164.
    Kota(?), J. and Stasicka, Z. 2000. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107(3): 263-283.
    Ko(?)uh, N., (?)tupar, J. and Gorenc, B. 2000. Reduction and oxidation processes of chromium in soils. Environmental Science and Technology, 34(1): 112-119.
    Lai, H. and McNeill, L. S. 2006. Chromium redox chemistry in drinking water systems. Journal of Environmental Engineering, 132(8): 842-851.
    Lan, Y., Deng, B., Kim, C. and Thornton, E. C. 2007. Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions. Geochemical Transactions, 8.
    Lan, Y. Q., Yang, J. X. and Deng, B. 2006. Catalysis of Dissolved and Adsorbed Iron in Soil Suspension for Chromium(VI) Reduction by Sulfide. Pedosphere, 16(5): 572-578.
    Lee, W. and Batchelor, B. 2003. Reductive capacity of natural reductants. Environmental Science and Technology, 37(3): 535-541.
    Legrand, L., El Figuigui, A., Mercier, F. and Chausse, A. 2004. Reduction of aqueous chromate by Fe(II)/Fe(III) carbonate green rust: Kinetic and mechanistic studies. Environmental Science and Technology, 38(17): 4587-4595.
    Liu, C. C., Wang, M. K., Chiou, C. S., Li, Y. S., Lin, Y. A. and Huang, S. S. 2006. Chromium removal and sorption mechanism from aqueous solutions by wine processing waste sludge. Industrial and Engineering Chemistry Research, 45(26): 8891-8899.
    Lu, A., Zhong, S., Chen, J., Shi, J., Tang, J. and Lu, X. 2006. Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite. Environmental Science and Technology, 40(9): 3064-3069.
    Mattuck, R. and Nikolaidis, N. P. 1996. Chromium mobility in freshwater wetlands. Journal of Contaminant Hydrology, 23(3): 213-232.
    Mila(?)i(?), R. and (?)tupar, J. 1995. Fractionation and oxidation of chromium in tannery waste-and sewage sludge-amended soils. Environmental Science and Technology, 29(2): 506-514.
    Nakayama, E., Kuwamoto, T., Tsurubo, S. and Fujinaga, T. 1981. Chemical speciation of chromium in sea water. Part 2. Effects of Manganese Oxides and Reducible Organic Materials on the Redox Processes of Chromium. Analytica Chimica Acta, 130(2): 401-404.
    Nico, P. S. and Zasoski, R. J. 2000. Importance of Mn(III) availability on the rate of Cr(III) oxidation on δ-MnO2. Environmental Science and Technology, 34(16): 3363-3367.
    Olazabal, M. A., Nikolaidis, N. P., Suib, S. A. and Madariaga, J. M. 1997. Precipitation equilibria of the chromium(VI)/iron(III) system and spectrospcopic characterization of the precipitates. Environmental Science and Technology, 31(10): 2898-2902.
    Oze, C., Bird, D. K. and Fendorf, S. 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences of the United States of America, 104(16): 6544-6549.
    Parab, H., Joshi, S., Shenoy, N., Lali, A., Sarma, U. S. and Sudersanan, M. 2006. Determination of kineticand equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochemistry, 41(3): 609-615.
    Patterson, R. R., Fendorf, S. and Fendorf, M. 1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science and Technology, 31(7): 2039-2044.
    Pettine, M. and Millero, F. J. 1990. Chromium speciation in seawater: the probable role of hydrogen peroxide. Limnology & Oceanography, 35(3): 730-736.
    Pettine, M., Millero, F. J. and La Noce, T. 1991. Chromium (III) interactions in seawater through its oxidation kinetics. Marine Chemistry, 34(1-2): 29-46.
    Pettine. M., Millero F.J. and Passina R. 1994. Reduction of chromium(VI) with hydrogen sulfide in NaCl media. Marine chemistry, 46(4): 335-344.
    Pettine, M., Barra, I., Campanella, L. and Millero, F. J. 1998a. Effect of metals on the reduction of chromium (VI) with hydrogen sulfide. Water Research, 32(9): 2807-2813.
    Pettine, M., D'Ottone, L., Campanella, L., Millero, F. J. and Passino, R. 1998b. The reduction of chromium (VI) by iron (II) in aqueous solutions. Geochimica et Cosmochimica Acta, 62(9): 1509-1519.
    Puls, R. W., Paul, C. J. and Powell, R. M. 1999. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Applied Geochemistry, 14(8): 989-1000.
    Puzon, G. J., Tokala, R. K., Zhang, H., Yonge, D., Peyton, B. M. and Xun, L. 2008. Mobility and recalcitrance of organo-chromium(III) complexes. Chemosphere, 70(11): 2054-2059.
    Rai, D., Sass, B. M. and Moore, D. A. 1987. Chromium (III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorganic Chemistry, 26(3): 345-349.
    Richard, F. C. and Bourg, A. C. M. 1991. Aqueous geochemistry of chromium: A review. Water Research, 25(7): 807-816.
    Schlautman, M. A. and Han, I. 2001. Effects of pH and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems. Water Research, 35(6): 1534-1546.
    Sedlak, D. L. and Chan, P. G. 1997. Reduction of hexavalent chromium by ferrous iron. Geochimica et Cosmochimica Acta, 61(11): 2185-2192.
    Shtiza, A., Swennen, R. and Tashko, A. 2008. Chromium speciation and existing natural attenuation conditions in lagoonal and pond sediments in the former chemical plant of Porto-Romano (Albania). Environmental Geology, 53(5): 1107-1128.
    Shtiza, A., Swennen, R., Cappuyns, V. and Tashko, A. 2009. ANC, BNC and mobilization of Cr from polluted sediments in function of pH changes. Environmental Geology, 56(8): 1663-1678.
    Singh, G., Brar, M. S. and Malhi, S. S. 2007. Decontamination of chromium by farm yard manure application in spinach grown in two texturally different Cr-contaminated soils. Journal of Plant Nutrition, 30(2): 289-308.
    Song, J., Townsend, T., Solo-Gabriele, H. and Jang, Y. C. 2006. Hexavalent chromium reduction in soils contaminated with chromated copper arsenate preservative. Soil and Sediment Contamination, 15(4): 387-399.
    Sparks, D. L. 2003. Environmental Soil Chemistry. Second Edition. San Diego:Academic Press: 207-218.
    Stephanie M. G., Todd P. L and Matthew J. E. 2004. Kinetics of Chromate Adsorption on Goethite in thePresence of Sorbed Silicic Acid. J. ENVIRON. QUAL, (3): 1703-1708.
    Stepniewska, Z., Bucior, K. and Bennicelli, R. P. 2004. The effects of MnO2 on sorption and oxidation of Cr(III) by soils. Geoderma, 122(2-4 SPEC. IIS.): 291-296.
    Strobel, B. W. 2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution - A review. Geoderma, 99(3-4): 169-198.
    Tan, W., Liu, F., Feng, X., Huang, Q. and Li, X. 2005. Adsorption and redox reactions of heavy metals on Fe-Mn nodules from Chinese soils. Journal of Colloid And Interface Science, 284(2): 600-605.
    Thornton, E. C. and Amonette, J. E. 1999. Hydrogen sulfide gas treatment of Cr(VI)-contaminated sediment samples from a plating-waste disposal site - Implications for in-situ remediation. Environmental Science and Technology, 33(22): 4096-4101.
    Thornton, E. C., Gilmore, T. J., Olsen, K. B., Giblin, J. T. and Phelan, J. M. 2007. Treatment of a chromate-contaminated soil site by in situ gaseous reduction. Ground Water Monitoring and Remediation, 27(1): 56-64.
    Tirez, K., Scharf, H., Calzolari, D., Cleven, R., Kisser, M. and Lück, D. 2007. Validation of a European standard for the determination of hexavalent chromium in solid material. Journal of Environmental Monitoring, 9(7): 749-759.
    Tokala, R. K., Yonge, D., Puzon, G. J., Sivaswamy, V., Xun, L. and Peyton, B. M. 2008. Subsurface mobility of organo-Cr(III) complexes formed during biological reduction of Cr(VI). Journal of Environmental Engineering, 134(2): 87-92.
    Tokunaga, T. K., Wan, J., Firestone, M. K., Hazen, T. C., Schwartz, E., Sutton, S. R. and Newville, M. 2001. Chromium diffusion and reduction in soil aggregates. Environmental Science and Technology, 35(15): 3169-3174.
    Tokunaga, T. K., Wan, J., Firestone, M. K., Hazen, T. C., Olson, K. R., Herman, D. J., Sutton, S. R. and Lanzirotti, A. 2003. In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. Journal of Environmental Quality, 32(5): 1641-1649.
    Tokunaga, T. K., Wan, J., Lanzirotti, A., Sutton, S. R., Newville, M. and Rao, W. 2007. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Environmental Science and Technology, 41(12): 4326-4331.
    Tzou, Y. M., Loeppert, R. H. and Wang, M. K. 2002. Effect of organic complexing ligands on Cr(III) oxidation by MnOx. Soil Science, 167(11): 729-738.
    Tzou, Y. M., Wang, M. K. and Loeppert, R. H. 2003. Effects of phosphate, HEDTA, and light sources on Cr(VI) retention by goethite. Soil and Sediment Contamination, 12(1): 69-84.
    Van Der Weijden, C. H. and Reith, M. 1982. Chromium(III) - chromium(VI) interconversions in seawater. Marine Chemistry, 11(6): 565-572.
    Weaver, R. M. and Hochella Jr, M. F. 2003. The reactivity of seven Mn-oxides with Cr3+aq: A comparative analysis of a complex, enviromentally important redox reaction. American Mineralogist, 88(11-12 PART 2): 2016-2027.
    Weng, C. H., Huang, C. P., Allen, H. E., Leavens, P. B. and Sanders, P. F. 1996. Chemical interactions between Cr(VI) and hydrous concrete particles. Environmental Science and Technology, 30(2): 371-376.
    Wielinga, B., Mizuba, M. M., Hansel, C. M. and Fendorf, S. 2001. Iron promoted reduction of chromate bydissimilatory iron-reducing bacteria. Environmental Science and Technology, 35(3): 522-527.
    Williams, A. G. B. and Scherer, M. M. 2004. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environmental Science and Technology, 38(18): 4782-4790.
    Wittbrodt, P. R. and Palmer, C. D. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environmental Science and Technology, 29(1): 255-263.
    Wittbrodt, P. R. and Palmer, C. D. 1996. Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environmental Science and Technology, 30(8): 2470-2477.
    Xu, Y. and Zhao, D. 2007. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 41(10): 2101-2108.
    Zachara, J. M., Girvin, D. C., Schmidt, R. L. and Thomas Resch, C. 1987. Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environmental Science and Technology, 21(6): 589-594.
    Zachara, J. M., Ainsworth, C. C., Cowan, C. E. and Resch, C. T. 1989. Adsorption of chromate by subsurface soil horizons. Soil Science Society of America Journal, 53(2): 418-428.
    Zhilin, D. M., Schmitt-Kopplin, P. and Perminova, I. V. 2004. Reduction of Cr(VI) by peat and coal humic substances. Environmental Chemistry Letters, 2(3): 141-145.
    Zhou, D., Chen, H., Zheng, C. and Tu, C. 2000. Catalytic effect of soil colloids on the reaction between Cr(VI) and p-methoxyphenol. Environmental Pollution, 111(1): 75-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700