ZVI还原技术用于地下水污染物的同步修复及评估预测模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
零价铁(ZVI)是一种强还原剂,对于地下水污染物去除具有良好的效果。本文在试验过程中,采用化学还原法制备了微米级Pd/Fe双金属,纳米级Fe和纳米级Ni/Fe双金属等催化还原剂,通过TEM、BET-N_2、XRD等表征手段对还原铁粉、纳米级、普通Pd/Fe颗粒和纳米级Pd/Fe等颗粒的形状和大小、比表面积以及纳米级Fe和纳米级Pd/Fe的晶体结构进行了测定。分别选用还原铁粉、纳米级Fe对六价铬去除率进行了系统研究;采用普通Pd/Fe双金属和纳米级Ni/Fe双金属对邻、对硝基氯苯进行了催化还原脱氯研究;然后采用纳米级Ni/Fe对六价铬和对硝基氯苯进行了同步修复研究,得出反应过程中各反应物和生成物的浓度变化规律。考察了不同催化还原剂、钯化率、纳米级Pd/Fe投加量、反应温度、初始pH值以及反应物初始浓度等因素对处理效果和反应速率的影响。通过产物分析结合铬的氧化还原电势E-pH图研究了六价铬的去除机理,通过中间产物和最终产物分析研究了对硝基氯苯的催化还原脱氯的反应机理。最后通过地下水原位修复中试装置,结合中试实验数据和基础试验数据,建立了ZVI修复污染地下水的预测模型。
     本文主要结论如下:
     1.通过TEM分析得出纯还原铁粉的表面比较光滑、均匀;普通Pd/Fe表面形成了许多白色小突起,这些白色突起构成了表面催化活性位。大多数纳米级Fe和纳米级Ni/Fe颗粒的直径都在100nm以下,但有团聚现象,球状颗粒连接成树枝状。BET-N_2测得还原铁粉,钯/铁(0.005%),纳米铁的比表面积分别为0.49、0.62、12.4m~2/g。纳米级Fe和普通Pd/Fe的XRD谱图上都出现与Fe的110衍射(d=0.2027nm)相对应的衍射峰,而普通Pd/Fe的XRD谱图上并未出现金属Pd的衍射峰。
     2.影响零价铁去除六价铬反应速率的因素有:零价铁投加量、六价铬初始浓度、反应温度和初始pH值、腐殖酸浓度、铜离子浓度、淀粉投加量等。实验结果表明较大的零价铁投加量、较高的反应温度和较低的初始pH值有利于六价铬的去除反应。腐殖酸浓度、铜离子浓度和淀粉投加量则存在一个合适的浓度范围使六价铬的去除反应速率最快。Cr(Ⅵ)去除的表观动力学常数与铁粉的投加量、比表面积呈线性递增关系;随着初始pH值的升高而减缓。
Zero valent iron is a powerfull reductive agent that can remove the groundwater contaminant.The preparation processes of common Pd/ Fe bimetal, nanoscale Fe and Ni/ Fe bimetal were discussed in this thesis. By making use of TEM, BET-N_2 and XRD etc we measured the shade, sizes and ratio area of reduction iron powder, common Pd/Fe and nanoscale Pd/Fe. Meanwhile, the crystal structures of nanoscale Fe and nanoscale Pd/Fe were also investigated. The regular patterns of concentration of reactant and product in reaction processes were studied by using the following methods and techniques: the Cr(VI) wiping off research using both reduction iron powder and nanoscale Fe, the p-NCB catalysis reduction dechloration research using common Pd/Fe bimetal and nanoscale Ni/Fe bimetal, and the synchronous restoration research of Cr(VI) and p-NCB using nanoscale Ni/Fe bimetal. The influences of many factors such as various catalytic reduction agent, palladium rate, adding dose of nanoscale Pd/Fe, reaction temperature, initial pH values and initial reactant concentration on the disposal effect and reaction rates were investigated. The Cr(VI) wiping off mechanism was studied by analyzing the Oxidation-Reduction Reactions potential analysis based on the E-pH diagram, and the mechanism of p-NCB catalysis reduction dechloration was suggested via the analysis of intermediates and products. In combination of the in situ groundwater treatment pilot plant data with the base experiment data we established a prediction model for the ZVI groundwater restoration. The experimental results are given as follows:
    1. The TEM analysis indicates that the surface pure Fe is smooth and even, while the surface pure common Pd/Fe exhibits many small white protuberances, which form the surface catalyzed active bits. It is shown that the diameter of most nanoscale Fe and Ni/Fe is less than 100 nms, and that the catalyst granules conjunct each other and exhibit the branch-shape structure. The BET-N_2 measurement shows that the ratio surface area of the iron powder, Pd/Fe iron (0.005%) and nanoscale Fe are 0.49, 0.62 and 12.4 m~2/g respectively. It is demonstrated that the 110 diffraction peak of Fe (d=0.2027 nm) appears in the XRD diagram of nanoscale Fe and common Pd/Fe. However, there exists no Pd diffraction peaks in the XRD diagram of common Pd/Fe.
    2. The possible factors, which have influence on the Fe wiping off Cr(VI) reaction rate, are as follows: Fe adding dose, Cr(VI) beginning concentration ,the reaction temperature, the initial pH value, humic acid concentration, copper ion concentration, starch adding dose and so on. Our experiments indicate that the larger Fe adding dose, the higher reaction temperature with the lower initial pH value has positive effect on the Cr(VI) wiping off reaction. The appropriate humic acid concentration, copper ion concentration and starch adding dose can lead to the rapid reaction rate in the Cr(VI) wiping off reaction. In general, the apparent dynamical constants of Cr(VI) wiping off is linear functions of both the Fe adding dose and the
引文
[1] EPA, Citizen's Guide to Ground-Water Protection. Sep. 1999.
    [2] 孙景云,左犀.地下水饮用水源地的保护.环境科学.1996,17(5):20-24.
    [3] EEA, Ground Water Qulity and Quantity in Europe. June. 1999.
    [4] Abdulrahman, I. A. Nitrate concentration in Riyadh, Saudi Arabia drinking water supplies. Environmental Monitoring and Assessment, 1997, 47: 315-324.
    [5] 郝华.我国城市地下水污染状况与对策研究.水利发展研究.2004,3:23-25.
    [6] 孙化江,钟帮权.黑龙江齐齐哈尔市地下水资源污染现状与防治措施.地下水.2004,26(3):196-199.
    [7] 王新光,李娜.未央区地下水体污染现状及影响的分析.西北水力发电.2004,20:137-139.
    [8] 任焕莲.晋城市地下水污染现状评价及防治对策.山西水利科技.2004,1:67-68.
    [9] 张红梅,速宝玉.垃圾填埋场渗滤液及对地下水污染研究进展.水文地质工程地质.2003,30(6):110-115.
    [10] 薛红琴,张文妍等.垃圾填埋场渗滤液的防渗措施和地下水的污染防护.安全与环境学报.2002,2(4):18-22.
    [11] 陈学群,俞爱媚.垃圾填埋场渗滤液场内处理技术分析.环境导报.2001,5:22—24.
    [12] 徐凤兰,叶丹,曹德福,王杰.浅谈地下水污染及其防治.地下水.27(1):50-52.
    [13] Xu, X. R., Li, H. B., Li, X. Y., Gu, J. D., Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere, 2005, 57(7), 609-613.
    [14] 梅光泉.金属废水的危害与治理.微量元素与健康研究.2004,21(4):54-56.
    [15] Wei, C., German, S., Basak, S., Rajeshwar, K., Reduction of Hexavalent. Chromium in Aqueous Solutions by Polypyrrole. J. Electrochem. Soc. 1993, 140 (4), 60-62.
    [16] Keum, Y. S., Li, Q. X., Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere, 2004, 54, 255-263.
    [17] 张永波,时红,王玉和.地下水环境保护与污染控制.北京:中国环境科学出版社,2003.8.
    [18] 王君连.工程地下水计算.北京:中国水利水电出版社,2004.3.
    [19] Orth, W. S., Gillham, R. W. Dechlorination of trichloroethene in aqueous solution using Fe0. Environ. Sci. Technol. 1996, 30: 66-71.
    [20] Agrawal, A. and Tratnyek, P. G Reduction of nitroaromatic compounds by zero-valent iron metal. Environ. Sci. Technol. 1996, 30: 153-160.
    [21] 夏清.化学还原法处理含铬废水工艺条件研究.无机盐工业.2003,35(3):37-39.
    [22] Kirk J. Cantrell, Daniel I. Kaplan, and Thomas W. Wietsma. 1995, "Zero-valent iron for the in situ remediation of selected metals in groundwater." Journal of Hazardous Materials 42: 201-212.
    [23] Michael J. Alowitz, and Michelle M. Acherer. 2002, "Kinetics of Nitrite and Cr(Ⅵ) Reduction by Iron Metal." Environ. Sci. Technol. 36(3): 299-306.
    [24] Nancy Ruiz, Sudipta Seal, and Debra Reinhart. 1995, "Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation." Journal of Hazardous Materials B80: 107-117.
    [25] Powell R. M., Puls R. W., Hightower S. K., and Sabantini D.A. 1995, "Coupled Iron Corrosion and Chromate Reduction: Mechanisms for Subsurface Remediation." Environ. Sci. Technol. 29(8): 1913-1922.
    [26] Robert M. Powell, and Robert W. Puls. 1997, "Proton Generation by Dissolution of Intrinsic or Augmented Aluminosilicate Minerals for in Situ Contaminant Remediation by Zero-Valence-State Iron." Environ. Sci. Technol. 31(8): 2244-2251.
    [27] Rosemarie Miehr, Paul G Tratnyek, Joel Z. Bandstra, Mic Helle M. Scherer, Michel J. Alowitz, and Eric J. Bylaska. 2004, "Diversity of Contaminant Reduction Reactions by Zerovalent Iron: Role of the Reductate." Environ. Sci. Technol. 38(1): 139-147.
    [28] Sherman M. Ponder, John G. Darab, and Thmoas E. Mallouk. 2000, "Remediation of Cr(VI) and Pb(Ⅱ) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron." Environ. Sci. Technol. 34(12): 2564-2569.
    [29] Devlin, J. F., Klausen, J., Schwarzenbach, R. P. Kinetics of nitroaromatic reduction on granular iron in recirculating bath experiments. Environ. Sci. Technol. 1998, 32: 1941-1947.
    [30] Choe, S., Lee, S. H., Chang Y. Y., Hwang, K. Y., Khim, J. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe~0. Chemosphere. 2001, 42(1): 367-372.
    [31] Wang, C. B., Zhang, W. X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31: 2154-2156.
    [32] Lee T., Lim H., Lee Y., Park J., Use of waste iron metal for removal of Cr(Ⅵ) from water. Chemosphere. 2003, 53: 479-485.
    [33] Muftikian, R., Fernando, Q., and Korte, N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water, water research. 1995, 29(10): 2434-2439.
    [34] Lien H. L., Zhang W. X. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001, 191: 97-105.
    [35] 徐新华,卫建军,汪大辉.Pd/Fe及纳米Pd/Fe对氯酚的脱氯研究.中国环境科学.2004,24(1):76-80.
    [36] 童少平,胡丽华,魏红,马淳安.Ni/Fe二元金属脱氯降解对氯苯酚的研究.环境科学.2005,26(4):59-62.
    [37] 徐向阳,谢雨生,叶敏,郑红飞.硝基氯苯生产废水中典型有机污染物及其生物可处理性的初步研究.浙江大学学报(农业与生命科学版).2000,26(4):404-408.
    [38] 吴克明,潘留明,黄羽.反应柱充填活性炭法处理轧钢含铬废水的研究.环境污染与防治,2005,27(5):379-381.
    [39] 匡少平,徐倩.利用粉煤灰中活性炭的吸附能力治理含铬废水.环境污染与防治,2003,25(4):240-242.
    [40] Karthikeyan, T., Rajgopal, S., Miranda, L. R. Chromium(Ⅵ) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon, Journal of HazardousMaterials. 2005, 124(1-3): 192-199.
    [41] Namasivayam, C., Yamuna, R. T. Adsorption of chromium (Ⅵ) by a low-cost adsorbent: biogas residual slurry. Chemosphere. 1995, 30(3): 561-578.
    [42] Eromosele, I. C., Bayero, S. S. Adsorption of chromium and zinc ions from aqueous solutions by cellulosic graft copolymers. Bioresource Technology. 2000, 71(3): 279-281.
    [43] 黄韵,马晓燕,刘海林,袁莉.改性累托石对水溶液中Cr(Ⅵ)的吸附.硅酸盐学报.2005,33(2):197-201.
    [44] 李军,石勇,周炜.纳米Fe_2O_3在处理含铬(Ⅵ)废水中的应用.环境科学与技术.2005,28(B06):146-147.
    [45] 吴克明,石瑛,王俊,黄羽.离子交换树脂处理钢铁钝化含铬废水的研究.工业安全与环保.2005,31(4):22-23.
    [46] 武贵桃,王淑娟.离子交换法去除与回收电镀废水中铬酸的实验研究.河北省科学院学报.2000,17(1):43-45.
    [47] 刘建,许道铭,卜玉琳.离子交换蒸浓法处理电镀含铬废水.铀矿冶.2004,23(1):35-40.
    [48] 杨静,刘心悦.混凝吸附法去除电镀废水中铬的试验.山东科技大学学报:自然科学版.2000,19(2):25-28.
    [49] 陈炳猛.吸附-还原-混凝联用法处理含铬废水.扬州大学学报:自然科学版.2000,3(4):80-82.
    [50] 董亚玲,顾平,陈卫文,刘耀磷.混凝-微滤膜工艺处理含铬废水.膜科学与技术.2004,24(4):17-20.
    [51] 陈丽慧,高洪阁,邱学明.二氧化硫还原废水中六价铬的试验研究.矿业安全与环保.2004,31(1):11-12.
    [52] 高洪阁,李白英.应用高硫煤燃烧产生的二氧化硫还原电镀废水中的六价铬离子.煤矿环境保护.2002,16(4):16-17.
    [53] Ignaz J. Buerge, and Stephan J. Hug. 1999, "Influence of Mineral Surfaces on Chromium(Ⅵ) Reduction by Iron(Ⅱ)." Environ. Sci. Technol. 33(23): 4285-4291.
    [54] Scott E. Fendorf, and Guangchao Li. 1996, "Kinetics of Chromate Reduction by Ferrous Iron." Environ. Sci. Technol. 30(5): 1614-1617.
    [55] 夏清.化学还原法处理含铬废水工艺条件研究.无机盐工业.2003,35(3):37-39.
    [56] Kirk J. Cantrell, Daniel I. Kaplan, and Thomas W. Wietsma. 1995, "Zero-valent iron for the in situ remediation of selected metals in groundwater." Journal of Hazardous Materials 42: 201-212.
    [57] Michael J. Alowitz, and Michelle M. Acherer. 2002, "Kinetics of Nitrite and Cr(Ⅵ) Reduction by Iron Metal." Environ. Sci. Technol. 36(3): 299-306.
    [58] Nancy Ruiz, Sudipta Seal, and Debra Reinhart. 1995, "Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation." Journal of Hazardous Materials B80: 107-117.
    [59] Powell R. M., Puls R. W., Hightower S. K., and Sabantini D. A. 1995, "Coupled Iron Corrosion and Chromate Reduction: Mechanisms for Subsurface Remediation." Environ. Sci. Technol. 29(8): 1913-1922.
    [60] Robert M. Powell, and Robert W. Puls. 1997, "Proton Generation by Dissolution of Intrinsic or Augmented Atuminosilicate Minerals for in Situ Contaminant Remediation by Zero-Valence-State Iron." Environ. Sci. Technol. 31(8): 2244-2251.
    [61] Rosemarie Miehr, Paul G Tratnyek, Joel Z. Bandstra, Mic Helle M. Scherer, Michel J. Alowitz, and Eric J. Bylaska. 2004, "Diversity of Contaminant Reduction Reactions by Zerovalent Iron: Role of the Reductate." Environ. Sci. Technol. 38(1): 139-147.
    [62] Sherman M. Ponder, John G. Darab, and Thmoas E. Mallouk. 2000, "Remediation of Cr(Ⅵ) and Pb(Ⅱ) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron." Environ. Sci. Technol. 34(12): 2564-2569.
    [63] Wei, J. J, Xu, X. H., and Liu,Y. 2004, "Kinetics and Mechanism of Dechlorination of o-Chlorophenol by Nanoscale Pd/Fe." CHEM. RES. CHINESE U. 20(1): 73-76.
    [64] 冯俊丽,马鲁铭.催化铁内电解法处理含铬废水.水处理技术.2005,31(7):42-45.
    [65] 李玉,宋怀俊,雒廷亮,刘国际,任保增.碱性介质中六价铬的直接电化学还原研究.河南化工.2005,22(4):12-14.
    [66] Lau Arthur, et al. Metal removal by laboratory scale immobilized micro algal reactor. J Environs. 1998, 10(4): 474-478.
    [67] Veem, M. K., Jonathan L., Edgar D. S. Removal of hexavalent chromium fromwastewater using a new composite chitosan biosorbent. Environ. Sci. Technol. 2003, 37: 4449-4456.
    [68] 俞勇梅,周渝生,夏曙演,白凌,张晓旗,李福德,李昕.生物法治理宝钢2030mm冷轧混合含铬废水的条件选择.2005,3:51-60.
    [69] 沙耀武,赵文超.含硝基苯或硝基氯苯的废水处理研究.精细化工.1996,13(58):57-59.
    [70] 崔榕,向夕品,殷钟意,郑旭煦.固定相络合萃取技术回收处理水中硝基苯.工业水处理.2005,25(10):59-61.
    [71] 陆嘉昂,管国锋,姚虎卿.络合萃取技术在苯胺-硝基苯废水处理中的应用研究.2004,32(4):39-41.
    [72] 毛连山,赵泉珍,硝基苯废水的治理.环境污染与防治.2000,22(6):22-24.
    [73] 张全兴,王勇,李秀娟.树脂吸附法处理硝基苯和硝基氯苯生产废水的研究.化工环保,1997,17(6):323-326.
    [74] 孙志忠,赵雷,马军.改性蜂窝陶瓷催化臭氧化降解水中微量硝基苯.环境科学.2005,26(6):84-88.
    [75] 童少平,褚有群,马淳安,刘维屏.O_3/UV降解水中的乙酸和硝基苯.中国环境科学.2005,25(3):366-369.
    [76] 赵德明,史惠祥.Fe-C微电解法+H_2O_2组合工艺处理对氯硝基苯废水.城市环境与城市生态.2002,15(1):32-34.
    [77] 余宗学.微电解处理间二硝基苯生产废水的研究.环境科学与技术.2004,27(3):68-69.
    [78] 肖羽堂,王继徽.二硝基氯苯废水预处理技术研究.化工环保,1997,17(5):264-267.
    [79] 武迎生.硝基氯苯废水的治理.化工给排水设计,1997(1):17-27.
    [80] Sweeny, P. G, Stenberg, V. I., Hei, R. D. and Montano, P. A. Hydrocracking of diphenyl ether and diphenylmethane in the presence of iron sulphides and hydrogen sulphide. Fuel. 66(4): 532-541.
    [81] Muftikian, R., Fernando, Q., and Korte, N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water, water research. 1995, 29(10): 2434-2439.
    [82] 周红艺,徐新华,汪大翚.钯/铁双金属对水中氯苯的催化脱氯研究.浙江大学学报:工学版.2003,37(3):345-349.
    [83] 马汐平,宋鑫.硝基苯好氧降解菌的驯化和筛选.辽宁大学学报:自然科学版.1998, 25(4):384-388.
    [84] 侯轶,任源.硝基苯好氧降解菌筛选及其降解特性.环境科学研究.1999,12(6):25-27.
    [85] 王庆生,王金梅.利用白腐菌处理含硝基苯类化工废水的研究.环境科学研究.2002,15(2):19-21.
    [86] Orshansky, F., and Narkis N. Characteristics of organics removal by PACT simultaneous adsorption and biodegradation. Water Research. 31(3): 391-398.
    [87] Back, K. and Yang, J. W. Simultaneous removal of chlorinated aromatic hydrocarbons, nitrate, and chromate using micellar-enhanced ultrafiltration. Chemosphere. 2004, 57: 1091-1097.
    [88] Sun, B.; Smimiotis, P. G; Boolchand, P. Visible Light Cr(Ⅵ) Reduction and Organic Chemical Oxidation by TiO_2 Photocatalysis. Environ. Sci. Technol. 2005; 21(24): 11397-11403.
    [89] Logan, B. E., LaPoint D. Treatment of perchlorate-and nitrate-contaminated groundwater in an autotrophic, gas phase, packed-bed bioreactor, water research. 2002, 36: 3647-3653.
    [90] Gaberell, M., Chin, Y. P., Hug, S. J., and Sulzberger, B. S., Role of Dissolved Organic Matter Composition on the Photoreduction of Cr(Ⅵ) to Cr(Ⅲ) in the Presence of Iron. Environ. Sci. Technol. 2003, 37: 4403-4409.
    [91] 束善治,袁勇.污染地下水原位处理方法:可渗透反应墙.环境污染治理技术与设备.2002,3(1):47-51.
    [92] 翟斌.PRB在地下水污染修复中的应用.中国环保产业.2005,2:33-35.
    [93] 柏耀辉,张淑娟.地下水污染修复技术:可渗透反应墙.云南环境科学.2005,24(4):51-54.
    [94] Pratt, A. R., Blowes, D., W., Ptacek, C., J. Products of chromate reduction on proposed subsurface remediation material. Environ. Sci. Technol. 1997, 31: 2492-2498.
    [95] 吴剑锋,朱学愚.由MODFLOW浅谈地下水流数值模拟软件的发展趋势.工程勘察,2000,(2):13-15.
    [96] 祝晓彬.地下水模拟系统(GMS)软件.水文地质工程地质,2003,(5):53-55.
    [97] Xu, X. H., Wei, J. J. and Wang, D. H. Studies on dechlorination of chlorophenols with Pd/Fe and nanoscale Pd/Fe. China Environmental Science. 2004, 24: 76-80.
    [98] Orth, W. S., Gillham, R. W. Dechlorination of trichloroethene in aqueous solution using Fe0. Environ. Sci. Technol. 1996, 30: 66-71.
    [99] USEPA. Permeable reactive barrier technologies for contaminant remediation. EPA/600/R-98/125, 1998.
    [100] USEPA. Treatment Technologies for Site Cleanup Annual Status Report (Tenth Edition)[R]. EPA-542-r-01-004. 2001.
    [101] USEPA, Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington, DC 20460. Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers. 2002.
    [102] 周启星,林海芳.污染土壤及地下水修复的PRB技术及展望.环境污染治理技术与设备,2001,10(2):48-53.
    [103] 钟佐,刘菲.地下水有机污染控制及就地恢复技术研究进展(三).水文地质工程地质.2001,28(5):76-79.
    [104] 胡黎明.下水污染修复的活性渗滤墙技术.水利水电技术.2003,34(7):11-97.
    [105] Neeraj Gupta, Tad C. Fox. Hydrogeologic modeling for permeable reactive barriers. Hazardous Materials 1999, 68: 19-39.
    [106] 周怀东,彭文启.水污染与水环境修复.北京:化学工业出版社,2005.5
    [107] 陈崇希,林敏.地下水动力学.武汉:中国地质大学出版社,2003.6.
    [108] 朱学愚,钱孝星.地下水文学.北京:中国环境科学出版社,2005.8.
    [109] 朱学愚,谢春红.地下水运移模型.北京:中国建筑工业出版社,1990.9.
    [110] 张永波,时红,王玉和.地下水环境保护与污染控制.北京:中国环境科学出版社,2003.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700