哈尔滨市土壤与大气中OCPs和BFRs分布特征及源汇分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性有机污染物(Persistent Organic Pollutants,简称POPs)具有高毒性、持久性和生物累积性,其对人类健康和环境的影响已经引起全球的广泛关注。而城市作为人群聚居地区,大气和土壤环境中POPs水平的高低直接会影响城市居民的健康。大气是人体暴露于POPs污染的主要媒介,土壤是POPs类有机物在地表环境中的主要蓄积库,所以研究城市大气土壤环境中的POPs对于研究城市生态环境有非常重要的意义,而有机氯农药(Organochlorine Pesticides, OCPs)和溴代阻燃剂(Brominated flame Retardants,BFRs)是典型POPs污染物。本研究选择哈尔滨市为研究区域,以被禁止使用多年的OCPs和当前正在广泛使用的BFRs为研究对象,探讨其在城市大气土壤环境中残留水平,污染特征及迁移归趋。
     研究了城市及其周围地区土壤中有机氯农药的残留现状,研究结果表明土壤中六六六(HCH)浓度范围136 -51,760 pg g~(-1) dw,均值为7,120 pg g~(-1) dw,滴滴涕(DDT)浓度范围72 - 28,222 pg g~(-1) dw,均值为5,425 pg g~(-1) dw,六氯苯(HCB)浓度范围64-3,942 pg g~(-1) dw,均值为1,039 pg g~(-1) dw。采用分子标志示踪的方法分析有机氯农药的来源,结果表明工业品HCH和林丹在当地已经很长时间没有新源输入,该地区土壤HCH的残留来自历史上较低量的工业品HCH的使用,同时兼有通过长距离迁移而来,在高纬度寒冷地区土壤冷凝下来。DDT和硫丹在当地有少量使用或者来自长距离的迁移,氯丹在土壤的残留源自长距离迁移。主成分分析对OCPs的来源进行分析得出了一致结论。
     土壤中BFRs的含量中六溴环十二烷(HBCD)贡献最大,其次是十溴联苯醚(BDE-209),二者之和占全部目标化合物的90%以上,表明六溴环十二烷和十溴联苯醚工业品的在当地用量最大。城市范围包括市郊多溴联苯醚(PBDE)和非PBDEs浓度明显高于农业用地和环境背景,进一步反映了城市是BFRs的使用源,轻重组分发生城市分馏现象,并推断出城市是PBDE、HBCD的使用源。
     研究大气中OCPs的空间分布特征,结果表明含量最高的三种OCPs依次为HCB、α-HCH和p,p'-DDT。大气中HCH总量在农村最高,硫丹的总量在郊区最高,硫丹在郊区很可能是蔬菜用地有少量使用,HCB在城市含量最高,而且从城市到背景点的趋势是依次降低,说明HCB在城市工业生产过程中使用或排放,DDT和氯丹在城市、郊区和农村测得的总量无明显变化,DDT和氯丹在当地并没有大量的使用,大气中的含量还可能来自长距离的输运。
     大气中总量最高的BFRs依次为BDE 209和HBCD,研究还发现人口密度影响大气中BFRs的含量,大学校园检测到的浓度高于其他采样点。轻重组份PBDE同系物受季节温度的影响差异较大。考察大气中BFRs浓度与温度的关系,结果表明气相PBDEs(不含209)的同系物浓度与温度成正相关性,BDE 209在颗粒相中与温度呈正相关,可以推测PBDE(非BDE 209)从气相凝结到颗粒相受温度控制,而BDE 209从颗粒相挥发到气相受温度控制。低溴取代的PBDE在气相浓度与颗粒相分配的比值与温度的相关性高,但高溴类化合物的这种趋势并不明显。
     大气中OCPs浓度相对均一,而土壤中OCPs浓度变化较大,应用逸度理论研究土-气交换过程的分配行为,计算出土气交换的HCH和HCB逸度商更趋近于0.5,即更趋近于达到土气交换平衡,pp’-DDE和pp’-DDT也不排除接近平衡的可能性,其他有机氯农药如氯丹和硫丹土气交换的逸度商远远小于0.15,可以确定土气交换以大气沉降为主。PBDEs在大气中逸度远高于土壤逸度,逸度商在10~(-2)到10~(-5)数量级远低于0.5的交换平衡时的值,说明大气向土壤的干沉降是PBDEs的主要交换过程。
     应用多介质逸度模型模拟哈尔滨地区p,p’-DDT在多介质环境中的分布归趋,得出结论p,p’-DDT向土壤分配的趋势最高,其次是向底泥,水和大气分配。在各介质中土壤最终成为p,p’-DDT的蓄积库,占总量99.4%,其次是底泥占总量0.589%,p,p’-DDT最终将在土壤微生物分解或水解光解等过程降解为产物。
Persistent organic pollutants (POPs) have been of great concern due to their persistence in the environment, their bioaccumulation potential in the tissues of animals and humans.Organochlorine pesticides and brominated flame retardants is typical with carcinogenic, teratogenic, mutagenic of POPs substances. It is important to study the residues level, mode of occurrence and environmental behavior for the guidance to control pollution and reduce emissions. Urban are densely populated areas, POPs level in air and soil directly affect the health of urban residents, the atmosphere is the major media for human exposure to POPs pollution and the soil are the sinks of POPs in the surface environment. So it has great significance to study OCPs and BFRs on of urban atmospheric and soil environment for the study of the ecological environment in urban. Harbin is the study area to investigate the OCPs and BFRs residue levels in atmosphere and soil environment to study the pollution characteristics, migration and fate.
     Study of the city and its surrounding areas of organochlorine pesticides in the soils of the residual levels, results show that the concentration of the soilΣHCH ranged from 136 pg g~(-1) dw to 51760 pg g~(-1) dw, with mean of 7120 pg g~(-1) dw,ΣDDT concentration ranged from 72 to 28222 pg g~(-1) dw, with mean of 5425 pg g~(-1) dw, HCB concentration ranged from 64 to 3942 pg g~(-1) dw, with mean of 1039 pg g~(-1) dw. Molecular markers was used to analyze the source of organochlorine pesticides, results show that the industrial HCH and lindane haven’t new source for a long time at the local, the HCH residues in soil from the history with very lower amount of usage, or come from long-distance migration. Chlordane residues in the soil from the long-distance migration, endosulfan is from localtion with very low usage or long-distance migration. Principal component analysis of OCPs draw the same conclusion.
     HBCD is the predominate compound in soils, followed by BDE-209, both compounds contributed more than 90%, this also indicated that HBCD and PBDE 209 are the most large of consumption. Concentration of PBDE and non-PBDEs BFRs were significantly higher than those of agricultural land and background, reflects the city is the source BFRs, urban fractionation phenomenon was observed occurred, and also indicated urban was the sources of PBDE, HBCD and BTBPE.
     The largest amount of OCPs in atmospheric is HCB, followed byα-HCH and p, p'-DDT. The highest concentration of HCH in atmosphere is in the rural areas, indicating that HCH was used in agricultural land, The highest concentration of endosulfan in the suburban are probably from a small amount of vegetable land use, HCB was the highest in the city, followed by suburban, rual and background indicated industrial production process is the emissions source. There was no significant change amount DDT and chlordane in urban, suburban and rural areas, so DDT and chlordane may not be use in location and also come from long-distance transport.
     The highest amount of BFRs in atmospheric was BDE 209 followed by HBCD, university campuses was detected the concentration higher than that of other sampling points so it was found that the population density are important influencing factor for BFRs concentration. PBDE Homologues was influented by seasonal temperature. PBDEs (excluding 209) in gas were positively correlated with temperature, and BDE 209 in particle phase was positively correlated with temperature, it can be assumed PBDE (non-BDE 209) from the gas condensation to the particle phase controlled by temperature, and BDE 209 from the particle to the gas controlled by temperature. The ratios of gas to particle were temperature-related for low-bromine compounds, but for high bromine compounds, this trend is not obvious.
     OCPs concentration in the atmosphere is relatively uniform, while large changes in soil concentrations. Fugacity fraction was applied to study the soil– air distribution in the process exchanged, Fugacity fraction of HCH and HCB in soil/air exchanged are more close to 0.5, that is, more close to reaching a balanced, pp'-DDE and pp'-DDT may probably closed to balance, and other organochlorine pesticides such as chlordane and endosulfan for fugacity fraction was far less than 0.15, atmospheric deposition was mainly action. Fugacity fraction of PBDEs in the atmosphere is much higher than that in the soil, fugacity fraction ranged from 10~(-2) to 10~(-5) far below 0.5 for balance, which mean that dry deposition of atmosphere to soil is the main exchange process.
     Multi-media fugacity model was used to simulated the distribution and fate of p,p'-DDT in Harbin. The results show that p, p'-DDT is trended to distribute in the soil, followed by the sediment, water and atmospheric. p,p'-DDT will accumulate eventually in soil, accounting for 99.4% of total, followed by sediment total 0.589%, p,p'-DDT will finally transform to the degradation products undergo microbial decomposition, hydrolysis or photolysis process.
引文
1 Y. F. Li, D. J. Cai, A. Singh. Historical DDT use trends in China and usage data gridding with 1/4°by 1/6°longitude/latitude resolution. Advances in Environmental Research. 1998, 2: 497~506
    2 Li Y F, Cai D J, Singh A. Technical hexachlorocyclohexane use trends in China and their impact on the environment. Arch. Environ. Contam. Toxicol, 1998, 35: 688~697
    3 H. Thoma, G. Hauschulz, E. Knorr, et al. polybrominated dibenzofurans (PBDF) and dibenzodioxins(PBDD) from the pyrolysis of neat brominated diphenylethers, biphenyls and plastic mixtures of these compounds . Chemosphere. 1987, (16): 277~285
    4 Environmental Health Criteria 162.Brominated diphenyl ethers,International Program on Chemical Safety,World Health Organization,Geneva,Switzerland. 1994
    5 R. C. Hale,M. J. La Guardia,E. Harvey, et al. Potential role of fire retardant-treated Polyurethane foam as a source of brominated diphenyl ethers to the US environment .Chemosphere. 2002, (46): 729~735
    6 Bromine Science and Environmental Forum. Brussels: Belgium.Data reported at http://www. bsef-site. com. docs/Major_brominated. doc, 2000
    7 Bromine Science and Environmental Forum, Total MarketDemand. Available at http://www. bsef-site. com/docs/BFR_vols_2001. doc, 2003
    8 L. Hagmar. Biological half-lives of polybrominated diphenyl ethers and tetrabromobisphenol-A in exposed workers. Organohalogen Compounds. 2000, (47): 198~201
    9 I. Watanabe,T. Kashimoto,R. Tatsukawa. Identification of the flame retardant tetrabromobisphenol-A in the river sediment and mussel collected in Osaka. Bulletin of Environmental Contamination and Toxicology. 1983, (31): 48~52
    10 J. L. Robin, R. A. Colin, B. Jacob. Levels and trends of brominated flame retardants in the European environment.Chemosphere. 2006, 64: 187~208
    11 U. Sellstrom, A. Kierkegaard, C. de Wit, B. Jansson. Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish river. Environ. Toxicol. Chemosphere. 1998, 17: 1065~1072.
    12 R .Mikael, S. John, P Anna, et al. The environmental occurrence ofhexabromocyclododecane in Sweden. Chemosphere, 2004, 54: 9~21
    13 M. Chris, T T Gregg, A Mehran, et al. Distribution of hexabromocyclododecane in Detroit river suspended sediments. Chemosphere 2006, 64: 268~275
    14 Z. Yu, L. Chen, B. Mai, et al. Diastereoisomer- and Enantiomer-specific Profiles of Hexabromocyclododecane in the Atmosphere of an Urban City in South China. Environ Sci Technol. 2008, 42: 3996~4001
    15 A. W. Cynthia, A. Mehran, C Derek, et al. Levels and trends of brominated flame retardants in the Arctic. Chemosphere. 2006, 64: 209~233
    16 V. H. Norbert, W. B. Schweizer, K. Martin, et al. Structure elucidation of hexabromocyclododecanes- a class of compounds with a complex stereochemistry. Chemosphere, 2005, 61: 65~73
    17 E. Hoh, L. Y. Zhu, R. A. Hites, et al. Novel Flame Retardants, 1,2-Bis(2,4,6-tribromophenoxy)ethane and 2,3,4,5,6-Pentabromoethylbenzene, in United States' Environmental Samples. Environ. Sci. Technol. 2005, 39(8): 2472~2477
    18 A. Sjodin, H. Carlsson, K. Thuresson, et al. Flame retardants in indoor air at an electronics recycling plant and at other work environments. Environ. Sci. Technol. 2001, 35: 448-454
    19 Y. Yao, L. Tuduri, T. T. Harner, et al. Spatial and Temporal Distribution of Pesticide Air Concentrations in Canadian Agricultural Regions. Atmospheric Environment. 2006, (40): 4339~4351
    20 S. N. Meijier, C. J. Halsall, T. Harner, et al. Organochlorine pesticide residues in archived UK soil. Environ Sci Technol. 2001, (35): 1989~1995
    21 T. Harner, J. I. Wideman, L. Jantunen, et al. Residues of organochlorine pesticides in Alabama soils. Environ. Pollut. 1999, (106): 323~332
    22 M. A. Kishimba, L. Henry, H. Mwevura, et al. The status of pesticide pollution in Tanzania. Talanta. 2004, (64): 1~9
    23 J. Falandysz, B. Brudnowska, M. Kawano, et al. Polychlorinated biphenyls and organochlorine pesticides in soils from the southern part of Poland. Archives of Environmental Contamination and Toxicology. 2001, (40): 12~18
    24 A. Covaci, A. Gheorghe, P. Schepens. Levels of persistent organochlorine pollutants (POPs) in soils from South Romania. Fresenius Environmental Bulletin. 2003, (12): 198~204
    25 K. S. B. Miglioranza, J. E. A. De Moreno, V. J. Moreno. Dynamics of organochlorine pesticides in soils from a southeastern region of Argentina.Environmental Toxicology and Chemistry. 2003, (22): 407~415
    26赵淑敏.王晓燕.张铁丰.哈尔滨市农田土壤中有机氯农药污染现状及防治对策.北方环境. 2002, (4): 45~48
    27张祖麟.洪华生.哈里德,等.厦门港表层水体中有机氯农药和多氯联苯的研究.海洋环境科学. 2000, (03)
    28陈伟琪.洪华生.张珞平,等.闽江口-马祖海域表层沉积物中有机氯污染物的残留水平与分布特征.海洋通报, 2000, ( 02)
    29王伟.祁士华.龚香宜,等.泉州湾沉积物中有机氯农药含量及风险评估.环境科学研究, 2006, (04)
    30耿存珍.李明伦.杨永亮,等.青岛地区土壤中Ocps和Pcbs污染现状研究.青岛大学学报(工程技术版). 2006, (02)
    31吕爱华.杨瑞强.江桂斌,等.乌鲁木齐市水磨河底泥及污灌区土壤中有机氯农药的分布.环境化学. 2006, (04)
    32安琼.董元华.葛成军,等.南京市小河流表层沉积物中的有机氯农药残留及其分布现状.环境科学. 2006, (04)
    33 S. Tao, F. L. Xu, X. J. Wang, et al. Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China. Environ Sci Technol. 2005, (39): 2494~2499
    34 X. H. Li, L. L. Ma, X. F. Liu, et al. Distribution of organochlorine pesticides in urban soil from Beijing, people's republic of China. Bulletin of Environmental Contamination and Toxicology. 2005, (74): 139~144
    35闫百兴.汤洁.何岩.松嫩平原西部农田径流中有机氯农药的分布特征.中国环境科学. 2003,(24): 33~38
    36安凤春. DDT及其主要降解产物污染土壤的植物修复.环境化学. 2003, (22): 77~82
    37 M. P. Van, E. Callender, C. C. Fuller. Historical Trends In Organochlorine Compounds in River Basins Identified Using Sediment Cores From Reservoirs. Environ Sci Technol. 1997, (31): 2339~2344.
    38 D. C. G. Muir, N. P. Grift, W. L. Lockhart, et al. Trends and histoircal porfiles of organochlorine pesticides in Acrticlake sediments. 1995, (164): 241~241(1)
    39 R Kallenborn, M Oehme, D D. Wynn-Williams,et al., Ambient air levels and atmospheric long-range transport of persistent organochlorines to Signy Island, Antarctica. The Science of the Total Environment 1998, 220:167~180
    40 T. F. Bidleman. Atmospheric transport and air-surface exchange of pestcides. Water, Air, and Soil Pollution. 1999, (115): 115~166
    41 T . F . Bidleman. P. A. Helm and R.W. Macdonald. Hexachlorocyclohexanes inthe Canadian Archipelago. 1. Spatial Distribution and Pathways ofα-,β-, andγ-HCHs in Surface Water. Environ. Sci. Technol. 2007, 41: 2688~2695
    42 T F. Bidlemana, F Wong, C Backe, Anders et al., Chiral signatures ofchlordanes indicate changing sources to the atmosphere over the past 30 years. Atmospheric Environment. 2004, 38: 5963~5970
    43 P. O. Darnerud. Brominated flame retardants as possible endocrine disrupters. Int J Androl. 2008, (31): 152~160
    44 W. E. Klasson, E. Jakobsson, U. Orn. Metabolism of polychlorinated naphthalenes and a tetrabrominated diphenyl ether. Organohalogen Compd. 1996, (28): 495~499
    45 H. Hakk, G. Larsen, W. E. Klasson. Tissue disposition, excretion and metabolism of 2,2',4,4',5-pentabromodiphenyl ether(BDE-99) in male Sprague-Dawley rats. Organohalogen Compd. 1999, (40): 337~340
    46 M. Ghosh, I. A. T. M. Meerts, A. Cook, et al. Structure of human transthyretin complexed with bromophenols: a new mode of binding. Acta Crystallogr. Sect. D. 2000, (56): 1085~1095
    47 P. O. Darnerud, M. Aune, L. Larsson, et al. Plasma PBDE and thyroxine levels in rats exposed to Bromkal or BDE-47. Chemosphere. 2007, (67): 386~392
    48 S. Harrad, R. Wijesekera, S. Hunter, et al. Preliminary Assessment of U.K. Human Dietary and Inhalation Exposure to Polybrominated Diphenyl Ethers. Environ Sci Technol. 2004, (38): 2345~2350
    49 A. Hassanin, A. E. Johnston, G. O. Thomas, et al. Time Trends of Atmospheric Pbdes Inferred From Archived U.K. Herbage. Environ Sci Technol. 2005, 39: 2436~2441
    50 B. H. Wilford, G. O. Thomas, K. C. Jones, et al. Decabromodiphenyl Ether (Deca-bde) Commercial Mixture Components, and Other Pbdes, In Airborne Particles at a Uk Site. Environ Int. 2008, (34): 412~419
    51 A. F. ter, Schure, P. Larsson, J. Merila, et al. Latitudinal Fractionation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls In Frogs (Rana Temporaria). Environ Sci Technol. 2002, (36): 5057~5061
    52 T. M. Cahill, D. Groskova, M. J. Charles, et al. Atmospheric Concentrations of Polybrominated Diphenyl Ethers at Near-source Sites. Environ. Sci. Technol. 2007, (41): 6370~6377.
    53 S. Harrad, S. Hunter. Spatial variation in atmospheric levels of PBDEs in passive air samples on an urban-rural transect. Organohal Compds. 2004, (66): 3786~3792
    54 C. A. de Wlt. An overview of brominated flame retardants in environment. Chemosphere. 2002, (46): 583~624
    55 T. Harner, M. Shoeib. Measurements of Octanol-air Partition Coefficients for Polybrominated Diphenyl Ethers (Pbdes): Predicting Partitioning In the Environment. J. Chem. Eng. Data, 2002, (47): 228~232
    56 Y. Su, H. Hung, E. Sverko, et al. Multi-year Measurements of Polybrominated Diphenyl Ethers (Pbdes) In the Arctic Atmosphere. Atmospheric Environment. 2007, (41): 8725~8735
    57 K. Hayakawa, H. Takatsuki, I. Watanabe, et al. Polybrominated Diphenyl Ethers (Pbdes), Polybrominated Dibenzo-p-dioxins/Dibenzofurans (Pbdd/Fs) and Monobromo-polychlorinated Dibenzo-p-dioxins/Dibenzofurans (Mobpxdd/Fs) In the Atmosphere and Bulk Deposition In Kyoto, Japan. Chemosphere. 2004, (57): 343~356
    58 B. Strandberg, N. G. Dodder, I. Basu, et al. Concentrations and Spatial Variations of Polybrominated Diphenyl Ethers and Other Organohalogen Compounds In Great Lakes Air. Environ Sci Technol. 2001, (35): 1078~1083
    59 N. J. Farrar, K. E. Smith, R. G. Lee, et al. Atmospheric Emissions of Polybrominated Diphenyl Ethers and Other Persistent Organic Pollutants During a Major Anthropogenic Combustion Event. Environ Sci Technol. 2004, (38): 1681~1685
    60 I. Watanabe, S. Sakai. Environmental release and behavior of brominated flame retardants. Environ Int. 2003, (29): 665~682
    61 A. F. H. ter Schure, P. Larsson, C. Agrell, et al. Atmospheric Transport of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls to the Baltic Sea. Environ Sci Technol. 2004, (38): 1282~1287
    62 R. G. Lee, G. O. Thomas, K. C. Jones. Pbdes in the Atmosphere of Three Locations in Western Europe. Environ Sci Technol. 2004, (38): 699~706
    63 A. F. H. ter Schure, P. Larsson. Polybrominated diphenyl ethers in precipitation in Southern Sweden. Atmos. Environ. 2002, (36): 4015~4022
    64 F. M. Jaward, N. J. Farrar, T. Harner, et al. Passive Air Sampling of Pcbs, Pbdes, and Organochlorine Pesticides across Europe. Environ Sci Technol. 2004, (38): 34~41
    65 F. M. Jaward, S. N. Meijer, E. Steinnes, et al. Further Studies on the Latitudinal and Temporal Trends of Persistent Organic Pollutants In Norwegian and U.K. Background Air. Environ Sci Technol. 2004, (38): 2523~2530
    66 S. Harrad, S. Hunter. Spatial variation in atmospheric levels of PBDEs in passive air samples on an urban-rural transect. Organohal Compds. 2004, (66): 3786~3792
    67 S. Harrad, R. Wijesekera, S. Hunter, et al. Preliminary Assessment of U.K. Human Dietary and Inhalation Exposure to Polybrominated Diphenyl Ethers. Environ Sci Technol. 2004, (38): 2345~2350
    68 C. Agrell, A. F. H. ter Schure, J. Sveder, et al. Polybrominated diphenyl ethers(PBDEs) at a solid waste incineration plant I: atmospheric concentrations. Atmos. Environ. 2004, (29): 5139~5148
    69 A. F. H. ter Schure, C. Agrell, A. Bokenstrand, et al. Polybrominated diphenyl ethers at a solid waste incineration plant II: atmospheric deposition. Atmos. Environ. 2004, (38): 5149~5155
    70 L. G. Chen, B. X. Mai, X. H. Bi, et al. Concentration levels、compositional profiles、and gas-particle partitioning of polybrominated diphenyl ethers in the atmosphere of an urban city in south China. Environ Sci Technol. 2006, (40): 1190~1196
    71王俊.张干.李向东,等.珠江三角洲地区大气中多溴联苯醚的被动采样观测.中国环境科学. 2007,(27):10~13
    72 A. Hassanin, K. Breivik, S. N. Meijer, et al. Pbdes In European Background Soils: Levels and Factors Controlling their Distribution. Environ Sci Technol. 2004, (38): 738~745
    73 G. Tomy, U. Tittlemier, E. Braekevelt, et al. The second international workshop on brominated flame retardants. Stockholm. 2001, 104~107
    74 F. Luckey, B. Fowler, S. Litten. The second international workshop on brominated flame retardants. Stockholm. 2001, 309~311
    75杨永亮.潘静.李悦,等.青岛近岸沉积物中持久性有机污染物多氯奈和多溴联苯醚.科学通报. 2003,(48): 2244~2251
    76 S. J. Chen, X. J. Gao, B. X. Mai, et al. Polybrominated diphenyl ethers in surface sediments of the Yangtze River Delta: levels, distridution and potential hydrodynamic influence. Environmental Ppllution. 2006, (144): 951~957
    77陈社军.麦碧娴.曾永平,等.珠江三角洲及南海北部海域表层沉积物中多溴联苯醚的分布特征.环境科学学报. 2005,(25): 1265~1271
    78 ?. Andersson, G. Blomkvist. Polybrominated aromatic pollutants found in fish in Sweden. Chemosphere. 1981, (10): 1051~1060
    79 I. Watanabe T. Kashimoto R. Tatsukawa. Polybrominated biphenyl ethers in marine fish, shellfish and river and marine sediments in Japan. Chemosphere.1987, (16): 2389~2396
    80 D. Ueno, N. Kajiwara, H. Tanaka, et al. Global Pollution Monitoring of Polybrominated Diphenyl Ethers Using Skipjack Tuna as a Bioindicator. Environ Sci Technol. 2004, (38): 2312~2316
    81 R. A. Hites, J. A. Foran, S. J. Schwager, et al. Global Assessment of Polybrominated Diphenyl Ethers In Farmed and Wild Salmon. Environ Sci Technol. 2004, (38): 4945~4949
    82 N. G. Dodder, B. Strandberg, R. A. Hites. Concentrations and spatial variations of polybrominated diphenyl ethers in fish and air from the northeastern United States. Organohal Compds. 2000, (47): 69~72
    83 D. R. Oros, D. Hoover, F. Rodigari, et al. Levels and Distribution of Polybrominated Diphenyl Ethers in Water, Surface Sediments, and Bivalves from the San Francisco Estuary. Environ Sci Technol. 2005, (39): 33~41
    84 R. C. Hale, M. Alaee, J. B. Manchester-Neesvig, et al. Polybrominated diphenyl ether flame retardants in the North American environment. Environ. Inter. 2003, (29): 771~779
    85 K. Gustafsson, M. Bj?rk, S. Burreau, et al. Bioaccumulation kinetics of brominated flame retardants (polybrominated diphenyl ethers) in blue mussels, Mytilus edulis. Environ. Toxicol. Chem.1999, (18): 1218~1224
    86 J. De Boer, P. G. Wester, H. J. C. Klamer, et al. Do flame retardants threaten ocean life? Nature. 1998, (394): 28~29
    87 A. Kierkegaard, L. Balk, U. Tj?rnlund, et al. Dietary Uptake and Biological Effects of Decabromodiphenyl Ether in Rainbow Trout (Oncorhynchus mykiss). Environ Sci Technol. 1999, (33): 1612~1617
    88 H. M. Stapleton, M. Alaee, R. J. Letcher, et al. Debromination of the Flame Retardant Decabromodiphenyl Ether by Juvenile Carp (Cyprinus Carpio) Following Dietary Exposure. Environ Sci Technol. 2004, (38): 112~119
    89丘耀文.张干.郭玲利,等.大亚湾海域多溴联苯醚的生物累积特征.中国环境科学. 2006,(26): 685~688
    90 R. A. Hites. Polybrominated Diphenyl Ethers in the Environment and In People: A Meta-analysis of Concentrations. Environ Sci Technol. 2004, (38): 945~956
    91 R. Renner. Increasing levels of flame retardants found in North American environment. Environ Sci Technol. 2000, (34): 452A~453
    92 M. Shoeib, T. Harner. Characterization and Comparison of Three Passive Air Samplers for Persistent Organic Pollutants. Environ Sci Technol. 2002, (36):4142~4151
    93 Y. F. Li, D. J. Cai, Z. J. Shan, et al. Gridded usage inventories of technical hexachlorocyclohexane and lindane for China with 1/6°latitude by 1/4°longitude resolution. Arch. Environ. Contam. Toxicol. 2001, (41): 261~266
    94 L. Y. Liu, A. X .Jiang, N. Q. Ren, et al. Gridded inventories of historical usage for selected organochlorine pesticides in Heilongjiang River Basin, China. J Environ Sci (China). 2006, (18): 822~826
    95 C. Tian, Y. F. Li, H. Wu, et al.α-HCH Budget in Taihu Lake, China: A Gridded Basin-based Pesticide Mass Balance Model (GB-PMBM). Sci. Total Environ. 2008, submitted
    96 C. Tian, J. Ma, L. Liu, et al. A modeling assessment of association between East Asian summer monsoon and fate/outflow of organochlorine pesticides in Northeast Asia. Sci Total Environ. 2008, submitted
    97 Y. F. Li, D. J. Cai, A. Singh. Historical DDT use trends in China and usage data gridding with 1/4°by 1/6°longitude/latitude resolution. Advances in Environmental Research. 1998, (2): 497~506
    98 Y. Zhu, H. Liu, Z. Xi, et al. Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China. Chemosphere.2005, (60): 770~778.
    99 T. Heberer, U. Dünnbier. DDT Metabolite Bis(Chlorophenyl)acetic Acid: The Neglected Environmental Contaminant. Environ Sci Technol. 1999, (33): 2346~2351
    100 G. L. Daly, Y. D. Lei, C. Teixeira, et al. Pesticides in western Canadian mountain air and soil. Environ Sci Technol. 2007, (41): 6020~6025
    101 R. D. Villa, E. Dores, L. Carbo, et al. Dissipation of DDT in a heavily contaminated soil in Mato Grosso, Brazil. Chemosphere. 2006, (64): 549~554
    102 P. B. Kurt-Karakus, F. B. Terry, M. S. Ralf, et al. Measurement of DDT fluxes from a historically treated agricultural soil in Canada. Environ Sci Technol. 2006, (40) : 4578~4585
    103 X. Wang, X. Piao, J. Chen, et al. Organochlorine pesticides in soil profiles from Tianjin, China. Chemosphere. 2006, (64): 1514~1520
    104 L. Chen, Y. Ran, B. Xing, et al. Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere. 2005, (60): 879~890
    105 X. Qiu, T. Zhu, B. Yao, et al. Contribution of dicofol to the current DDT pollution in China. Environ Sci Technol. 2005, (39): 4385~4390
    106 L. M. Jantunen, T. F. Bidleman, T. Harner, et al. Toxaphene, chlordane, andother organochlorine pesticides in Alabama air. Environ Sci Technol. 2000, (34): 5097~5105
    107 H. Nakata, Y. Hirakawa, M. Kawazoe, et al. Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China. Environ. Pollut. 2005, (133) : 415~429
    108 J. Li, G. Zhang, S. Qi, et al. Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China. Sci. Total Environ. 2006, (372): 215~224
    109 L. J. Zhao. Usage inventories of chlordane and DDT in China. Master's Dissertation, Beijing University, in Chinese. 2006
    110 M. Gonzalez, K. S. Miglioranza, M. de Aizpun, et al. Organochlorine pesticide residues in leek (Allium porrum) crops grown on untreated soils from an agricultural environment. J. Agric. Food. Chem. 2003, (51): 5024~5029
    111 Y. Yao, L. Tuduri, T. Harner, et al. Spatial and temporal distribution of pesticide air concentrations in Canadian agricultural regions. Atmos. Environ. 2006, (40): 4339~4351
    112 F. Wang, X. Jiang, Y. R. Bian, et al. Organochlorine pesticides in soils under different land usage in the Taihu Lake region, China. J Environ. Sci(China), 2007, (19): 584~590
    113 H. L. Jia, Y. F. Li, , D. G.Wang, et al.. Endosulfan in China 1. gridded usage inventories. Environmental Science and Pollution Research. 2008,in press
    114 H. B. Zhang, Y. M. Luo, Q. G. Zhao, et al. Residues of organochlorine pesticides in Hong Kong soils. Chemosphere. 2006, (63): 633~641
    115 F. Wang, X. Jiang, Y. R. Bian, et al. Organochlorine pesticides in soils under different land usage in the Taihu Lake region, China. J Environ. Sci. 2007, (19): 584~590
    116 X. Zhou, G. Yu, J. Huang, et al. Residues and distribution characters of chlorobenzenes in soil and plants from Beijing southeast chemical industry zone. Environ Sci( in Chinese), 2007, (28) : 249~252
    117 H. Z. Xu, N. Jia, R. Ren. The usage and pemiciousness of environmental hormone organochlorine pesticides. Environ Science Manag. 2005, (30): 83~85 (in Chinese)
    118 F. Wania, D. Mackay. Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio. 1993, (22): 10~18
    119 T Harner, M Shoeib, M Diamond, et al , Using passive air samplers to assess urban–rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environ. Sci. Technol. 2004, (38): 4474~4483
    120 N. Q. Ren, M. X. Que, Y. F. Li, et al. Polychlorinated biphenyls in Chinese surface soils. Environ. Sci. Technol. 2007, (41):3871~3876
    121 L Shen, F Wania, Y D Lei,et al., Atmospheric distribution and long-range transport behavior of organochlorine pesticides in North America Environ. Sci. Technol. 2005, (39):409~420
    122 F Wania, J Haugen, Y D. Lei, et al., Temperature dependence of atmospheric concentrations of semivolatile organic compounds. Environ. Sci. Technol.1998, (32):1013~1021
    123 G L. Daly, Y D. Lei, C Teixeira, et al., Organochlorine pesticides in the soils and atmosphere of Costa Rica. Environ. Sci. Technol. 2007, (41): 1124~11
    124 T. F. Bidleman, A. D. Leone. Soil–air exchange of organochlorine pesticides in the Southern United States. Environmental Pollution 2004, 128:49~57
    125 B. Cetin and M. Odabasi. Particle-phase dry deposition and air-soil gas-exchange of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey. Environ. Sci. Technol. 2007, (41): 4986~92
    126 D. Wang, M. Yang, H. Jia, et al. Seasonal variation of polycyclic aromatic hydrocarbons in soil and air of Dalian areas, China: an assessment 1 of soil–air exchange. Journal of Environmental Monitoring. In Press.
    127 Donald M . Multimedia environmental model: The fugacity approach [M].Second Edition.USA: Lewis Publishers, 2001.
    128 Mackay D, Joy M, Paterson S. A Quantitative Water, Air, Sediment Interaction (QWASI) Fugacity Model for Describing the fate of chemicals in lakes. Chemosphere, 1983, 12 : 981~997
    129 Mackay D. Modelling the long term behaviour of an organic contaminant in a large lake: application to PCBs in Lake Ontario. J. Great lakes Res., 1989, 15 : 283~297
    130 Mackay D, Paterson S, Joy M. A Quantitative Water, Air, Sediment Interaction (QWASI) Fugacity Model for Describing the Fate of Chemicals in Rivers. Chemosphere, 1983, 12 : 1193~1208
    131 Clark K E, Gobas F A P C, Mackay D. Model of organic chemical uptake and clearance by fish from food and water. Environ. Sci. & Technol., 1990, 24 : 1203~1213
    132 Clark B, Henry J G, Mackay D. Fugacituy analysis and model of organic chemical fate in a sewage treatment plant. Environ. Sci. & Technol., 1995 , 29 (6) : 1488~1494
    133 Paterson S, Mackay D, Gladman A. A fugacity model of chemical uptake by plants from soil and air. Chemosphere , 1991 , 23 (4) : 539~565
    134 T. Harner, J. I. Wideman, L. Jantunen, et al. Residues of organochlorine pesticides in Alabama soils. Environ. Pollut. 1999, (106): 323~332.
    135 Mackay D. A Perspective on the Fate of Chemicals in Soils in Agriculture and Water Quality, Proceedings of an Interdisciplinary Symposium, University of Guelph, Guelph, Ont. 1991, 111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700