五氟碘乙烷的气相催化合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五氟碘乙烷(C2F5I)具有很高的反应活性和特殊的物理化学性能,它是制备多种合成树脂单体、憎水剂、憎油剂、调聚剂、药品和农用化学品的关键合成中间体。传统生产C2F5I的工艺存在工艺安全性差,生产成本高,原材料毒性大等不足。近年来国际上有人开始研究以五氟乙烷(C2F5H)和碘(12)为原料的高效、安全、绿色环保、工艺简单的“直接法”工艺,但有关研究的报道很少。本文重点针对C2F5I“直接法”合成工艺,开展以C2F5H为起始原料,对气相催化合成C2F5I的合成路线、反应机理、催化剂技术和工艺规律等进行了相关研究。
     确定了理想气体C2F5I的热力学数据的最佳估算方法为Joback法,其次是键贡献法,得出C2F5I的热力学数据△Gf(?),298、ΔHf(?),298和Sf(?),298分别为-1060.31kJ·mol-1,-1005.79kJ-mol-1和388.34J·mol-1·K-1;对六种不同路线制备C2F5I的吉布斯自由能进行了计算,确立以C2F5H和12为原料制备C2F5I为最佳合成路线;热力学计算表明随着反应温度的升高,反应的标准自由焓变逐渐减小,平衡常数逐渐变大,在一定温度范围内升高温度在热力学上对C2F5I的生成有利;最后利用设计出的反应装置进行该催化反应,GC和GC-MS分析确认产物为C2F5I,表明该路线能合成出C2F5I。
     在管式反应器中对C2F5H进行热裂解,用气相色谱-质谱仪、气相色谱仪对热解气体进行分析。结果发现:C2F5H在600-1000℃空管裂解时主要发生脱HF反应生成C2F4;C2F5H在催化剂Rb-K/AC条件下高温裂解主产物为C3F8和C4F10,而不是C2F4。根据均裂的化学键类型提出9个初级反应路径,通过密度泛函理论B3LY/6-31G*计算C2F5H各化学键离解能,发现H转移反应所需活化能最低,C-C键断裂反应次之,分别为211.73和380.10kJ/mol,表明C2F5H空管裂解时最易发生H转移反应脱去HF。生成活性中间体CF3CF:和CF2:的离解能分别为426.61和943.21kJ/mol,表明C2F5H在催化剂作用下最易生成CF3CF:卡宾。结合气体产物证实在催化剂裂解过程中生成了以CF3CF卡宾为主,CF2:卡宾为辅的活性中间体;采用H2作为捕捉剂,空管裂解C2F5H得到C2H2F4,当有催化剂存在时得到C2F6,表明CF3CF卡宾在催化剂表面吸附形成较强的结合。利用XPS对裂解后催化剂C1s进行分析发现结合能为282.2eV的C1s对应游离碳的特征峰,结合裂解主产物表明CF3CF:卡宾发生歧化反应,生成CF3CF2自由基和不同于石墨结构的单质C,CF3CF2自由基与I·自由基结合生成C2F5I。
     第四章系统地研究了气相催化合成C2F5I的催化剂活性组分和载体对催化活性的影响。结果发现,碱金属盐作为催化剂活性组分具有较高的催化活性,尤其是负载量为20w%,质量比为2:1的KF和RbNO3的活性组分复配时催化剂催化活性最好。TG-DTA、 FTIR、XPS和XRD分析表明反应前催化剂活性组分RbNO3主要以Rb20存在,反应过程中的副产物HF使活性组分RbNO3以RbF和部分Rb2O形式存在。比表面积较大、灰分少、呈弱碱性的活性炭(AC)作为催化剂载体时,C2F5H的转化率较高;金属氟化物如多孔氟化铝和多孔氟化镁对O2和HF惰性,作为催化剂载体具有工业应用潜力。
     对AC进行酸处理能够改变表面含氧官能团,从而加强金属前驱体与活性炭载体的锚固作用,改变催化剂的分散度和表面碱性。第四章采用HCl, HNO3或HF分别对AC进行处理,制得一系列AC负载的Rb-K催化剂,考察了它们在气相合成C2F5I反应中的催化性能。结果表明,HCl处理的AC负载的Rb-K/AC催化剂具有较高的分散度和适中的弱碱性,有利于气相催化合成C2F5I。各催化剂上活性组分分散度大小顺序为:Rb-K/AC-HNO3>Rb-K/AC-HF>Rb-K/AC-HCl>Rb-K/AC,该大小顺序与相应载体表面酸性和表面官能团变化趋势一致,但与催化剂表面碱性并无对应关系。酸处理对AC表面含氧官能团和表面碱性的变化能够很好地解释这一点。
     在消除内外扩散的情况下,第五章利用气相催化合成C2F5I热力学和反应机理的研究结果对温度、空速、投料比等工艺条件进行优化研究,确定最佳工艺条件为:反应温度550℃~600℃,空速110130h-1,C2F5H:O2摩尔投料比为21.7:4。在优化条件下,催化剂Rb-K/AC使用寿命得到大幅度提高。
     为了进一步提高催化剂的使用寿命,利用BET、SEM、XPS和TG-DTA等方法对反应前后催化剂进行了表征。结果表明,催化剂表面积炭导致催化剂孔道堵塞、活性中心覆盖是催化剂失活的主要原因。进一步研究表明该积碳为CF3CF:卡宾歧化生成的不同于活性炭载体石墨结构的单质碳和反应过程中产生的CF,CF2,CF3碎片;另外在反应体系中通入适量的O2能消除部分积碳,该积碳的氧化分解温度范围为150~350℃。
Pentafluoroethyl iodide (C2F5I) has higher reaction activity as well as the special physical chemistry function, which makes it for various applications, such as telogen for the telomerization of tetrafluoroethylene to long-chain perfluoroalkyl iodides, a raw material of resins, functional materials and an intermediate for medicines and agrochemicals. However the traditional methods for the preparation of C2F5I have poor safety, high production cost and great toxicity of raw material. In recent years, a direct method process for the synthesis of C2F5I by the reaction of pentafluoroethane (C2F5H) and iodine (I2) has been developed successfully, which makes the green production become possible. But to the best of our knowledge, in the open literature, little information about it was reported. In this dissertation, a vapor-phase catalytic process for preparation of C2F5I from C2F5H was studied, especially the synthetic routes, reaction mechanism, catalytic technique and technological conditions.
     Studies confirmed that Joback's group contribution was the best method to estimate the thermodynamic data of ideal gas C2F5I, and then the group bond contribution method. The thermodynamic data such as ΔGf,298(?),ΔAf,298(?) and Sf,298(?) is-1060.31kJ·mol-1,-1005.79kJ·mol-1and388.34J·mol-1·K-1respectively. According to the Gibbs free energy of the six different synthetic routes, the reaction between C2F5H with I2is an appropriate synthetic route. Thermodynamic calculation also showed that the equilibrium constants increase with the temperature increasing, and temperature rising was beneficial to the synthesis of C2F5I within a proper range. Over the experimental line system, the gas-phase catalytic reaction for the synthesis of C2F5I by the reaction of C2F5H and I2was conducted. The GC and GC-MS showed that C2F5I could be synthesis by this synthetic route.
     The thermal decomposition properties of C2F5H were studied in a tubular reactor. The decomposed gas was characterized by gas chromatography-mass spectrometry (GC-MS), gas chromatography (GC). The results showed that the hydrogen fluoride eliminated to produce C2F4from C2F5H was the main reaction between600~1000℃, while in the pyrolysis of C2F5H over catalyst Rb-K/AC at550℃, the main products contained C4F10and C3F8,but no C2F4was detected. Nine primary reaction pathways were proposed based on the chemical bond types of the hemolytic cleavage. Using the DFT-(U)B3LYP/6-31G*method, the bond dissociation energies for all kinds of bonds were calculated. It was found that the activation energy of the H-transfer reaction and the C-C bond fission reaction, which are211.73kJ/mol and380.10kJ/mol, the activation energy of the production of CF3CF:and CF2:carbine were426.61kJ/mol and943.21kJ/mol. The result illustrated that the hydrogen fluoride elimination was the most feasible reaction in pyro lysis of C2F5H through empty reactor, but over catalyst Rb-K/AC, the formation of CF3CF: carbine was. H2as capture agent, was fed into reactor with C2F5H over catalysts or non-catalyst. It was found that in pyrolysis of C2F5H through empty reactor in the presence of H2, C2H2F4was obtained via the reaction of C2F4carbene with H2. But over catalyst, the formed CF3CF: carbene was adsorbed on the surface of AC. Moreover, the X-ray photoelectron spectroscopy (XPS) studies confirmed that the Cls signal around282.1eV could be assigned to C. It is proposed that in high temperature, catalyst Rb-K/AC promotes the dehydrofluorination of C2F5H to form CF3CF:carbene, and CF3CF: disproportionates to generate CF3CF2-radical and a new carbonaceous carbon which has different structure to graphite, at last CF3CF2-radical reacts with I-to form C2F5I.
     The catalytic technique, including the active component and the carrier in the catalyst was investigated in detail. It was found that alkali metal salts as the active component showed a higher catalytic activity, especially the combined active substance having20wt%loading and2:1mass ratio of RbNO3and KF. The Rb-K/AC catalyst was characterized by TG-DTA, FTIR, XPS and XRD, and the results indicated that the species of the active component RbNO3before the reaction was Rb2O, and during the reaction process were Rb2O and RbF due to the reaction of Rb2O with the by-product HF. Activated carbon (AC), as the catalytic carrier, showed higher activity due to its high surface area, low ash content and slightly alkaline. And porous metal fluoride, such as porous aluminum fluoride and porous magnesium fluoride, as carriers showed medium activity and stable properties in the presence of O2and HF. So, Porous metal fluoride processed industrial potential application as carrier for this reaction.
     Modification of AC with different acid solution might result in various surface oxygen groups, which can enhance the anchoring interaction between AC supports and metal precursors and change the dispersion and basicity of the catalyst. The influence of HCl, HNO3, and HF treatments on AC used as a support for Rb-K catalysts in the synthesis of C2F5I by reacting C2F5H with I2was studied. It was found that after the HCl treatment, the Rb-KF/AC-HCl catalyst with a high dispersion and moderately basicity was helpful for the enhancement of catalytic activity for C2F5I synthesis. The order of catalyst dispersion was as follows:Rb-K/AC-HNO3> Rb-K/AC-HF> Rb-K/AC-HCl>Rb-K/AC. The same sequence was also observed for the amount of the acid surface oxygen groups on AC, but not for the basicity of the catalyst. The key role of acid treatment on AC surface chemistry and the basic sites, which are closely related to catalyst dispersion and basicity, is examined to rationalize these findings.
     Based on the thermodynamic analysis and catalytic mechanism, the reaction conditions such as reaction temperature, space velocity and the molar ratio were optimized after eliminating the influence of internal and external diffusion. The appropriate reaction temperature was550~600℃, space velocity was110~130h-1and the molar ratio of C2F5H and O2was21.7:4. Under the optimum conditions mentioned above, the catalyst life of Rb-K/AC was enhanced remarkably.
     To improve further the catalyst life, the variations of catalysts after reaction and the deposited carbon over the catalysts were analyzed and characterized by XPS, TEM and TG-DTG etc. The results of the experiment indicated that the deactivation was caused mainly by the deposition of coke formation which led the pore blocking and active site coverage. Further investigation revealed that the coke species over Rb-K/AC catalyst include CF, CF2, CF3and carbonaceous carbon, and the mechanism of the coke formation is the disproportionation of C2HF5and CF3CF:carbene. The addition of O2to the reaction system could prevent the catalyst deactivation by burning off the coke during150~350℃.
引文
[1]朱士正,吴永明(译).当代有机氟化学[M].第1版.上海:华东理工大学出版社,2006.
    [2]张方.有机氟行业现状及发展趋势[J].化工技术经济,2004,22(3):1-3.
    [3]王绍勤,倪震宇.国外氟化工发展现状及趋势[J].有机氟工业,2006(1):21-23.
    [4]有机硅氟工作组.含氟化工中间体现状概述及未来发展趋势分析[J].有机硅氟资讯.2006,(12):18-19.
    [5]陈鸿昌.氟化工行业发展前景述评[J].有机氟工业,2007,(1):14-25.
    [6]魏晓峰.中国有机氟工业发展现状及新商机[J].有机硅氟资讯,2002(8):23-27.
    [7]Brace N.O. Syntheses with perfluoroalkyl iodides. Part Ⅱ. Addition to non-conjugated alkadienes; cyclization of 1,6-heptadiene, and of 4-substituted 1,6-heptadienoic compounds:bis-allyl ether, ethyl diallylmalonate, N, N'-diallylamine and N-substituted diallylamines; and additions to homologous exo-and endocyclic alkenes, and to bicyclic alkenes[J]. Journal of Fluorine Chemistry,1999,96(2):101-127.
    [8]Brace N.O. Syntheses with perfluoroalkyl radicals from perfluoroalkyl iodides-A rapid survey of synthetic possibilities with emphasis on practical applications. Part one:alkenes. alkynes and allylic compounds[J]. Journal of Fluorine Chemistry,1999,93(1):1-25.
    [9]Brace N.O. Syntheses with perfluoroalkyl iodides. A review:Part III. Addition of RFI to norbornene esters, acids and anhydrides, alkenoic acids and esters, alkenylsuccinic anhydrides or diesters, and to vinyl monomers; lactonization and other reactions of adducts; hydroperfluoroalkylation by RFI; synthesis and reactions of I(CF2)nI homologues (n=1-3); perfluoroalkylation of arenes by RFI or [RFCO2]2; RFI in the synthesis of RFSR and segmented RF(CH2)nSH; and, useful derivatives therefrom[J].Journal of Fluorine Chemistry,2001,8(2):147-175.
    [10]范胜华,徐卫国,徐宇威,陈先进.调聚法制备全氟烷基化合物[J].浙江化工,2004,35(8):13-14.
    [11]Balague J., Ameduri B., Boutevin B., Caporiccio G. Synthese de telomeres fluores. Partie IL Telomerisation du trifluoroethylene avec des iodures de perfluoroalkyle[J]. Journal of Fluorine Chemistry,1995,73(2):237-245.
    [12]Balague J., Ameduri B., Boutevin B., Caporiccio G. Synthese de telomeres fluores. Partie III. Telomerisation de l'hexafluoropropene avec des iodures de perfluoroalkyle[J]. Journal of Fluorine Chemistry,1995,74(1):49-58.
    [13]Balague J., Ameduri B., Boutevin B., Caporiccio G. Synthesis of fluorinated telomers. Part 1-Telomerization of vinylidene fluoride with perfluoroalkyl iodides[J]. Journal of Fluorine Chemistry,1995,70(2):215-223.
    [14]张建春.全氟碘代烷的合成及应用前景[J].化工中间体,2003,(4):25-26.
    [15]席先锋,周晓红,吴周安,雷志刚,顾永红.全氟碘代烷调聚反应的机理与工艺研究进展[J].现代化工,2005,25(6):18-23.
    [16]杨先金.全氟烷基碘的合成研究及其安全分析[会议论文].第22次全国工业表面活性剂发展研讨会、第2次全国特种表面活性剂发展研讨会、2008全国含氟表面活性剂发展研讨会,2008.
    [17]张淑兰.全氟碘代烷和全氟澳代烷的制备[D].上海:华东理工大学,2002.
    [18]化学化工大辞典编委会.化学化工大辞典[M].第1版.北京:化学工业出版社,2003.
    [19]耿为利.五氟碘乙烷的合成方法[J].浙江化工.2007,38(6):16-19.
    [20]Bertocchio R., Lacote G. Synthesis of perfluoroalkyl iodides:US,5268516[P], 1993-12-07.
    [21]Bertocchio R., Lamber P. Synthesis of perfluoroalkyl iodides:CN,1099023[P]. 1995-02-22
    [22]Bertocchio R., Lamber P. Synthesis of perfluoroalkyl iodides:US,5650545[P], 1997-07-22.
    [23]Park J. D., Croft T. S., Anderson R. W. Reactions of fluorinated cyclobutenes with grignard reagents[J]. Journal of Organometallic Chemistry,1974,64(1):19-24.
    [24]Moskvin D.I., Zharov A.A., Chizhov A.O. Kinetics and Mechanism of Hexafluoropropylene Telomerization and Polymerization in the Presence of Perfluoroethyl Iodide at High Pressures[J]. Doklady Physical Chemistry,2007,416(1): 250-252.
    [25]Carl G.K., Viacheslav A.P. Thermal process for the preparation of a telomeric alkyl-iodide:TW470753[P].2002-01-01.
    [26]Blochl W. Preparation of haloalkanes:GB,1218528[P],1971-01-06.
    [27]Jaeger H. Process for the manufacture of perfluoralkyl iodides:US,4067916[P]. 1978-01-10.
    [28]Chen Q.Y. Cooper-induced teiomerization of tetrafluoroethylene with fluoroalkyl-iodide[J]. Journal of Fluorine Chemistry,1987,36(4):483-489.
    [29]Von Werner K. Metal-catalyzed production of perfluoroalkyl-iodide telomers: CA2166026[P],1996-06-25.
    [30]Krespan C.G., Petrov V.A., Smart B. Initiators for telomerization of polyfluoroalkyl iodides with fluoroolefins:US,5574193[P],1996-11-12.
    [31]Hoechst AG. Process for the preparation of perfluoroalkyl iodide telomers:GB 1535408[P],1978-12-13.
    [32]Paul N., Huber R., Mielke I. Continuous telomerization process:US,5068471 [P], 1991-11-26.
    [33]牟建海,姜标,解德良.氟农而活性剂在石油和消防中的应用[J].化工科技市场,2003,26(2):5-9.
    [34]张建春.全氟碘烷的合成及应用前景[J].化工中间体,2003,(14):25-29.
    [35]王大枋.含氟表面活性剂及其应用[J].杭州化工,2001,31(2):6-10.
    [36]Robert E.T., Ronald S.S., Valeri B. Alternative Fire Suppressant Chemicala:A Research Review with Recommendations, NIST note 1443,2001,4-5.
    [37]丁康生,卢孔燎.哈龙替代物氟碘烃的研究[J].有机氟工业,1994,(3):1-4.
    [38]潘文艳,黄德志.孙祥山.含氟织物整理剂发展概况[.J].化工新型材料,2007,35(4):20-21.
    [39]夏建明.真丝绸低温拒水工艺[J].丝绸,1995,(5):15-17.
    [40]李瑞军,史鸿鑫.朱建萍,刘秋萍.许建帼.氟两相体系与甲苯硝化反应[J].含能材料,2008,16(3):337-341.
    [41]Twelves R.R. Process for preparing perfluoroethyl iodide:US,3072730[P],1963-01-08.
    [42]Walter B. Method of preparing perfluoroethyl iodide:GB,1112864[P],1968-05-08.
    [43]Walter B. Method of preparing perfluoroethyl iodide:US,3406214[P],1968-10-15.
    [44]Massonne.J, Hellberg K, Rudolph W. Process for the preparation of pentafluor omonoiodoethane:DE,2033755[P],1972-01-13.
    [45]Massonne.1, Hellberg K, Rudolph W. Process for preparing perfluoroalkyl iodides:US. 3821321 [P],1974-06-28.
    [46]Hoechst AG. Process for the manufacture of pentafluoroethyl iodide:GB.1369819[P], 1974-10-09.
    [47]Hoechst AG. Process for the preparation of pentafluoroethyl iodide and hepta fluoroisopropyl iodide:GB.1383565[P].1974-02-12.
    [48]ASAHI GLASS CO LTD. Process for preparing perfluoroalkyl iodides:GB.1364303[P], 1974-08-21.
    [49]Oda Y. Suhara M. Process for preparing perfluoroalkyl iodides:US,3933931[P], 1976-01-20.
    [50]Semmiler H.J., Felix B. Process for the preparation of perfluoroethyl iodide:US, 4118290[P],1978-10-03.
    [51]Misaki S., Kamifukikoshi T. Preparation of perfluoroalkyl iodide:JP,58192837[P]. 1983-11-10.
    [52]Misaki S.. Kamifukikoshi T. Production of perfluoroalkyl iodide:JP,60023333[P]. 1985-02-05; JP,3068013[P], 1991-10-25; JP,1709110[P],1992-11-11.
    [53]Ueda K. Production of perfluoroalkyl iodide:JP,7109234[P],1995-04-25.
    [54]Petrov V.A., Krespan C.G. Lewis acid catalyzed conjugated iodofluorination of fluoroolefins:US,29032694A[P],1996-01-02.
    [55]Oharu K., Kumai S. Production of pentafluoroethyl iodide:JP,9309847[P].1997-12-02.
    [56]Ono T., Hayashi E. Production of perfluoroalkyl iodide:JP,2967170[P],1999-10-25; JP, 2000103749[P],2000-04-11.
    [57]Oharu K., Kumai S. Production of perfluoroalkyl iodide:JP,10059880[P],1998-03-03; JP,3800677[P],2006-07-26.
    [58]Richter H.B., Paul N., Huber R. Continuous process for the preparation of pentafluoroethyl iodide:US,6426439[P],2002-07-30.
    [59]Funakoshi Y., Miki J. method for continuous production of a perfluoroalkyl iodide telomere:WO,02085823[P],2002-10-31.
    [60]Petrov V.A., Krespan C.G. Lewis acid catalyzed conjugated iodofluorination of fluoroolefins:US,29032694A[P],1996-01-02.
    [61]Petrov V.A., Krespan C.G. Process for the preparation of perfluoroalkyl iodide:WO, 9504020[P],1995-02-09.
    [62]Millauer H. Process for the manufacture of pentafluorethyl iodide:US,3804909[P]. 1974-04-16.
    [63]Millauer H. Process for the preparation of pentafluorethyl iodide and heptafluoris-opropyl iodides:CA.989874[P].1976-05-25.
    [64]Millauer H.D. Verfahren zur herstellung von pentafluoraethyljodid:DE,2154512[P], 1973-05-03.
    [65]汤德平,方伦达.二碘四氟乙烷急性及亚急性毒性的实验研究[J].职业卫生与应急救援,1995,13(1):22-24.
    [66]Farbwerke H.A.G. Fluoroalkyl iodides prepn-from iodine, fluoroalkylenes and hydrofluoric acid in the presence of an oxy-acid:DE,2061355[P],1972-06-22.
    [67]Sage J.M. Synthesis of trifluoromethyl iodide and/or pentafluoroethyl iodide by vapor phase reaction of e.g. pentafluorethane and iodine in presence of alkali or alkaline earth salt catalyst:FR,2794456 [P],2000-12-08.
    [68]马洋博,吕剑.三氟碘甲烷合成和应用研究进展[J].氟化工,2007,14(4):8-10.
    [69]马洋博,吕剑,张伟,王博.负载型固体碱催化合成三氟碘甲烷[J].化学试剂,2010.32(3):273-274.
    [70]刘东明,杨光成,毛燕超,石磊,寇鸿飞,鲍鹏.一种同时合成三氟碘甲烷和五氟碘乙烷的方法:CN,101219925[P],2008-7-16.
    [71]杨树武.童雪松.用于三氟碘和五氟碘的催化剂:CN,101244979A[P],2008-8-20.
    [72]Nagasaki N, Morikuni Y, Kawada K. Study on a novel catalytic reaction and its mechanism for CF3I synthesis[J]. Catalysis Today.2004.88(3-4):121-126.
    [73]Yang G.C., Jia X.Q., Pan R. M., Quan H. D. Investigation of CF2 carbene on the surface of activated charcoal in the synthesis of trifluoroiodomethane via vapor-phase catalytic reaction[J]. Journal of Fluorine Chemistry,2009,130 (2):231-235.
    [74]Yang G. C., Shi L., Pan R.M., Quan H.D. Preparation of trifluoroiodomethane via vapor-phase catalytic reaction between hexafluoropropylene oxide and iodine[J]. Journal of Fluorine Chemistry,2009,130(10):985-988.
    [75]Yang G.C., Jia X.Q., Pan R.M., Quan H.D. The disproportionation of CF2 carbene in vapor-phase pyrolysis reaction over activated carbon and porous aluminum fluoride[J]. Journal of Molecular Catalysis A:Chemical,2009,309(1-2):184-188.
    [76]杨光成.三氟碘甲烷的气相催化合成及机理研究[D].南京:南京理工大学,2010.
    [77]Zhu Z.H., Radovic L.R., Lu G.Q. Effects of acid treatments of carbon on NO and NO reduction by carbon-supported copper catalysts[J]. Carbon,2000,38 (3):451-464.
    [78]Wang S.B., Zhu Z.H. Effects of acidic treatment of activated carbons on dye adsorption[J]. Dyes and Pigments,2007(75):306-314.
    [79]Wang S.B., Lu G. Q. Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon[J]. Carbon,1998,36 (3):283-292.
    [80]Chiang H.L., Huang C. P., Chiang P. C., You J. H. Effect of metal additives on the physico-chemical characteristics of activated carbon exemplified by benzene and acetic acid adsorption[J]. Carbon,1999,37(12):1919-1928.
    [81]Jazeyi M.S., Kaghazchi T. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal[J]. Journal of Industrial and Engineering Chemistry,2010,16 (5):852-858.
    [82]Xue Y.Y, Lu G.Z., Guo Y, Guo Y.L., Wang Y.Q., Zhang Z.G. Effect of pretreatmenl method of activated carbon on the catalytic reduction of NO by carbon over CuO [J]. Applied Catalysis B:Environmental.2008, (79):262-269.
    [83]Aksoylu A.E., Madalena M., Freitas A., Pereira M.F.R., Figueiredo J.L. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts[J]. Carbon,2001(39):175-185.
    [84]韩文锋,赵波,刘化章.活性炭及表面性质对Ru基氨合成催化剂性能的影响[,J].催化学报,2004.25(3),194-197.
    [85]章建,马磊,卢春山,张群峰,祝一峰,李小年.竹制活性炭作为催化剂载体的研究[J].工业催化,2008,16(3):67-70.
    [86]胡晓敏.钉基氨合成催化剂的成型及机械强度研究[D].浙江:浙江工业大学,2005.
    [87]祝一锋.钉基氨合成催化剂载体活性炭甲烷化反应机理及其抑制的研究[D].浙江:浙江工业大学,2005.
    [88]郑晓玲.活性炭为载体钉催化剂的制备基氨合成催化性能的研究[[D].福州:福州大学,2003.
    [89]郑晓玲,张淑娟,魏可镁.炭载体的预处理对钉催化剂金属分布状态及催化性能的影响[J].燃料化学学报,2001,29:99-101.
    [90]荣成.载体和催化剂的制备方法对活性炭负载钉基氨合成催化剂性能的影响[D].福州:福州大学,2005.
    [91]郑超.活性炭负载钉催化剂的制备及其氨合成催化性能的研究[D].福州:福州大学,2005.
    [93]毛树禄.助剂和制备方法对钉基氨合成催化剂活性与甲烷化的影响[D].福州:福州大学.2001.
    [94]厉嘉云.马磊,卢春山,李小年.碱处理对活性炭载体及负载把催化剂性能的影响[J].石油化工,2004,(33):1168-1169.
    [95]Nomura N. Trifluoromethyl iodide:JP. [P].1977-06-06.
    [96]Sudip M., Tung H. Direct One-Step Synthesis from CF3I:WO2006063241, [P]. 2006-01-15.
    [97]波林B.E..普劳斯尼茨J.M.,奥康奈尔J.P气液物性估算手册[M].第5版.北京:化学工业出版社,2006.40-70.
    [98]董新法,方利国,陈砺.物性估算原理及计算机计算[M].第1版.北京:化学工业出版社,2006.140-238.
    [99]迪安J.A.兰氏化学手册[M].第13版.北京:科学出版社,1991.
    [100]王正烈,周亚平.物理化学[M].第1版.北京:高等教育出版社,2001.
    [101]李梦龙.化学数据速查手册[M].第1版.北京:化学工业出版社,2003.
    [102]韩德刚.高执棣,高盘良.物理化学[M].第1版.北京:高等教育出版社,2001.
    [103]傅献彩,沈文霞,姚天扬.物理化学(上)[M].第4版.北京:高等教育出版社,1990.
    [104]高执棣.化学热力学基础[M].第1版.北京:北京大学出版社,2006.
    [105]范康年.物理化学[M].第2版.北京:高等教育出版社,2005.
    [106]郭艳红.HFC134合成粗料的提纯技术研究[D].南京:南京理工大学,2008.
    [107]David O.H. Understanding organofluorine chemistry:An introduction to the C-F bond[J]. The Royal Society of Chemistry,2008.37,308-319.
    [108]Kitajima M, Suzuki R, Tanaka H, et al. Electron impact excitation and dissociation of halogen-containing molecules[J]. Nukleonika,2003.48(2):89-93.
    [109]Coata Y. L., Hedhilia N. M., Azria R., Tronc M. Weik F., Illenberger E. Kinetic energy release of F- desorption from condensed CF4 following low energy electron impact[J]. International Journal of Mass Spectrometry and Ion Processes,1997,164:231-239.
    [110]Tschuikow-Roux E., Millward G.E., Quiring W.J. Kinetics of the Shock Wave Pyrolysis of Pentafluoroethane[J]. The Journal of Physical Chemistry,1971,75(23):3493-3498.
    [111]Aviyente V, Inel Y. Analysis of the kinetics of the thermal decomposition of pentafluoroethane[J]. Canadian Journal Chemistry,1990,68(8):1332-1337.
    [112]Politanskii S.F., Shevchuk V.U. Thermal conversion of fluoromethane[J]. Kinetics and Catalysis,1968,9:411-417.
    [113]Tomonari M., Okamoto Y. Ab Initio Calculations on Reactions of CF3H with Its Fragments[J]. Journal Physical Chemistry A,2000,104:2729-2733.
    [114]谈玲华,李勤华,冒爱琴,高飞,潘仁明.李风生.六氟丙烷热分解性能及机理研究[J].南京理工大学学报,2010,34(5):691-695.
    [115]淡玲华,李勤华,高飞,潘仁明,李凤生.王俊德.六氟丙烷洁净气体灭火剂热分解性能研究[J].光谱学与光谱分析,2010,30(7):1926-1929.
    [116]Hynes R.G., Mackie J.C. Shock-Tube Study of the Pyrolysis of the Halon Replacement Molecule CF3CHFCF3[J]. The Journal of Physics and Chemical,1999,103:54-61.
    [117]Peterson S.D., Francisco J.S. Theoretical Study of the Thermal Decomposition Pathways of 2-H Heptafluoropropane[J]. The Journal of Physics and Chemical.2002. 106:3106-3113.
    [118]Andersson B., Blomqvist P. Experimental study of thermal breakdown products from halogenated extinguishing agents[J]. Fire Safety Journal,2011,46(3):104-115.
    [119]Andrews L. Prochaska F.T. Infrared spectra of the CH2F2+, CI1F2+,CHF+, and FH-(CHF)-molecular ions in solid argon[J]. Journal of Chemical physics,1979.70: 4714-4723.
    [120]Moreno-Castilla C., Lopez-Ramon M.V.. Carrasco-Marin F. Changes in surface chemistry of activated carbons by wet oxidation[J].Carbon,2000,38(14):1995-2001.
    [121]杜嬛,王成扬,时志强,郭春雨.表面含氧官能团对活性炭电化学性能的影响[J].天津大学学报,2006,39(12):1479-1484.
    [122]Yao S.L., Yang C.H.. Tan Y.S., Han Y.Z. Deactivation of activated carbon supported nickel-palladium catalyst for vapor phase carbonylation of methanol[J]. Journal of fuel chemistry and technology,2006,34(6):706-711.
    [123]Artur P.T. The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro:Part Ⅱ. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH[J]. Colloids and Surfaces,2001,177(1):23-25.
    [124]Karina D., Victor G., Juan M. Activated carbon supported Ni-Ca:Influence of reaction parameters on activity and stability of catalyst on methane reformation[J]. Fuel.2007. 86(9):1337-1344.
    [125]Wagner C.D. Handbook of X-Ray and Ultraviolet Photoelectron Spectroscopy[M]. 1977.
    [126]Beamson G. B D. High Resolution XPS of Organic Polymers:the Scienta ESCA300 Database[S].1992.
    [127]Myli K B, Grassian V H. Adsorption and reaction of trifluoromethyl iodide on Ni(111)[J]. Journal of Physical Chemistry,1995,99(15):5581-5587.
    [128]向德辉,翁玉攀,李庆水.张钲,庄志福.固体催化剂[M].第1版.北京:化学工业出版社,1983,93-97.
    [129]金杏妹.工业应用催化剂[M].第1版.上海:华东理工大学出版社,2004.
    [130]黄振兴.活性炭技术基础[M].第1版.北京:兵器工业出版社.2006.
    [131]高南星.活性炭作为吸附脱硫催化剂载体的研究[D].山东:中国石油大学,2006.
    [132]Wang Y.F.. Gao H.Z., Yeredla R., Xu H.F., Abrecht M. Control of pertechnetate sorption on activated carbon by surface functional groups[J]. Journal of Colloid and Interface Science,2007.305(2):209-217.
    [133]Bansode R. R.. Losso J. N., Marshall W. E., Rao R. M., Portier R. J.Adsorption of volatile organic compounds by pecan shell-and almond shell-based granular activated carbons[J]. Bioresource Technology,2003,90 (2):175-184.
    [134]Mackenzie K., Battke J., Koehler R., Kopinke F.D. Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds:Part 2. 1.1,2,2-Tetrachloroethane[J]. Applied Catalysis B:Environmental.2005.59(3-4): 171-179.
    [135]Mackenzie K., Battke J., Kopinke F.D. Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds:Part 1. y-Hexachlorocyclohexane[J]. Catalysis Today.2005, (102-103):148-153.
    [136]Zheng X.L., Zhang S.J., Xu J.X., Wei K.M. Effect of thermal and oxidative treatments of activated carbon on its surface structure and suitability as a support for barium-promoted ruthenium in ammonia synthesis catalysts[J]. Carbon,2002.40 (14): 2597-2603.
    [137]Silva L.M.S., Orfao J.J.M., Figueiredo J.L. Formation of two metal phases in the preparation of activated carbon-supported nickel catalysts[J]. Applied Catalysis A: General,2001,209(1-2):145-154.
    [138]Ordonez S., Diez F.V., Sastre H. Characterisation of the deactivation of platinum and palladium supported on activated carbon used as hydrodechlorination catalysts[J]. Applied Catalysis B:Environmental,2001,31 (2):113-122.
    [139]Fuente A. M., Pulgar G., Gonzalez F., Pesquera C., Blanco C. Activated carbon supported Pt catalysts:effect of support texture and metal precursor on activity of acetone hydrogenation[J]. Applied Catalysis A:General,2001,208(1-2):35-46.
    [140]Gurrath M., Kuretzky T., Boehm H. P., Okhlopkova L. B., Lisitsyn A. S.. Likholobov V. A. Palladium catalysts on activated carbon supports:Influence of reduction temperature, origin of the support and pretreatments of the carbon surface[J]. Carbon,2000.38 (8): 1241-1255.
    [141]van Dam H.E., van Bekkum H. Preparation of platinum on activated carbon[J]. Journal of Catalysis,1991,131(2):335-349.
    [142]Hillary A.P., Zhi J.L.. Erhard K.J.D. New magnesium oxide fluorides with hydroxy group as catalysts for Michael additions[J]. Journal of Material Chemistry,2005,15: 4616-4628.
    [143]Wojciechowska M., Zieliiiski M., Pietrowski M. MgF2 as a non-conventional catalyst support[J]. Journal of Fluorine Chemistry.2003,120(1):3-11.
    [144]Noh J.S., Schwarz J.A. Estimation of the point of zero charge of simple oxides by mass titration[J]. Journal of Colloid and Interface Science,1989,130(1):157-164.
    [1451 Noh J.S., Schwarz J.A. Estimation of surface ionization constants for amphoteric solids[J].Journal of Colloid and Interface Science,1990,139(1):139-148.
    [146]Noh J.S., Schwarz J.A.Effect of HNO3 treatment on the surface acidity of activated carbons [J]. Carbon,1990,28 (5):675-682.
    [147]Rodrigue-reinoso F. The role of carbon materials in heterogeneous catalysis[J]. Carbon, 1998,36(3):159-175.
    [148]Gao Z, Wu Y. Influence of acid treatments of activated carbons on NO reduction over carbon-supported copper oxides[J]. React Kinet Catal Lett,1996,159:359-362.
    [149]Boehm H.P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon,1994,32(5):759-769.
    [150]Boehm H.P., Diehl E., Sappok R. Acidic surface oxides on carbon[J]. Carbon,1964,1 (3):394.
    [151]Boehm H.P. Surface oxides on carbon and their analysis:a critical assessment [J]. Carbon,2002,40 (2):145-149.
    [152]Charsley P.G. Lave H.M. Markham J.O.H. Determination of the equilibrium temperatures and enthalpies of the solid-solid transitions of rubidium nitrate by differential scanning calorimetry[J]. Thermochimica Acta,2008,469:65-70.
    [153]Devlin J.P., James D.W. Raman spectra of rubidium nitrate:relationship between disordered solid phases and the molten state [J]. Chemical Physics Letters,1970,(7): 237-241.
    [154]朱建华,王英,山口力KNO3/Al2O3上强碱位的产生和表征[J].催化学报,1996.17(4):286-290.
    [155]朱建华.王英,淳远.新型固体强碱KNO3/Al2O3的碱性[J].催化学报,1997,18(6):498-502.
    [156]孙林兵,吴正颖,寇佳慧.淳远,王英.朱建华,邹志刚.负载型KN03固体碱对环戊二烯甲基化反应的催化作用[J].催化学报,2006,27(8):725-731.
    [157]沈彬,淳远,朱建华.夏加荣,王英,须沁华.氧化物和沸石载体上负载KN03的分解[J].无机化学学报.1999,15(3):351-356.
    [158]董国君,李婷MgO/ZrO2的制备表征及催化合成碳酸二异辛酯[.J].精细化工,2009,26(2):166-169.
    [159]Mishra M.K., Tyagi B., Jasra R.V. Effect of synthetic parameters on structural textural and catalytic properties of nanocrystalline sulfated zirconia p repared by sol-gel technique[J]. Ind Eng Chem Res,2003,42(23):5727-5736.
    [160]Zawadzki Z. Analysis of the surface properties of active carbon by infrared spectroscopy [J]. Carbon,1980,18(4):281-285.
    [161]Usmani T.H., Ahmed T.M., Ahmed S.Z, Yousufzai A.H.K. Preparation and characterization of activated carbon from a low rank coal[J]. Carbon,1996,34(1): 77-82.
    [162]Masaki T.. Hiromu Y., Nobuo T. The effect of treatment of activated carbon by H2O2 or HNO3 on the decomposition of pentachlorobenzene[J]. Applied Catalysis B,2007, 74(3-4):179-186.
    [163]Ando T., Stephen J. Brown S.J., Clark J. H., Cork D.G., Hanafusa T., Ichihara J., Miller J.M., Robertson M.S. Alumina-supported fluoride reagents for organic synthesis: optimisation of reagent preparation and elucidation of the active species[J]. J. Chem. Soc, Perkin Trans.1986(2):1133-1139.
    [164]Ando, T., Clark, J. H., Cork, D. G., Hanafusa, T., Ichihara J., Kinura T. Fluoride-alumina reagents:the active basic species[J]. Tetrahedron Letts,1987,28 (13): 1421-424.
    [165]Clark J.H. Fluoride ion as a base in organic synthesis [J]. Chem. Rev.,1980,80 (5): 429-452.
    [166]Yamawaki J., Kawate T.. Ando T., Hanafusa T. Potassium Fluoride on Alumina, an Efficient Solid Base for Elimination.Addition, and Condensation [J]. Bulletin of the Chemical Society of Japan,1983,56(6):1885-1886.
    [167]Villemin D., Alloum A.B. Potassium Fluoride on Alumina: Condensation of 1, 4-Diacetylpiperazine-2,5-Dione with Aldehydes. Dry Condensation Under Microwave Irradiation. Synthesis of Albonursin and Analogues[J]. Synthetic Communications,1990,20(21):3325-3331.
    [168]Villemin D., Racha R. Activation anionique du phosphite de diethyle par le fluorure de potassium depose sur alumine, synthese de phosphonates fonctionalises Tetrahedron Letters,1986,27(16):1789-1790.
    [169]朱建华,须沁华.KF负载制备固体强碱的研究[J].化学学报,1997,55,474-47.
    [170]Blass B. E. KF/Al2O3 Mediated organic synthesis[J]. Tetrahedron,2002,58: 9301-9320.
    [1711李向召,江琦.固体碱催化剂研究进展[J].天然气工,2005(30):44.
    [172]Villemin D., Alloum A.B.Potassium Fluoride on Alumina:An Easy Synthesis of 4-Alkylidene-2-Thione-1.3-Oxathiolanes froma-Acetylenic Alcohols[J]. Synthetic Communications,1992,22(9):1351-1357.
    [173]Francoise T.B., Maryvonne L. An unexpected reactivity of simple heterogeneous mixture of y-alumina and potassium fluoride:1-hydroxyalkane phosphonic esters synthesis from non-activated ketones in "dry media"'[J]. Tetrahedron Letters.1986. 27(30):3515-3516.
    [174]Campelo J.M.. Climent M.S., Marinas J.M. Michael addition of nitromethane to 3-buten-2-one catalyzed by potassium fluoride supported on Al2O3,ZnO, SnO2 sepiolite,AlPO4, AlPO4-Al2O3 and AlPO4-ZnO[J]. Reaction Kinetics and Catalysis Letters,1992.(47):7-9.
    [175]Villemin D., Ricard M. Activation de la liaison C-H faiblement acide par adsorption sur KF-Al2O3[J]. Tetrahedron Letters,1984,25(10):1059-1060.
    [176]Auer E., Freund A., Pietsch J., Tacke T.Carbons as supports for industrial precious metal catalysts[J].Applied Catalysis A:General,1998,173(2):259-271.
    [177]Cameron D.S., Cooper S.J., Dodgson I.L., Harrison B., Jenkins J.W. Carnons as supports for precious metal catalysts[J]. Catalysis Today,1990,7(2):113-137.
    [178]Qia S.Y., Schidemanb L.C. An overall isotherm for activated carbon adsorption of dissolved natural organic matter in water [J]. Water research,2008.42:3353-3360.
    [179]窦智峰.椰壳渣制备高比表面积活性炭[D].海南:海南大学,2006.
    [180]Xue Y.Y., Lu G.Z., Guo Y, Guo Y.L., Wang Y.Q., Zhang Z.G. Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO[J]. Appl ied Catalysr B,2008,79(3):262-269.
    [181]Chingombe P, Saha B, Wakeman RJ. Surface modification and characterization of a coal-based activated carbon[J]. Carbon,2005,43(15):132-3143.
    [182]Urano K., Koichi Y, Yamamoto E. Equilibria for adsorption of organic compounds on activated carbons in aqueous solutions II-generalization and a prediction method of adsorption isotherms[J]. Journal of Colloid and Interface Science,1982,86 (1):43-50.
    [183]Figueiredo J.L., Pereira M.F.R., Freitas M.M.A., Orfao J.J.M. Modification of the surface chemistry of activated carbons [J]. Carbon,1999,37(9):1379-1389.
    [184]Rodriguez-reinoso F. The role of carbon materials in heterogeneous catalysis[J]. Carbon. 1998,36(3):159-175.
    [185]Noh J.S., Schwarz J.A. Relationship between metal ion adsorption and catalytic properties of carbon-supported nickel catalysts[J]. Journal of Catalysis,1991,127(1): 22-33.
    [186]Prado B.C., Linares-Solano A.. Rodriguez R.F.. Salinas M.D.L.C. Effect of carbon support and mean Pt particle size on hydrogen chemisorption by carbon-supported Pt ctalysts [J]. Journal of Catalysis,1991,128(2):397-404.
    [187]Torres G.C., Jablonski E.L., Baronetti G.T., Castro a A.A., de Miguel S.R.. Scelza O.A. Blanco M.D., Pefia Jim6nez M.A., Fierro J.L.G. Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt/C catalysts[J]. Applied Catalysis A:General.1997.161:213-226.
    [188]Leon y Leon C.A., Scaroni A.W., Radovic L.R. Physicochemical characterization of carbon-coated alumina[J]. Journal of Colloid and Interface Science.1992,148 (1): 1-13.
    [189]Leon y Leon C.A.. Solar J.M, Calemma V., Radovic L.R. Evidence for the protonation of basal plane sites on carbon[J] Carbon,1992,30 (5):797-811.
    [190]Solar J.M. Leon y Leon C.A., Asare K.O., Radovic L.R. On the importance of the electrokinetic properties of carbons for their use as catalyst supports[J]. Carbon,1990, 28 (2-3):369-375.
    [191]王慧,刘水刚,张文郁等.高稳定性CaO/ZrO2固体碱催化剂的表征和催化性能[J].化学学报.2006,64(24):2409-2413.
    [192]李婷.固体碱催化剂MgO/ZrO2催化合成碳酸二异辛酯的研究[D].哈尔滨:哈尔滨工程大学,2009.
    [193]李春林,伏义路,卞国柱Ni/Ce-Zr-Al-O催化剂的表而碱性和CO2+CH4重整性能[J].物理化学学报,2003,19(10):902-906.
    [194]ScireS., Crisafulli C., Maggiore R., MinicoS., Galvagno S. Effect of the acid-base properties of Pd-Ca/Al2O3 catalysts on the selective hydrogenation of phenol to cyclohexanone:FT-IR and TPD characterization[J]. Applied Surface Science,1998, 136(4):311-320.
    [195]Masai M., Kado H., Miyake A., Nishiyama S., Tsuruya S. Methane Reforming by Carbon Dioxide and Steam Over Supported Pd, Pt, and Rh Catalysts[J]. Studies in Surface Science and Catalysis,1988, (36):67-71.
    [196]寇鸿飞.五氟碘乙烷的气相催化合成技术研究[D].南京:南京理工大学,2009.
    [197]李雷.五氟碘乙烷催化合成新工艺研究[D].南京:南京理工大学,2009.
    [198]石磊.三氟碘甲烷的气相催化合成[D].南京:南京理工大学,2008.
    [199]梁汉昌.气相色谱法在气体分析中的应用[M].第1版.北京:化学工业出版社,2008.
    [200]王瑞芬.现代色谱分析法的应用[M].第1版.北京:冶金工业出版社,2006.
    [201]黄仲涛.工业催化剂手册[M].第1版.北京:化学工业出版社,2004.
    [202]刘旦初.多相催化原理[M].第1版.上海:复旦大学出版社.1997.
    [203]甄开吉,李荣生等.催化作用基础[M].第3版.北京:科学出版社,2005.
    [204]Mo'nica E. Crivello, Celso F. Pe'rez, Silvia N. Mendieta. Sandra G. Casuscelli. Griselda A. Eimer, Vero'nica R. Ehias, Eduardo R. Herrero.n-Octyl alcohol dehydrogenation over copper catalysts[J]. Catalysis Today,2008, (133-135):787-792.
    [205]Keating E L. The high temperature oxidation of tetrafluoroethylene[J]. Journal of Chemical Physics.1977,66(3):1237-1244.
    [206]Nip W.S., Drouin M., Hackett P. A. Multiphoton Chemistry of Perfluoropropene[J].
    [207]储伟主编.催化剂工程[M].北京:化学工业出版社,2006.
    [208]张云良,李玉龙.工业催化剂制造与应用[M].第1版.北京:化学工业出版社,2008.
    [209]Wiersma A., van de Sandt E. J. A. X., Makkee M., Moulijn J. A. Deactivation of activated carbon in the selective hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32)[J]. Applied Catalysis A:General,2001,212 (1-2):223-238.
    [210]Chun F.W, Paul T.W. Investigation of coke formation on Ni-Mg-Al catalyst for hydrogen production from the catalytic steam pyrolysis-gasification of polypropylene[J]. Applied Catalysis B:Environmental,2010,96(1-2):198-207.
    [211]Li C.L., Novaro O., Munoz E, Boldu J.L., Bokhimi X., Wang J.A., Lopez T., Gomez R. Coke deactivation of Pd/H-mordenite catalysts used for C5/C6 hydroisomerization[J]. Applied Catalysis A:General,2000,199(2):211-220.
    [212]Chen D., Rebo H.P., Grφnvold A., Moljord K., Holmen A. Methanol conversion to light olefins over SAPO-34:kinetic modeling of coke formation formation[J]. Microporous and Mesoporous Materials,2000,35-36:121-135.
    [213]Guanjie Mi, Jianwei LI, Dong Qiu, Biaohua Chen. Kinetics of coke formation on a Fe-ZSM-5 Zeolite Catalyst in the One-Step Oxidation of Benzene to Phenol with N2O[J].Chinese Journal of Catalysis,2010,31(5):547-551.
    [214]Gascon J., Tellez C., Herguido J., Menendez M. Propane dehydrogenation over a Cr2O3/Al2O3 catalyst:transient kinetic modeling of propene and coke formation[J]. Applied Catalysis A:General,2003,248(1-2):105-116.
    [215]Reyniers M.F., Tang Y., Marin G.B. Influence of coke formation on the conversion of hydrocarbons:II. i-Butene on HY-zeolites[J]. Applied Catalysis A:General,2000, 202(1):65-80.
    [216]陈小娟,崔群,王海燕,堵文斌,汪洋.MPB5型Pd/C催化剂的失活表征[J].稀有金属,2008,32(4):536-539.
    [217]Magnoux P. Guisent M. Coking, Ageing and Regeneration of Zeolites:VI. Comparison of the Rates of Coke Oxidation of HY, H-Mordenite and HZSM-5[J]. Applied Catalysis, 1988,38:341-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700