亚磺化脱卤反应在含氟卟啉合成及转化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要内容是发展合成含氟卟啉的新方法,并对所得到的氟烷基卟啉的转化进行研究。我们以全氟碘代烷和易得的卟啉为原料,通过亚磺化脱卤反应将氟烷基引入卟啉,并研究了亚磺化脱卤反应在氟烷基卟啉中的应用。本论文分五章。
     第一章,绪论。
     第二章,5,10,15-三芳基卟啉的氟烷基化反应研究。本章研究了在亚磺化脱卤反应条件下5,10,15-三芳基卟啉的氟烷基化反应,并对反应条件进行了优化。在优化条件(原料比例为5,10,15-三芳基卟啉/多氟碘代烷RFI/Na2S2O4/NaHCO3=1/3/4.5/4.5,DMSO/CH2Cl2(vol/vol=1/1)为混和溶剂,温度为65℃左右的回流温度)下进行反应,得到了2-全氟烷基-5,10,15-三芳基卟啉和5,10,15-三芳基-20-全氟烷基卟啉。从两种产物的比例可以看出卟啉meso-位的反应活性要高于卟啉β-位的反应活性。
     第三章,2-和20-全氟烷基-5,10,15-三芳基卟啉自由基的分子内环化反应研究。1,3-二碘六氟丙烷与5,10,15-三芳基卟啉在DMSO/CH2Cl2(vol/vol=1/1)的混和溶剂中,在Na2S2O4/NaCO3的存在下反应(原料比例为5,10,15-三芳基卟啉/多氟碘代烷RFI/Na2S2O4/NaHCO3=1/1.5/4.5/4.5),得到meso-与β-位全氟丙烷相连的六元分子内环化产物2,20-六氟丙烷基-5,10,15-三芳基卟啉,并证明2-和20-(3-碘六氟丙烷基)-5,10,15-三芳基卟啉是该反应的中间体。以2-或20-(2-氯四氟乙烷基)-5,10,15-三苯基锌卟啉为原料,改变反应条件,卟啉:保险粉:碳酸氢钠=1:10:10,直接以DMSO为溶剂,反应温度升高到100℃,2-或20-(2-氯四氟乙烷基)-5,10,15-三苯基锌卟啉能发生C-Cl键的断裂而顺利的进行了分子内环化反应,得到meso-与β-位全氟丙烷相连的五元分子内环化产物2,20-四氟乙烷基-5,10,15-三苯基卟啉。2,20-六氟丙烷基-5,10,15-三芳基锌卟啉和2,20-四氟乙烷基-5,10,15-三苯基锌卟啉在硅胶的催化下可以发生水解反应生成5,10,15-三芳基-2,20-(20’-羰基)-四氟丙烷基锌卟啉和5,10,15-三苯基-2,20-(20’-羰基)-二氟乙烷基锌卟啉。而自由碱卟啉在同样条件下不能发生水解反应。
     第四章,5,15-全氟烷基-10,20-二苯基卟啉自由基的产生及它们的分子内环化反应。不同比例的1,3-二碘六氟丙烷与5,15-二苯基卟啉在亚磺化脱卤的条件下反应,可以得到三种不同类型的反应产物,他们分别为单取代产物2-(3-碘六氟丙烷基)-5,15-二苯基卟啉和5,15-二苯基-10-(3-碘六氟丙烷基)卟啉、单环化产物5,15-二苯基-2,20-六氟丙烷基卟啉和双环化产物5,15-二苯基-2,20:10,12-二(六氟丙烷基)卟啉。在双环化反应中,若不加碱,即得到5,15-二苯基-2,20:10,12-二(六氟丙烷基)卟啉和5,15-二苯基-2,20:8,10-二(六氟丙烷基)卟啉的混合物。我们利用活化全氟烷基中C-Cl键的方法,5-(2-氯四氟乙基)-10,20-二苯基锌卟啉和5,15-二(2-氯四氟乙基)-10,20-二苯基锌卟啉也可以发生分子内环化反应,分别得到单环化产物与双环化产物。
     第五章,5,15-二丙基卟啉的氟烷基化反应研究。用5,15-二丙基卟啉代替5,15-二苯基卟啉进行氟烷基化反应,在单取代反应和单环化反应条件下,二者并没有明显区别,在双取代反应条件下,在亚磺化脱卤体系中,若不加NaHCO3时,得到5-三氟乙烯基-10,20-二丙烷基卟啉,而当NaHCO3存在时,得到meso,meso-位相连的双-(5-多氟烷基-5,15-二氢-10,20-二丙烷基二氢卟啉)。
The dissertation focused on the development of new method for the synthesis of fluoroalkylated porphyrins. Fluoroalkyl group was introduced to porphyrins by sulfinatodehalogenation system. We also studied the application of sulfinatodehalogenation on the fluoroalkylated porphyrins. The dissertation consisted of five chapters.
     ChapterⅠ. Introduction.
     ChapterⅡ. Fluoroalkylation of 5,10,15-triarylporphyrins. We investigated fluoroalkylation of 5,10,15-triarylporphyrins with fluoroalkyl halides by sulfinatodehalogenation system. Treatment of 5,10,15-triarylporphyrins with perfluoroalkyl iodides RFI in the presence of Na2S2O4/NaHCO3(molar ratio 1:3:4.5:4.5) in DMSO /CH2Cl2(V/V, 1/1) at 65℃for 3h, gave 2-perfluoroalkyl-5,10,15-triarylporphyrins and 5,10,15-triaryl-20-perfluoroalkylporphyrins. The ratio of the products show that the activity of the meso-position of porphyrins is higher than that of theβ-position of porphyrins.
     ChapterⅢ. Intramolecular cyclizations of 2- and 20-perfluoroalkyl-5,10,15-triarylporphyrin radicals. When 1,3-diiodohexafluoropropane was subjected to react with 5,10,15-triarylporphyrins, in the presence of Na2S2O4/NaHCO3 (reactant ratio = 1:1.5:4.5:4.5) in DMSO/CH2Cl2(v/v=1/1) at 65℃for 8h, 5,10,15-triaryl-2,20-(hexafluoropropanediyl)porphyrins was obtained. It was found that the intermediates of this reaction are 2-(3-iodohexafluoroalkyl)-5,10,15-triarylporphyrin and 20-(3-iodohexafluoroalkyl)-5,10,15-triarylporphyrin. Because the carbon-chlorine bond of perfluoroalkyl chlorides can be activated in sulfinatodehalogenation system in DMSO at higher temperature, the chlorine atoms of 2-(2-Chlorotetrafluoroethyl)-5,10,15-triphenylporphinato zinc(Ⅱ) and 5,10,15-triphenyl-20-(2-Chlorotetrafluoroethyl)porphinato zinc (Ⅱ) could be homogenously cleaved by Na2S2O4/NaHCO3(reactant ratio=1:10:10) in DMSO at 100℃. Both theβ- tetrafluoroethyl and meso- tetrafluoroethyl radicals produced launch their intramolecular cyclization at respective meso- andβ-positions giving a single fluorinated fused porphyrin, ie. 5,10,15-triphenyl-2,20-(tetrafluoroethanediyl)porphinato zinc(Ⅱ). The hydrolysis of CF2 moiety may be simply accomplished by treating 5,10,15-triaryl-2,20-(hexafluoropropanediyl) porphinato zinc (Ⅱ) (or 5,10,15-triphenyl-2,20-(tetrafluoroethanediyl)porphinato zinc(Ⅱ)) with silica gel at room temperature.
     ChapterⅣ. Generation of 5,15-perfluoroalkyl-10,20-diphenylporphyrin radicals and their intramolecular cyclizations. Heating 5,15-diphenylporphyrin with 1,3-diiodohexafluoropropane in the presence of Na2S2O4/NaHCO3 in the different molar ratios of material in DMSO-CH2Cl2 (v/v, 1/1) at 65℃yielded three different products. They are a mixture of a mono fluoroalkylated porphyrins (the mixture of 2-(3-iodohexafluoropropyl)-5,15-diphenylporphyrin and 5, 15-diphenyl-10-(3-iodohexafluoropropyl)porphyrin), a mono fluoroalkylated meso,β-fused porphyrin (5,15-diphenyl-2,20-(hexafluoropropanediyl)porphyrins)and a double fluoroalkylated meso,β-fused porphyrin(5,15-diphenyl-2,20:10,12-di(hexafluoropropanediyl)porphyrins). In the absence of NaHCO3, the products were the mixture of 5,15-diphenyl-2,20:10,12-di(hexafluoropropanediyl)porphyrins and 5,15-diphenyl-2,20:8,10-di(hexafluoropropanediyl)porphyrins. Using activation method of C-Cl bonds in perfluoroalkyl chlorides, the mono cyclization of 5-(2- Chlorotetrafluoroethyl)-10,20-diphenylporphyrin and the double cyclization of 5, 15-di(2- Chlorotetrafluoroethyl) -10,20- diphenylporphyrin could also take place.
     ChapterⅤ. Fluoroalkylation of 5, 15-dipropylporphyrin. Using 5, 15-dipropylporphyrin as the starting material instead of 5,15-diphenylporphyrin, the results were quite similar for the mono fluoroalkylated and the mono cyclization reaction. But for the double fluoroalkylated reactions, in the absence of NaHCO3, the product was 5-(1,2,2-trifluorovinyl)-10,20- dipropylporphyrin; in the presence of NaHCO3, the product was meso,meso-linked bis-(5-perfluoroalkyl-5,15-dihydro-10,20-dipropylporphodimethene).
引文
[1]Chikira M, Liyama T, Sakamoto K, et al. Orientation of IronBleomycinand Porphyrin complexes on DNA fibers. Inorg Chem, 2000,39(8):1779-1786
    [2]Trytek M, Fiedurek J, Polska K, et al. Porphyrins and phthalocyanins Part II Porphyrins as biomimetic catalysts in transformation of organic compounds. Biotech, 2005,4(1):128-141
    [3]Shai R, Nurit B, Keren Z, et al. Receptor-Mediated Targeting of a photosensitizer by Its Conjugation to Gonadotropin-Releasing Hormone Analogues. J Med Chem, 2003,46(19):3965-3974
    [4]Roth K M, Gryko D T, Clausen C, et al. Comparison of Electron-Tranfer and Charge-Retention Characteristics of Porphyrin-Containing Self-Assembled Monolayers Designed for Molecular Information Storage. J Phy Chem B, 2002,106(34):8639-8648
    [5]Langford S J, Latter M, Woodward C P. Progress in charge transfer systems utilizing porphyrin donors and simple aromatic diimide acceptor units. Photochem Photobiol, 2006,82(6):1530-1540
    [6]Nagababu E, Rifkind J M. Reaction of Hydrogen Peroxide with Ferrylhemoglobin Superoxide Production and Heme Degradation. Biochem, 2000,39(40):12503-12511
    [7]Lane B S, Burgess, K. Metal-Catalyzed Epoxidations of Alkenes with Hydrogen Peroxide. Chem Rev, 2003,103(7):2457-2473
    [8]Goll J G, Moore K T, Therien M J, et al. Synthesis, Structure, Electronic Spectroscopy, Photophysics, Electrochemistry, and X-ray Photoelectron Spectroscopy of Highly-Electron-Deficient [5,10,15,20-Tetrakis- (pefluoroalkyl)porphinato]zinc(II) Complexes and Their Free Base Derivatives. J Am Chem Soc, 1996,118(35):8344-8354
    [9]Dimagno S G, Dussault P H, Schultz J A. Fluorous Biphasic Singlet Oxygenation with a Perfluoroalkylated Photosensitizer. J Am Chem Soc, 1996,118(22):5312-5313
    [10]Tsuchiya S, Seno M. Novel Synthetic Method of phenol form benzene catalysed by Pefluorinated Hemin. Chem Lett, 1989,18(2):263-266
    [11]Traylor T, Tsuchiya S. Perhalogenated tetraphenylhemins stable catalysts of highturnover catalytic hydroxylations. Inorg Chem, 1987,26(8):1338-1339
    [12]Pozzi G, Montanari F, Quici S. Cobalt tetraarylporphyrin-catalysed epoxidation of alkenes by dioxygen and 2-methylpropanal under fluorous biphasic conditions. Chem Commun, 1997,1997(1):69-70
    [13]Aoyagi K, Toi H, Ogoshi H, et al. Facile Syntheses of Pefluoroalkylporphrins Electron Deficient Porphyrins II. Chem Lett, 1988,17(11):1891-1894
    [14]Toi H, Homma M, Ogoshi H, et al. Paramagnetic 19FNMR Spectra of Iron(III) Porphyrins Substituted with CF3 groups and Reconstituted Myoglobin. J Chem Soc Chem Commun, 1985,1985(24):1791-1792
    [15]Pandey S K, Gryshuk A L,Sajjad M, et al. Multimodality Agents for Tumor Imaging (PET Fluorescence) and Photodynamic Therapy A Possible "See and Treat" Approach. J Med Chem, 2005,48(20):6286-6295
    [16]Dichtel W R, Serin J M, Edder C, et al. Singlet Oxygen Generation via Two-Photon Excited FRET. J Am Chem Soc, 2004,126(17):5380-5381
    [17]Li G, Graham A, Pandey R K, et al. A Simple and Efficient Approach for the Synthesis of Fluorinated and Nonfluorinated Octaethylporphyrin-Based Benzochlorins with Variable Lipophilicity Their in Vivo Tumor Uptake, and the Preliminary in Vitro Photosensitizing Efficacy. J Org Chem, 2001,66(4):1316-1325
    [18]Mettath S, Li G, Pandey R K, et al. Effect of Substituents in Directing the Formation of Benzochlorins and Isobacteriochlorins in Porphyrin and Chlorin Systems. Org Lett, 1999,1(12):1961-1964
    [19]Chen X, Hui L, Drain C M, et al. Efficient Synthesis and Photodynamic Activity of Porphyrin-Saccharide Conjugates Targeting and Incapacitating Cancer Cells. Biochem, 2004, 43(34):10918-10929
    [20]Yang S I, Seth J, Lindsey J S, et al. Ground and Excited State Electronic Properties of Halogenated Tetraarylporphyrins Tuning the Building Blocks for Porphyrin-based Photonic Devices. J Porphyr Phthalocyan, 1999,3(2):117-147
    [21]Chen Y, Gryshuk A, Pandey R K, et al. A Novel Approach to a Bifunctional Photosensitizer for Tumor Imaging and Phototherapy. Bioconjugate Chem, 2005,16(5):1264-1274
    [22]Kaesler R W, LeGoff E. Synthesis of (polyfluoroalkyl)pyrroles and porphyrins. J Org Chem, 1982,47(27):5243-5246
    [23]Homma M, Aoyagi K, Ogoshi H, et al. Electron deficient porphyrins 1 tetrakis(trifluoromethyl)porphyrin and its metal complexes. Tetrahedron Lett,1983,24(40):4343-4346
    [24]Yoshimura T, Toi H, Ogoshi H. Iron(III) Porphyrins Substituted with Highly Electron-withdrawing CF3 Groups Electronic Absorption MCD and EPR Spectral Study. Inorg Chem, 1991,30(23):4315-4321
    [25]Ono N, Kawamura H, Maruyama K. A convenient Synthesis of Trifluoromethylated Pyrroles and Porphyrins. Bull Chem Soc Jpn, 1989, 62(10):3386-3388
    [26]Eric K W, DiMagno S G. 2,3,7,8,12,13,17,18-Octafluoro-5,10,15,20- tetraarylporphyrins and Their Zinc Complexes First Spectroscopic Electrochemical and Structural Characterization of a Perfluorinated Tetraarylmetallophyrin. J Org Chem, 1997,62(6):1588-1593
    [27]Adler A D, Longo F R, Finarelli J D, A Simplified Synthesis for meso-Tetraphenylporphyrin. J Org Chem, 1967,32(2):476-476
    [28]Lindsey J S, Schreiman I C, Hsu H C, et al. Rothemund and Adler-Longo Reactions Revisited Synthesis of Tetraphenylporphyrins under Equilibrium Conditions. J Org Chem, 1987,52(5):827-836
    [29]Lindsey J S, Wagner R W. Investigation of the Synthesis of Ortho-Substituted Tetraphenylporphyrins. J Org Chem, 1989,54(4):828-836
    [30]DiMagno S G, Williams R A, Therien M J. Facile Synthesis of meso-tetrakis(perfluoroalkyl)porphyrins Spectroscopic Properties and X-ray Crystal Structure of Highly Electron-Deficient 5,10,15,20-Tetrakis (heptafluoropropyl)porphyrin. J Org Chem, 1994,59(23):6943-6948
    [31]Wijesekera T P. 5-Perluoroalkyldipyrromethanes and porphyrins derived therefrom. Can J Chem, 1996,74(10):1868-1871
    [32]Nishino N, Wagner R W, Lindsey J S. Synthesis of Linear Amphipathic Porphyrin Dimers and Trimers An Approach to Bilayer Lipid Membrane Spanning Porphyrin Arrays. J Org Chem, 1996,61(21):7534-7544
    [33]Kumadaki I, Ando A, Omote M. Synthesis of fluorinated analogs of natural porphyrins potentially useful for the diagnosis and therapy of cancer. J Fluorine Chem, 2001,109(1):67-81
    [34]Shigeoka T, Kuwahara Y, Kumadaki I. Synthesis of Fluorine Analogs of Protoporphyrin Potentially Usefue for diagnoses and Therapy of Cancer Part 3 Synthesis of (2,2-difluorovinyl)-trifluorovinyl- and (1-chloro-2,2-difuorovinyl)-(2,2-difluorovinyl)- deuteroporphyrin. Heterocycles, 2000,52(1):383-388
    [35]Ando A, Kumadaki I. Progress on the synthesis of fluorine analogs of natural porphyrins potentially useful for the diagnosis and therapy of certain cancers. J Fluorine Chem, 1999,100(1-2):135-146
    [36]Pozzi G, Banfi S, Manfredi A, et al. Towards Epoxidation Catalystys for Fluorous Biphase Systems Synthesis and Properties of Two Mn(III)-tetraarylporphyrins Bearing Pefluoroalkylamido Tails. Tetrahedron, 1996,52(36):11879-11888
    [37]Pozzi G, Colombani I, Miglioli M, et al. Epoxidation of Alkenes Under Liquid-Liquid Biphasic Conditions synthesis and Catalytic Activity of Mn(III)tetraarylporphyrins Bearing Pefluoroalkyl Tails. Tetrahedron, 1997,53(17):6145-6162
    [38]Terazono Y, Dolphin D. Synthesis and Characterization of β-Trifluoromethyl-meso-tetraphenylporphyrins. J Org Chem, 2003,68(5):1892-1900
    [39]Jin L M, Guo C C, Chen Q Y, et al. Fluoroalkylation of Porphyrins Synthesis and Reactions of β-Fluoroalkyltetraarylporphyrins. J Org Chem, 2003,68(10):3912-3917
    [40]黄维垣,吕龙.中国有机氟化学. 上海:上海科学技术出版社, 1996, 203-268
    [41]Huang W Y. Perluoroalkylation initiated with sodium dithionite and related reagent systems. J Fluorine Chem, 1992,58(1):1-8
    [42]Jin L M, Guo C C, Chen Q Y, et al. Copper-induced fluoroalkylation of porphyrins solventdependent synthesis of fluoroalkyl chlorins and porphyrins from fluoroalkyl iodides. J Porphyr Phthalocyan, 2005,9(2):109-120
    [43]Liu C, Chen Q Y. Fluoroalkylation of Porphyrins A Facile Synthesis of Trifluoromethylated Porphyrins by a Palladium-Catalyzed Cross-Coupling Reaction. Eur J Org Chem, 2005, 2005(17):3680-3686
    [44]Liu C, Chen Q Y. General and Efficient Synthesis of meso- and β-Perfluoroalkylated Porphyrins via Pd-Catalyzed Cross-Coupling Reaction. Synlett, 2005, 17(8):1306-1310
    [45]Fox S, Boyle R W. First examples of intramolecular Pd(0) catalysed couplings on ortho-iodinated meso-phenyl porphyrins. Chem Commum, 2004, 2004(11):1322-1323
    [46]Shen D M, Liu C, Chen Q Y. A novel and facile Zn-mediated intramolecular five-membered cyclization of β-tetraarylporphyrin radicals from β-bromotetraarylporphyrins. Chem Commum, 2005, 2005(39):4982-4984
    [47]Callot H J, Schaeffer E, Cromer R, et al. Unexpected routes to naphtoporphyrinderivatives. Tetrahedron, 1990,46(15):5253-5262
    [48]Barloy L, Dolphin D, Wijesekera T P, et al. Anomalous Double Cyclization Reactions of beta-Formylporphyrins. J Org Chem, 1994,59(26):7976-7985
    [49]Boyle R W, Dolphin D. 5,15-Diphenyl-7-oxobenzochlorins Novel long-wavelength absorbing photosensitizers for photodynamic therapy. J Chem Soc Chem Common, 1994, 1994(21):2463-2464
    [50]Faustino M A, Neves M G P S, Cavaleiro J A S, et al. New naphthochlorins from the intramolecular cyclization of β-vinyl-meso-tetraarylporphyrins. Tetrahedron Lett, 1995,36(33):5977-5978
    [51]Aihara H, Jaquinol L, Smith K M, et al. Multicarbocycle Formation Mediated by Arenoporphyrin 1,4-Diradicals Synthesis of Picenoporphyrins. Angew Chem Int Ed, 2001,40(18):3439-3444
    [52]Nath M, Huffman J C, Zaleski J M. Accelerated Bergman cyclization of porphyrinic-enediynes. Chem Commun, 2003, 2003(7):858-859
    [53]Spence J D, Cline E D, Lagostera D M, et al. Synthesis and Bergman cyclization of a β-extended porphyrenediyne. Chem Commun, 2004, 2004(2):180-181
    [54]Vicente M G H, Tome A C, Cavaleiro J A S, et al. Synthesis and cycloaddition reactions of pyrrole-fused 3-sulfolenes a new versatile route to tetrabenzoporphyrins. Tetrahedron Lett, 1997,38(20):3639-3642
    [55]Li X, Zhuang J, Zhu D, et al. Synthesis of isoxazoline-fused chlorins and bacteriochlorins by 1,3-dipolar cycloaddition reaction of porphyrin with nitrile oxide. Tetrahedron Lett, 2005, 46(9): 1555-1559
    [56]Chen B M L, Tulinsky A. Redetermination of the Structure of Porphine. J Am Chem Soc, 1972,94(12):4144-4151
    [57]Braun J, Schlabach M, Wehrle B, et al. NMR Study of the Tautomerism of Porphyrin Including the Kinetic HH/HD/DD Isotope Effects in the Liquid and the Solid State. J Am Chem Soc, 1994,116(15):6593-6604
    [58]Braun J, Limbach H H, Williams P G, et al. Observation of Kinetic Tritium Isotope Effects by Dynamic NMR The Tautomerism of Porphyrin. J Am Chem Soc, 1996,118(30):7231-7232
    [59]Reimer J R, Lu T X, Crossley M J, et al. The Mechanism of Inner-Hydrogen Migration in Free Base Porphyrin Ab Initio MP2 Calculations. J Am Chem Soc, 1995,117(10):2855-2861
    [60]Boronat M, Orti E, Viruela P M, et al. Theoretical study of the N---H tautomerism in free base porphyrin. J Mol Struct (Theochem), 1997,390(1-3):149-156
    [61]Crossley M J, Harding M M, Sternhell S. Tautomerism in 2-substituted 5,10,15,20-tetraphenylporphyrins. J Am Chem Soc, 1986,108(13):3608-3613
    [62]Crossley M J, Harding M M, Sternhell S. Tautomerism in 2-hydroxy-5,10,15,20-tetra- phenylporphyrin: an equilibrium between enol keto and aromatic hydroxyl tautomers. J Org Chem, 1988,53(6):1132-1137
    [63]Crossley M J, Field L D, Harding M M, et al. Kinetics of tautomerism in 2-substituted 5,10,15,20-tetraphenylporphyrins directionality of proton transfer between the inner nitrogens. J Am Chem Soc, 1987,109(8):2335-2341
    [64]Crossley M J, Burn P L, Chew S S, et al. Regiospecific introduction of four substituents to porphyrin systems at antipodal pyrrolenic positions. J Chem Soc Chem Commun, 1991,1991(21):1564-1566
    [65]Crossley M J, Harding M M, Sternhell S. Use of NMR spectroscopy to determine bond orders between beta- and beta'-pyrrolic positions of porphyrins structural differences between free-base porphyrins and metalloporphyrins. J Am Chem Soc, 1992,114(9):3266-3272
    [66]Spangler D, Maggiora G M, Shipman L L, et al. Stereoelectronic properties of photosynthetic and related systems 2 Ab initio quantum mechanical ground state characterization of magnesium porphine magnesium chlorin and ethyl chlorophyllide. J Am Chem Soc, 1977,99(23):7478-7489
    [67]Crossley M J, King L G. A new method for regiospecific Deuteriation and reduction of 5,10,15,20-tetraphenylporphyrins nucleophilic reaction of borohydride ion with 2-nitro-5,10,15,20- tetraphenylporphyrins. J Org Chem, 1993,58(16):4370-4375
    [68]Callot H J. Stereochimie de L’addition de carbenes sur la meso-tetraphenylporphine. Tetrahedron Lett, 1972,13(11):1011-1014
    [69]Chen Y H, Medforth C J, Smith K M, et al. Effect of meso-substituents on the Osmium tetraoxide reaction and pinacol-pinacolone rearrangement of the corresponding vic-dihydroxyporphyrins. J Org Chem, 2001, 66(11):3930-3939
    [70]Jaquinod L, Khoury R G, Shea K M, et al. Regioselective syntheses and structural characterizations of 2,3-dibromo- and 2,3,7,8,12,13-hexabromo-5,10,15,20-tetraphenylporphyrins. Tetrahedron, 1999,55(46):13151-13158
    [71]Shea K M, Jaquinod L, Khoury R G, et al. Dodecasubstituted metallochlorins(metallodihydroporphyrins). Chem Commun, 1998,(7):759-760
    [72]Crossley M J, Burn P L, Chew H H, et al. Regiospecific introduction of foursubstituents to porphyrin systems at antipodal pyrrolenic positions. J Chem Soc Chem Commun, 1991,1991(21):1564-1566
    [73]Baldwin J E, Crossey M J, Debernardis J. Efficient perpheral functionalization of porphyrns. Tetrahedron, 1982,38(5):685-692
    [74]Catalano M M, Crossley M J, Harding M M, et al. Control of reactivity at the porphyrin periphery by metal ion co-ordination a general method for specific nitration at the β-pyrrolic position of 5,10,15,20-tetraarylporphyrins. J Chem Soc Chem Commun, 1984,(22):1535-1536
    [75]Tome A C, Lacerda P S S, Neves M G P M S, et al. meso-Arylporphyrins as dienophiles in Diels-Alder reactions a novel approach to the synthesis of chlorines bacteriochlorins and naphthoporphyrins. Chem Commun, 1997,(13):1199-1200
    [76]Silva A M G, Tome A C, Neves M G P M S, et al. Novel barrelene-fused chlroins by Diels-Alder reactions. Tetrahedron Lett, 2000,41(17):3065-3068
    [77]Silva A M G, Tome A C, Neves M G P M S, et al. Porphyrins in 1,3-dipolar cycloaddition reactions with chlorines and bacteriochlorins. Tetrahedron Lett, 2002,43(4):603-605
    [78]Silva A M G, Tome A C, Neves M G P M S, et al. meso-Tetraarylporphyrins as dipolarophiles in 1,3-dipolar cycloaddition reactions. Chem Commun, 1999,1999(17):1767-1768
    [79]Silva A M G, Tome A C, Neves M G P M S, et al. Synthesis of New β-Substituted meso-Tetraphenylporphyrins via 1,3-Dipolar Cycloaddition Reactions 1. J Org Chem, 2002,67(3):726-732
    [80]Woodward R B. Fundamental studies in the chemistry of macrocyclic systems related to chlorophyll. Ind Chim Belge, 1962,1962(11):1293-1308
    [81]Fuhrhop J H, Subramanian J. Chemical reactivities of tetrapyrrole pigments a comparison of experimental behavior with the results of SCF-π-MO calculations. Phil Trans R Soc Load B Bio Sci, 1976,273(924):335-352
    [82]Feng X, Bischoff I, Senge M O. Mechanistic Studies on the Nucleophilic Reaction of Porphyrins with Organolithium Reagents. J Org Chem, 2001,66(26):8693-8700
    [83]Feng X, Senge M O. Synthesis of directly meso-meso linked bisporphyrins using organolithium reagents. Tetrahedron Lett, 1999,40(22):4165-4168
    [84]Bischoff I, Feng X, Senge M O. One-pot synthesis of functionalized highly substituted porphodimethenes. Tetrahedron, 2001,57(26):5573-5584
    [85]Feng X, Senge M O. An efficient synthesis of highly functionalized asymmetric porphyrins with organolithium reagents. J Chem Soc Perkin Trans 1, 2001, 2001(9):1030-1038
    [86]Arnold D P, Bott R C, Eldridge H, et al. Functionalization of 5,15-Diphenylporphyrin Preparation and X-Ray Crystal Structures of meso Nitro, Bromo and Trimethylsilylethynyl Derivatives. Aust J Chem, 1997,50(5):495-504
    [87]Yeung M, Ng A C H, Ng D K P, et al. Facile Synthesis and Nonlinear Optical Properties of Push-Pull 5,15-Diphenylporphyrins. J Org Chem, 1998,63(21):7143-7150
    [88]Tomizaki K, Lysenko A B, Lindsey J S, et al. Synthesis of phenylethyne-linked porphyrin dyads. Tetrahedron, 2004 ,60(9):2011-2024
    [89]Boyle R W, Johnson C K, Dolphin D. Iodination and Heck alkynylation of 5,15-diphenylporphyrin A convenient entry to asymmetrically meso-substituted porphyrins. J Chem Soc Chem Commun, 1995,1995(5):527-528
    [90]Zeng Z, Guo C C, Chen Q Y, et al. Unexpected Intramolecular Cyclization of 2-(Perfluoroalkyl)tetraarylporphyrin Radicals Approaches for the Intramolecular Cyclization of 2-(Perfluoroalkyl)tetraarylporphyrin Radicals. Eur J Org Chem, 2005,2005(2):306-316
    [91]刘超. 氟烷基卟啉的合成、反应、性质和应用研究:[中国科学院上海有机化学研究所理学博士论文]. 上海: 上海有机化学研究所, 2007, 40
    [92]卿凤翎. 氟卤烷烃的反应研究:[中国科学院上海有机化学研究所理学博士论文]. 上海: 上海有机化学研究所, 1990, 23-36
    [93]Long Z Y, Chen Q Y. The Activation of Carbon-Chlorine Bonds in Per- and Polyfluoroalkyl Chlorides DMSO-Induced hydroperfluoroalkylation of Alkenes and Alkynes with Sodium Dithionite. J Org Chem, 1999,64(13):4775-4782
    [94]龙正宇,陈庆云. 全氟或多氟烷基氯在保险粉引发下与芳香烃的反应. 化学学报,2000,58(6):713-716
    [95]Zhou Q L, Huang Y Z. A Facile Method for Fluoroalkylation of Aniline and its Derivatives. J Fluorine Chem, 1988,39(1):87-98
    [96]Zhou Q L, Huang Y Z. Direct Fluoroalkylation of Aromatic Compounds Catalyzed by Tetrakis(triphenylphosphine)nickel. J Fluorine Chem, 1989,43(3):385-392
    [97]Lau K S F, Sadilek M, Gouterman M, et al. Electrospray Ionization(ESI) Tandem Mass Spectrometric Analysis of meso-Tetrakis(Heptafluoropropyl) Porphyrin. J Am Soc Mass Spectrom, 2005,16(12):1915-1920
    [98]Scheidt W R. The Porphyrins. New York: Academic Press, 1979, Vol 3, Chapter 10
    [99]Medforth C, Senge M, Smith K M, et al. Nonplanar Distortion Modes for Highly Substituted Porphyrins. J Am Chem Soc, 1992,114(25):9859-9869
    [100]Jin L M, Guo C C, Chen Q Y, et al. Unusual Fluoroalkenylation of Porphyrins A Highly Stereoselective Synthesis Of 10,20-Diaryl-5- [(E)-fluoroalkenyl]-5-(fluoroalkyl)porphyrins. Eur J Org Chem, 2006,2006(15):3405-3411
    [101]Mauzerall D, Granick S. Porphyrin Biosynthesis in Erythrocytes III Uroporphyrinogen and It Decarboxylase. J Biol Chem, 1958,232(2):1141-1162
    [102]Woodward R B. Totalsynthese des Chlorophylls. Angew Chem, 1960,72(18):651-662
    [103]Dolphin D. The Porphyrins. New York: Academic Press, 1978, Vol I, Chapter 3
    [104]Dolphin D. The Porphyrins. New York: Academic Press, 1978, Vol II, Chapters 1 and 2
    [105]Montforts F P, Gerlach B, H?per F. Discovery and Synthesis of Less Common Natural Hydroporphyrins. Chem Rev, 1994,94(2):327-347
    [106]Bernatkova M, Dvorakova Hana, Kral V, et al. Conformational Transitions of Calixphyrin Derivatives Monitored by Temperature-Dependent NMR Spectroscopy ab initio Interpretation of the Spectra. J Phys Chem A, 2005,109(24):5518-5526
    [107]Bonomo L, Solari E, Floriani C, et al. Porphodimethene–porphyrinogen relationship the generation of unprecedented forms of porphyrinogen. Chem Commun, 1999,(21):2227–2228
    [108]Benech J-M, Bonomo L, Floriani C, et al. Porphomethenes and Porphodimethenes Synthesized by the Two- and Four-Electron Oxidation of the meso- Octaethylporphyrinogen. Angew Chem Int Ed, 1999,38(13-14):1957-1959
    [109]Re N, Bonomo L, Floriani C, et al. A Structural and Theoretical Analysis of Transition Metalloporphodimethenes and Their Relationship with Metalloporphyrins. Chem Eur J, 2001,7(12):2536-2546
    [110]Bonomo L, Solari E, Floriani C, et al. The Porphyrinogen-Porphodimethene Relationship Leading to Novel Synthetic Methodologies Focused on the Modification and Functionalization of the Porphyrinogen and Porphodimethene Skeletons. J Am Chem Soc, 2000,122(22):5312-5326
    [111]Kral V, Sessler J L, Zimmerman R S, et al. Calixphyrins Novel Macrocycles atthe Intersection between Porphyrins and Calixpyrroles. Angew Chem Int Ed, 2000,39(6):1055-1058
    [112]Bischoff I, Feng X D, Senge M O. One-pot Synthesis of Functionalized Highly Pubstituted Porphodimethenes. Tetrahedron, 2001,57(26):5573-5583
    [113]Kalisch W W, Senge M O. Facile meso Functionalization of Porphyrins by Nucleophilic Substitution with Organolithium Reagents. Angew Chem Int Ed, 1998,37(8):1107-1109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700