一种新型月球车行走系统相关技术及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“嫦娥工程”一期的顺利完成标志着中国航天正式进入了深空探测的新时代。在接下来的二期不载人探月工程中,月球车扮演着极其重要的角色。月球车相关技术的研究领域十分广阔,本文针对性的进行了以下几方面的研究。
     提出了一种新构型的月球车行走系统。月球车行走系统的设计能否满足月球探测的要求是保证探月任务圆满完成的基础。月球表面地形非常复杂,整个月面覆盖着厚度不等的松散的月壤层,遍布大小不等的砂石、沟壑等障碍物,因此月球车的行走系统要具有很好的越障和过沟能力,同时在车轮发生打滑时仍然具有足够的牵引能力来驱动月球车行走。针对以上要求提出并设计了一种新型六轮月球车行走系统。该行走系统采用六轮独立驱动,车轮在车体两侧呈不对称分布,相当于有六个车轮轴,增加了车体的越障和过沟能力。在摇臂和车体底盘的连接处增加了电机驱动机构,可以抬起车轮以协助越障,并且可以重新分配载荷,使得在个别车轮发生打滑时仍能为车体提供适当的牵引力,还可将车轮折叠便于安装在整流罩中。
     针对新构型的月球车进行了动力学分析、仿真与实验研究。首先建立了月球车整体系统结构图,然后运用牛顿-欧拉方法建立了整车的质心运动方程、绕质心转动方程、摇臂力矩平衡方程、车轮驱动方程,并且添加了几何约束和速度约束,使得方程组封闭可解。由于该月球车的车轮在车体两侧不对称分布,且所建立的方程组为微分代数方程,使得方程组求解的难度增加,最终采用有限差分法进行解算。根据土壤力学原理对实验用土壤进行了参数测定实验,得到粗略的土壤力学参数。然后对月球车在平地(硬地和松软土壤)、斜坡、越障、越沟等典型行走性能进行了计算机仿真,得出了一些对实际操作有参考价值的数据。在7×9米室内试验场地进行了行走实验。实验表明新构型月球车能够攀越高度达到0.2m(大于车轮半径0.125m)的障碍物,并且能够越过0.3m宽的沟壑(大于车轮直径),证明该月球车具有较好的行走性能。
     提出并设计了一种高精度的月球车单轮气浮实验装置。为了更好的在地面研究月球车在六分之一重力下的工作状况,同时更好的研究车轮与土壤相互作用地面力学,以及各车轮单独及考虑到其它轮间相互影响时的工作特点,利用月球车单轮实验装置进行地面研究是一种常用的方法。针对目前的月球车单轮实验装置采用机械导轨带来的摩擦会对实验测量数据产生较大影响的问题,提出并设计了月球车单轮气浮实验装置。该实验装置在水平和竖直方向均采用了气体润滑技术,充分利用气体支承摩擦小,运动平稳的优点,从而抵消滑轨所带来的不可测摩擦力,对精确完成实验数据的测量起到很大作用。同时还设计了伺服系统水平追踪系统,使承托板移动时电缆和气管的变化、不规则干扰等与主工作系统隔离,保证系统工作精度。利用该实验台可以进行单个车轮驱动动力学和控制性能研究、可以研究各车轮间相互制动和推进作用、车轮与土壤相互作用,以及针对新构型行走系统的改善月球车车轮牵引力能力的研究。
     提出了一种基于立体视觉的特征光源辅助月球车定位系统并进行了实验研究。该定位系统由月球飞行器的下降级上的两台相距不远的摄像机和一台激光测距仪组成,结合月球车上的特征光源辅助装置,可以确定月球车上特定点(例如质心)在惯性基准系中的位置信息,同时还可以得到月球车的姿态信息。针对该系统应用CMU的James Bruce的连通域分析方法提出了一种月球车实时位姿算法并进行了仿真研究,仿真结果表明该算法在计算速度和精度能满足要求且算法对于噪声有一定的鲁棒性。最后在7×9平方米的实验场地进行了实验研究,实验结果表明该定位系统可实现足够的精度,适用于小范围的月球车导航。
The success of the first stage of Chang’e Project indicates that the Chinese as-tronautics has entered a new era of deep space exploration. In the second stage ofunmanned lunar exploration, lunar rover will play a very important role. The re-search areas of lunar rover are very extensive, however only a few aspects of newkine of lunar rover are illustrated in this dissertation.
     The mobile system is the key part of lunar rover,which determines the efficacyof lunar exploration. The surface of the moon is such complicated that the wholeterrain is covered by loose soil, different sizes of rocks and sands, and obstacleslike gullies. Therefore, it is necessary for the lunar rover to be capable of crossingover obstacles and the gullies. Especially when the slipping of one or more wheelsoccurs, the lunar rover could still move with enough traction. In view of the aboverequirements, a new kind of mobile system of a six-wheeled lunar rover is designed.The Six wheels, set asymmetrically at both sides of rover body, could be driven in-dependently. They are equivalent to six wheel axles, increasing the ability of cross-ing over obstacles. And there are also motors in the joints of rocker arms, which canassist in crossing by raising wheels and redistribute the loading weight. Moreover,when one or more wheels slip, the rover can still get proper traction from thesemotors and also the wheels are easily folded up to be fixed in cowling.
     Considering the new kine of lunar rover, Newton-Euler method is adopted todeduce the equations of centroid movement of overall rover, rotary movementaround mass center, rotary motion of suspension levers for suspension points anddrive equations for wheels. Meanwhile, the geometry and velocity constraints aregiven. As the layout of wheel arrangement are asymmetric and the the dynamicequations are differential-algebraic equations, the difficulty of solving equations isincreased. So the finite difference method is employed to solve equations in thisdissertation. The parameters of soil for experiment are measured using the terra-mechanics principle. The performances of rover motions on flat and slope terrain,climbing obstacle and passing ditch are analyzed by simulation, and through simu-lation, certain useful results are acquired for drive. According to the dynamicsimulation results, several verifying experiments of lunar rover movements are car- ried out in 7×9 m2 test bed. The lunar rover has the ability to climb obstacle of 0.2m which is higher than wheel radius and pass ditch of 0.3m which is wider than wheel diameter. The experimental results verify dynamic model and the simulation results.
     The monocycle air-float experimental equipment for lunar rover is designed, which could be used to research the working condition of lunar rover in six to one gravity on earth and study wheel-soil interaction terramechanics and the wheel working features. The equipment employs gas lubrication technique in horizon and vertical and the gas bearing has the advantages of less friction and smooth move-ment. Due to these advantages, the immeasurable friction of sliding track can be bucked and get accurate experiment results. The servo system for level tracking system is designed to isolate the variable, irregularity disturbance of electric cables and air pipes caused by pallet moving and guarantee the precision of system. By using the experimental equipment, the following researches can be carried out: sin-gle wheel drive dynamics and control performance, each wheel brake and promote mutually, wheel-soil interaction terramechanics experiments and changing tractive ability of motion system for the new kind of lunar rover.
     An attitude and position estimation system for lunar rover based on colored dot targets is proposed. This system consists of two cameras assembled at the descend stage of lunar vehicle and a laser ranger finder. Utilizing the dot targets on lunar rover, the attitude and position of the rover can be determined. Considering the connection region analysing method porposed by James Bruce, an attitude and po-sition estimation algorithm is proposed.The computer simulation indicates the cal-culation speed and presision of the algorithm can meet the requirements, also the altorichm has certain robustness for noise. The experiment in 7×9 m2 test bed shows the efficiency of this attitude and position estimation method. The precision of this method is enough for most applications.
引文
1郭宝柱.中国航天发展的里程碑——《中国的航天》白皮书.中国航天. 2007,5(05):3~8
    2钟坦.中国探月工程前景广阔.国际太空. 2007,12(12):1~7
    3欧阳自远.我国月球探测的总体科学目标与发展战略.地球科学进展. 2004,19(03):351~358
    4何绍改.“嫦娥”奔月之旅——中国月球探测活动大事纪略(1960年—2007年).国防科技工业. 2007,11(11):76~81
    5孙智信,卢绍华,林聪榕.人类探月与嫦娥工程.国防科技. 2007,(12):13-20
    6欧阳自远,李春来,邹永廖,等.绕月探测工程的初步科学成果.中国科学:地球科学. 2010,03(03):261~280
    7紫晓.嫦娥工程二、三期研究展望.中国航天. 2004(11):58~62
    8刘晓川.月球探测关键技术的发展分析.中国航天. 2004,7(7):39~44
    9卢波.月球探测的意义及发展态势.国际太空. 1998,4:1~4
    10欧阳自远.月球探测的进展与我国月球探测的科学目标.贵州工业大学学报(自然科学版). 2003(06):1~7
    11薛成位.月球探测势在必行.导弹与航天运载技术. 1998,1:1~2
    12 B. Burhalter. Lunar Rover Vehicle: Historical Origins and Development Jounal of the British Interplanetary Society. 1995,480:199~212
    13邹永廖,欧阳自远,李春来.月球探测与研究进展.空间科学学报. 2000(S1):93~103
    14张永红,郭健,张继贤.月球探测50年.测绘通报. 2007(12):24~26
    15江泽淳.欧洲有望通过“智能一号”重新认识月球.世界科学. 2006(9):15
    16曹秀云,杜元清.欧洲探月计划的敲门砖——Smart-1.中国航天. 2003(12):33~35
    17欧阳自远.月球科学概论.中国宇航出版社. 2005:4~5
    18 M. Kato, S. Sasaki, K. Tanaka, et al. The Japanese Lunar Mission Selene: Science Goals and Present Status.Advances in Space Research. 2008,42(2):294~300
    19 K. Matsumoto, N. Kamimori, Y. Takizawa, et al. Japanese Lunar ExplorationLong-Term Plan. Acta Astronautica. 2006,59(1):68~76
    20郑永春.“月女神”探测器揭开日本月球探测的新篇章.国际太空. 2007,11(11):14~16
    21邓宗全.月球车的技术研究及其发展.黑龙江省机械工程学会年会论文集.哈尔滨, 2002:6~15
    22 B. K. Muirhead. Mars Rovers, Past and Future. In Aerospace Conference. 2004:134
    23 T. Peynot, S. Lacroix. Enhanced Locomotion Control for a Planetary Rover. Intelligent Robots and Systems, 2003 IEEE/RSJ International Conference. 2003:311~316
    24 S. Kassel. Lunokhod-1 Soviet Lunar Surface Vehicle. United States, R-802-ARPA, 1971
    25 A. D. Podolskiy. Soviet Robots on the Moon. United States, NASA-TT-F-14300, 1972
    26 A. A. Gurshteyn. Lunokhod-2 on the Lunar Continent. United States, NASA-TT-F-15401, 1974
    27 M. Lamboley, C. Proy, L. Rastel, et al. Marsokhod: Autonomous Navigation Tests on a Mars-Like Terrain.Autonomous Robots. 1995,2:345~351
    28 S. Morea. The Lunar Roving Vehicle-a Historical Perspective. The Second Conference on Lunar Bases and Space Activities of the 21st Century. Houston, 1992:619~632
    29 J.Mativejic, D.Shirley. The Mission and Operation of the Mars Pathfinder Mi-crorover. Control Engineering Practice. 1997,5(6):827~835
    30 P. G. Backes, K. S. Tso,G. K. Tharp. Mars Pathfinder Mission Internet-Based Operations Using Wits. Proceedings of the 1998 IEEE International Confer-ence on Robotics and Automation, Leuven, Belgium, 1998:284~291
    31 J. Matijevic.Sojourner: The Mars Pathfinder Microrover Flight Experiment. Space Technology. 1997,17:143~149
    32 E. Tunstel, T. Huntsberger, H. Aghazarian, et al. Fido Rover Field Trials as Rehearsal for the Nasa 2003 Mars Exploration Rovers Mission. Tsi Press S. 2002,14:320~327
    33 P. S. Schenker, E. T. Baumgartner, R. A. Lindemann, et al. New Planetary Rovers for Long Range Mars Science and Sample Return. Proceedings of the1998 Conference on Intelligent Robots and Computer Vision XVII: Algo-rithms, Techniques, and Active Vision, Boston, MA, USA, 1998:2~15
    34 A. R. Lindemann, C. J. Voorhees. Mars Exploration Rover Mobility Assembly Design, Test and Performance. Systems, Man and Cybernetics, 2005 IEEE In-ternational Conference. 2005:450~455
    35 A. R. Lindemann, D.B.Bickler, B.D.Harrington, et al. Mars Exploration Rover Mobility Development.Robotics & Automation Magazine, IEEE. 2006,13(2):19~26
    36 A.R.Lindemann. Dynamic Testing and Simulation of the Mars Exploration Rover.DETC2005: ASME International Design Engineering Technical Con-ferences and Computers and Information in Engineering Conference. 2005:99~106
    37 R. Cook. The Mars Exploration Rover Project. Acta Astronautica, Infinite Possibilities Global Realities, Selected Proceedings of the 55th International Astronautical Federation Congress, Vancouver, 2005:116-120
    38 M. K. Lockwood, R. W. Powell, K. Sutton, et al. Entry Configurations and Performance Comparisons for the Mars Smart Lander Journal of Spacecraft and Rockets. 2006,43(2):258~269
    39 T. Kubota, Y. Kunii, Y. Kuroda, et al.Japanese Lunar Robotics Exploration by Co-Operation with Lander and Rover.Journal of Earth System Science. 2005,114(6):777~785
    40 T. Kubota, Y. Kuroda, Y. Kunii, et al. Small, Light-Weight Rover "Micro5" For Lunar Exploration. Acta Astronautica. 2003,52(2):447~453
    41 Y. Kuroda, K. kondo. Low Power Mobility System for Micro Planetary Rover "Micro5". Proceeding of the 6th international Symposium on Artificial Intel-ligence and robotics & Automation in Space, Netherlands, 1999:77~82
    42 R. Siegwart, P. Lamon, T. Estier, et al. Innovative Design for Wheeled Loco-motion in Rough Terrain.Robotics and Autonomous Systems. 2002,40(2-3):151~162
    43 Liu Dun, Zhao Zhiping, Qi Naiming. The Navigation, Control and Vision System of Lunar Rover.Proceedings of the International Lunar Conference 2003, Hawaii, 2004:461
    44 Du Jianjun, Liu Dun, Yuan Laohu, Zhao Zhiping. Research on Kinematicsand Dynamics of Lunar Rover with New Configuration. Journal of Harbin Institute of Technology(English). 2005,12(2):131~135
    45赵志萍,张建英,刘暾.一种月球漫游车行走系统的动力学建模.空间科学学报. 2005,25:11~16
    46 Zhao Zhiping, Liu Dun, etc. Study of a New Kind of Lunar Rover Driving anGuidance System.2006 Chinese Control Conference, Harbin, China2006:725~730
    47 Liu D, Zhao ZP, Yuan LH, etc. Study of Lunar Rover Driving and GuidancSystem. Proceedings of the China Association for Science and TechnologHangzhou, China, 2004:283~291
    48刘暾,杜建军,院老虎,等.一种新的月球车行走系统构型及驱动控制研究.中国空间科学学会空间机械年会, 2005:89~93
    49 Liu Dun, D. Jian-jun, Z. Zhi-ping, et al. A New Configuration of Mobile System of Lunar Rover and Its Drive Control Study. International Lunar Confeence 2005, 2005:158~162
    50侯建,齐乃明.月球车视觉系统立体匹配算法研究.南京理工大学学报(自然科学版). 2008(2):176~180
    51侯建,张宏,齐乃明.月球车的立体视觉导航技术.中国空间科学学会空间机械专业委员会学术年会. 2005:102~106
    52齐乃明,侯建,赵钧.月球车视觉系统的一种匹配算法.上海航天2004(4):40~43
    53侯建,齐乃明.月球车视觉系统的一种实现方案.空间科学学报2005,25:1-5
    54齐乃明,侯建,张宏.基于几何约束的立体视觉多级匹配算法.第六届全球智能控制与自动化大会论文集. 2006:9681~9685
    55 J. Hou, N. Qi. Geometry Constraints and Matching Algorithm for Lunar RoveStereo Vision. Optoelectronics Letters. 2005,1(3):235~237
    56 J. Hou, N. Qi, H. Zhang, et al. Stereo Mapping for a Prototype LunaRover.Proc. IEEE Int’l Conf. Robotics and Biomimetics. 2006:1036~1041
    57 N. Qi, J. Hou,H. Zhang. A Stereo Matching Algorithm for Lunar Rover. Proc1st International Symposium on Systems and Control in Aerospace and Astronautics. 2006:605~609
    58 J. Hou, N. Qi,H. Zhang.A Feature-Assisted Matching Algorithm for LunaRover. Aircraft Engineering and Aerospace Technology. 2006,78(3):211-216
    59 J. Hou, N. Qi,H. Zhang. A Multi-Stage Matching Algorithm for Mobile RoboNavigation. Industrial Robot. 2007,34(1):54~59
    60张建英,刘暾.基于人工势场法的移动机器人最优路径规划.航空学报2007(1):183~188
    61张建英,赵志萍,刘暾.基于人工势场法的机器人路径规划.哈尔滨工业大学学报. 2006,38(8):1306~1309
    62赵志萍,张建英,刘暾.月球车的驱动和导航.空间科学学报. 2005,25:6~10
    63毕贞法,邓宗全.两轮并列式月球车的性能及其稳定性分析.哈尔滨工程大学学报. 2006,27(4):560~564
    64毕贞法,邓宗全,陶建国.变驱动半径两轮并列式月球车的稳定性分析上海交通大学学报. 2007,257(07):1204~1208
    65禹鑫燚,高海波,邓宗全.新型八轮月球车不同运动学建模方法及分析北京航空航天大学学报. 2009,35(4):457~463
    66高海波,邓宗全,胡明,等.行星轮式月球车移动系统的关键技术.机械工程学报. 2005,(12):156~161
    67邓宗全,方海涛,董玉红,等.六圆柱-圆锥轮式月球车多轮协调运动控制研究.哈尔滨工程大学学报. 2008,29(1):73~77
    68胡明,邓宗全,高海波,等.摇臂-转向架式月球探测车越障通过性分析.上海交通大学学报. 2005(6):928~932
    69 L. Ming, Z. H. U. Jiliong, M. Jianghua, et al.Tsinghua Lunar Rover Prototypand Its Hardware Design.2002 IEEE Region 10 Conference on ComputersCommunications, Control and Power Engineering,2002:1578~1581
    70骆训纪,孙增圻.月球漫游车仿真系统研究.系统仿真学报. 2002,(9):1235~1238
    71李圣怡,刘阳,戴一帆.月球探测车研制及其机电系统关键技术研究.第二届月球探测技术研讨会论文集.北京, 2001:59~160
    72尚建忠,罗自荣,张新访,等.双曲柄滑块联动月球车设计及样机研制.中国机械工程. 2007,18(3):348~351
    73罗自荣,尚建忠,张志雄.六轮月球车移动机构分析与综合.国防科技大学学报. 2009,31(1):109~113
    74李翠兰,马培荪,高雪官,等.一种新型的可被动适应崎岖表面的六轮月球漫游车.传动技术. 2005(1):9~13
    75 C. Baichao, W. Rongben, J. Yang, et al. Design of a High Performance Suspension for Lunar Rover Based on Evaluation. Acta Astronautica2009,64(9):925~934
    76杨璐.月球车悬架的机理分析及参数优化.吉林大学,博士学位论文2007:47~~59
    77陈百超.月球车悬架研究及动力学仿真.吉林大学,硕士学位论文2006:20~23
    78刘暾.多体动力学及其在航天技术中的应用.中国空间科学学会第七次学术年会.大连, 2009:328
    79陈清林. Ajc系统的动力学仿真研究.福州大学,硕士学位论文. 2005:10~12
    80陈立平,张云清,任卫群,等.机械系统动力学分析及adams应用教程.清华大学出版社. 2005:21~24
    81 E. J. Haug. Computer Aided Analysis and Optimization of Mechanical SystemDynamics. Springer-Verlag. 1984:25~30
    82 A. Jain, J. Balaram, J. Cameron, et al. Recent Developments in the RoamsPlanetary Rover Simulation Environment. 2004 IEEE Aerospace ConferenceProceedings, Big Sky, MT, United states. 2004:861~876
    83 J. Yen, A. Jain, J. Balaram. Roams: Rover Analysis, Modeling and SimulationIn Proceedings of the 1999 International Sym-posium on Artficial IntelligenceRobotics and Automation for Space, Noordwijk, The Netherlands1999:249~254
    84 S. R. Niranjan, H. A. Matthew. Role of Terrain Modeling in Lunar RoveSimulation. Simulation. 1993,61:60~68
    85骆训纪,孙增圻.月球漫游车仿真系统研究.系统仿真学报2002(9):1235~1238
    86仝光.基于adams月球车仿真平台的研究.吉林大学,硕士学位论文2007:8~10
    87邓宗全,胡明,高海波.月球探测车的动力学建模与仿真分析.南京理工大学学报(自然科学版). 2005(5):51~55
    88王巍,梁斌,强文义.基于虚拟样机技术月球机器人运动仿真.高技术通讯2002(2):84~87
    89蔡则苏,洪炳熔,刘玉强,等.基于虚拟样机的月球探测机器人运动学建模.哈尔滨工业大学学报. 2004(2):209~214
    90矫庆丰,左正兴,廖日东,等.六轮月球漫游车越障平顺性仿真分析.计算机仿真. 2005(6):108~111
    91 K. Iagnemma. A Labrotory Single Wheel Testbed for Studying PlannetaryRover Wheel-Terrain Iteraction. MIT Field and Space Robotics LaboratoryTechnical Report 01-05-05,2005
    92 H.Shibly, K.Iagnemma. An Equivalent Soil Mechanics Formulation for RigidWheels in Deformable Terrain with Application to Planetary Exploration Rovers. jouranl of Terrramechanics, 2005(42):1~13
    93 K. Iagnemma, S. Kang, H. Shibl, et al. Online Terrain Parameter Estimationfor Wheeled Mobile Robots with Application to Planetary Rovers. IEEETRANSACTIONS ON ROBOTICS. 2004:921~927
    94 K. D. Iagnemma. Rough Terrain Mobile Robot Planning and Control with Application to Planetary Exploration.Massachusetts Institute of TechenologyPh.D Dissertation. 2001:30~32
    95 R. Bauer, W. Leung,T. Barfoot.Experimental and Simulation Results oWheel-Soil Interaction for Planetary Rovers. Intelligent Robots and Systems2005 IEEE/RSJ International Conference. 2005:586~591
    96 D.Apostolopoulos.Analytical Configuration of Wheeled Robotic Locomotion.Robotics Institute Carnegie Mellon University. CMU-RI-TR-01-08,2001
    97 K.Yoshida, T.Shiwa. Development of a Reasearch Testbed for ExplorationRover at Tohoku University. Journal of Space Technology and Science1996,12(1):9~16
    98 G. Ishigami.Terramechanics-Based Analysis and Control for Lunar/PlaneraryExploration Robots. Tohoku University, Ph.D Dissertation. 2007:9~10
    99 K.Yoshida, G.Ishigami. Steering Characteristics of a Rigid Wheel for Explaration on Loose Soil. Proc of the 2004 IEEE Int. Conf. on Intelligent Robots andSystems Sendai, Japan, 2004:3995~4000
    100 H. Fujii. Analysis of Interaction between Lunar Terrain and Treaded Wheel byDistinct Element Method, ISTVS14th, 2002:20~24
    101陈斌.基于模拟月壤的轮壤关系研究.吉林大学,博士学位论文2010:36~38
    102马文哲.月壤—车轮土槽试验系统精度的研究.吉林大学,博士学位论文2008:35~37
    103彭剑波.基于轮壤作用试验的月球车与月壤相互作用动态仿真.吉林大学,硕士学位论文. 2009:27~30
    104陈斌.履刺式刚性轮在沙土上的牵引特性研究.吉林大学,硕士学位论文.2007:27~30
    105邹猛,李建桥,李因武,等.刚性轮—月壤相互作用预测模型及试验研究.农业工程学报. 2007,123(12):119~123
    106王林.月球车车轮与土壤作用的力学特性分析与测试系统设计.哈尔滨工业大学,硕士学位论文. 2006:7~9
    107全齐全.月球车车轮与土壤作用的力学特性分析与测试系统设计.哈尔滨工业大学,硕士学位论文. 2007:30~32
    108刘吉成.月球车车轮驱动性能及其综合评价的研究.哈尔滨工业大学,博士学位论文. 2009:53~74
    109丁亮.月/星球车轮地作用地面力学模型及其应用研究.哈尔滨工业大学,博士学位论文. 2009:40~67
    110温博.月球车视觉导航方法研究.哈尔滨工业大学,硕士学位论文.2007:8-11
    111马静.月球车视觉导航中位置和姿态的确定方法.哈尔滨工业大学,硕士学位论文, 2005:10~12
    112 L. M. C. Olson. Maximum Likelihood Rover Localization by Matching RangeMaps. Proc.IEEE Int'l Conf.Robotics and Automation, Leuven, Belgium,1998:272~277
    113 F. Cozman, E. Krotkov. Automatic Mountain Detection and Pose Estimationfor Teleoperation of Lunar Rovers. Proc.IEEE Int'l Conf.Robotics and Auto-mation, Albuquerque, USA, 1997:2452~2457
    114 M. Maurette, L. Boissier, M. Delpech, et al. Autonomy and Remote ControlExperiment for Lunar Rover Missions.Control Engineering Practice, 1997,5(6):851~857
    115 Y. Cheng, M. Maimone, L.Matthies. Visual Odometry on the Mars ExplorationRovers. Robotics and Automation Magazine, 2006, 13(2):54~62
    116 M. Maurette. Mars Rover Autonomous Navigation. Autonomous Robots, 2003,14(2):199~208
    117宁晓琳,房建成.一种基于upf的月球车自主天文导航方法.宇航学报,2006, 27(4):648~663
    118宁晓琳,房建成.一种基于纯天文观测的火星车自主导航方法.空间科学学报, 2006, 26(2):142~147
    119余迪利,鲍劲松,金烨,等.虚拟环境下基于复合视觉的月球车导航技术机械设计与研究, 2010, 26(3):33~36
    120裴福俊,居鹤华,崔平远.基于天文与速度联合观测的月球车自主导航方法.宇航学报, 2009, 30(2):486~491
    121岳富占,崔平远,崔祜涛,等.基于地球敏感器和加速度计的月球车自主定向算法研究.宇航学报, 2005, 26(5):553-557
    122李雄耀,王世杰,陈丰,等.月壤厚度的研究方法与进展.矿物学报, 200727(1):64~68
    123 M.G.Bekker.Introduction to Ttterrain-Vehicle Systems.The University ofMichigan 1969:30~35
    124 O. Onafeko, A. R. Reece. Soil Stresses and Deformations beneath RigidWheels. Jounal of Terramechanics, 1967, 4(1):59~80
    125 Z. JANOSI, B. HANAMOTO. Analytical Determination of Drawbar Pull as aFunction of Slip for Tracked Vehicles in Deformable Soils. Proceedings of the1st International Conference of ISTVES,Torino, Italy, 1961:707~726
    126 J. Y. Wong, A. R. Reece. Prediction of Rigid Wheel Performance Based onAnalysis of Soil-Wheel Stress, Part I :Performance of Driven Rigid WheelsJounal of Terramechanics, 1967, 4(1):81~89
    127庄继德.计算汽车地面力学.机械工业出版社, 2002:21~22
    128 W. D. Carrier, G. R. Olhoeft, W. Mendell. Physical Properties of the LunarSurface. Cambridge Univ, 1991:475~594
    129 V. Gromov. Physical and Mechanical Properties of Lunar and Planetary SoilsEarth Moon and Planets, 1999, 80:51~72
    130 R. Bauer, W. Leung, T. Barfoot. Development of a Dynamic Simulation Toofor the Exomars Rover. The 8th International Symposium on Artificial Intelli-gence, Robotics and Automation in Space, Munich, Germany, 2005:113~120
    131刘暾,刘育华,陈世杰.静压气体润滑.哈尔滨工业大学出版社, 1990:1~2
    132孙鹏,高峰,李雯,等.深空探测弹性可自动伸缩变直径车轮牵引通过性分析.北京航空航天大学学报, 2007, 33(12):1404~1407
    133 J. A. Jones. Inflatable Robotics for Planetary Applications. In Proceeding of6th International Symposium on Artificial, robotics and Automation in SpaceMontreal, 2001:1~6
    134 D. Apostolopoulos, M .D. Wagner, C. Leger, et al. Experimental Characteriza-tion of a Robotic Inflatable Wheel. In Proceeding of 8th International Sympo-sium on Artificial Intelligence, robotics and Automation in Space, munich,2005:1~7
    135 D. Wettergreen, D. Bapna, M.mainone, et al. Developing Nomad for RoboticExploration of the Atacama Desert.Robotics and Autonomous Systems, 1999,26:127~148
    136 W. T. Hunteress, V .I .Moroz, I. L. Shevalev. Lunar and Planetary Robotic Ex-ploration Missions in the 20th Century.Space Science Reviews, 2003,107:541~649
    137 D. C. Fergusona, D. M. Wilta, A. F. Heppa, et al. The Amars Pathfinder WheelAbrasion Experiment Materials and Design, 2001, 22(7):555~564
    138 K. Jizuka, Y. Sato, Y. Kuroda, et al. Study on Wheel of Exploration Robot onSandy Terrain. Proceedings of the 2006 IEEE/RSJ International Coferenceon Intelligent Robots and Systems, Beijing,China, 2006:4272~4277
    139 K. Lizuka, K. Sato, Y.Kuroda, et al. Experimental Study of Wheeled Forms forLunar Rover on Slop Terrain. 9th IEEE International Workshop on AdvancedMotion Control, Istanbul, Turkey, 2006:266~271
    140 H. Shibly, K. Iagnemma, S. Dubowsky. An Equivalent Soil Mechanics For-mulation for Rigid Wheels in Deformable Terrain with Application to Plane-tary Exploration Rovers. Journal of Terramechanics, 2005, 42:1~13
    141 K. Iagnemma, H. Shibly, S. Dubowsky. On-Line Terrain Parameter Estimationfor Planetary Rovers. 2002 IEEE International Conference on Robotics adnAutomation, Washington, DC, United states, 2002:3142~3147
    142张克建.车辆地面力学.国防工业出版社, 2002:28~30
    143 L. H. Matthies, C. F. Olson, G. Tharp, et al. Visual Localization tamMethodsfor Mars Rovers Using Lander, Rover, and Descent Imagery. Proc. 4th Intl.Symposium on Artificial Intelligence, Robotics,and Automation at space,1997:413~418
    144 A. Nadas.Least Squares and Maximum Likelihood Estimates of Rigid Motion.IBM research report, RC6945,1978
    145林丽惠.图像检索中的颜色表示方法分析.福建电脑, 2009(3):15~16
    146于万波.基于matlab的计算机图形与动画技术.清华大学, 2007:30~33
    147石美红,申亮,龙世忠,等.从rgb到hsv色彩空间转换公式的修正.纺织高校基础科学学报, 2008, 81(3):351~356
    148郭尚,苏鸿根.基于像素的计算大量连通区域面积的快速算法.计算机工程与设计, 2008, 223(7):1760~1763
    149 J. Bruce.Real Machine Vision Perception and Prediction. CMU, Bachlar Thesis , 2000:20~25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700