月球车遥操作中的任务规划技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
按照我国月球探测工程“三步走”的阶段实施方案,预计于2013年实现探测器在月面的软着陆,并开展月面定位探测和巡视勘察探测。月球车是实现月面巡视勘察的探测器,也将是我国首个在地外天体表面开展工作的移动机器人。一方面由于月球车智能水平有限,另一方面其良好的对地通信条件,使得月球车的控制方式以地面遥操作为主。其中,规划月球车在月面的工作序列,保证其在满足月面环境约束及自身能力约束的前提下,安全有效完成各种工程试验和科学探测目标,是地面遥操作系统的首要任务。因此,任务规划技术是月球车遥操作中的一项关键技术。然而,由于应用对象的特殊性,现有的其他应用领域内的任务规划技术及其他国家或航天机构巡视器的相关研究都无法直接应用在我国月球车的控制上。因此,开展月球车遥操作中的任务规划技术研究具有重大的工程意义和较高的理论价值。
     本文正是从我国月球车遥操作的实际需要出发,研究了月球车的任务规划技术。基于国内外在环境建模方面的研究进展,建立了面向月球车任务规划的综合环境模型;在该模型上研究了不同于局部导航中传统路径的任务层路径及其规划问题。最终,在该路径规划方法及月球车的行为集的分析基础上,研究了既能充分反映月球车行驶路径和其他行为之间耦合关系,又考虑月球车月面工作不确定性的任务规划技术
     影响月球车月面工作的环境因素有多种,主要包括月面地形、太阳位置和地球位置等。其中,日、地位置随时间变化。现有的环境建模方法研究主要集中在如何进行地形特征分类及建模上,对其他环境因素考虑较少。本文首先分析了各种月面环境因素对月球车月面工作过程的影响机制,提出了一种综合环境建模方法建立月面环境模型,作为开展月球车任务规划研究的基础。
     由于月球车在月面上的移动范围大,从一个探测目标点行驶到下一个目标探测点的时间长,整个过程中环境模型会发生显著变化,另外任务规划的目标往往也与时间、能源等相关。因此,月球车的行驶路径不能仅考虑躲避地形障碍,还要考虑其他影响路径选择的因素,这就是任务层路径。本文第4章研究了任务层路径规划问题的问题模型及其规划方法。针对月面环境的时变特点,提出了一种可预测动态模型下的路径规划方法,将动态环境下的路径规划转化为一系列静态环境下的路径全局寻优问题。
     行驶仅仅是月球车行为集合中的一种,月球车的月面工作过程是由多个行为有序排列而实现的。任务规划的目标就是规划出这样的行为序列,既全程满足所有约束条件,又能最好的实现任务目标。在本文第5章中,描述了月球车的行为集合并根据触发条件进行分类,在第4章提出的任务层路径规划方法的基础上,设计了月球车任务规划的一般方法,最终实现了月面工作行为序列的输出。
     月球车的月面工作过程往往存在许多不确定性,执行过程中行为时间消耗不可能完全与任务规划输出的结果一致。传统的确定性任务计划在实际应用中可能碰到困难。针对此问题,本文最后提出了与确定性计划相对的弹性计划概念,将行为开始时间由时刻变为时间区间,可大大提高任务规划输出结果在实际工程中的可行性。并且,设计了一种计算序列中各个行为开始时间区间的方法并进行了仿真实验。
According to China's lunar exploration program, it is scheduled to land probes on the moon in 2013, carrying out point detection and roving detection on the surface. The lunar rover is the one which will traverse on the moon, and it's also the first Chinese mobile robot working on a celestial body besides earth. As a result of the limited intelligence of lunar rover and abundant communication opportunity to earth, ground-based teleoperation is chosen to be the main approach to control the lunar rover. Planning the activities sequence for a rover, ensuring it to achieve engineering and scientific goals without violating any operation constraints, is the primary mission of ground teleoperation system. Therefore, mission planning technology comes to be a key technology of teleoperation. However, as mission planning is a domain-related technology, neither approaches in other domains nor for other rovers (like mars rovers) can be used for lunar rover. So, developing a mission planning technology for lunar rovers is of great engineering significance and theoretic valuable.
     This research is directly driven by the practical needs of China's lunar exploration program on planning for the lunar rover. Based on the review of research progress on environment modeling, a synthesized lunar environment model is built for mission planning, in which a mission-level path is proposed and planned. After analyzing the features of activities of lunar rover, a mission planning approach is finally proposed. It considers not only the interaction of mission-level path and path-dependent activity, but also the uncertainty of working on the lunar surface,
     There are some environmental factors affecting working progress on the moon, including lunar terrain, position of the sun and the moon. Most of the current researches on environment modeling focus on terrain classification and identification. On analyzing the affecting mechanism of environment factors to lunar rover, a synthesized environment modeling approach is proposed to model the lunar environment, which serves as the foundation of mission planning.
     It usually takes rover a long time to traverse form one goal to another, which is far apart. The environment is continuously varying. Moreover, mission goal is always related to time and energy. Traditional shortest path only avoiding terrain obstacle is not suitable for lunar rover anymore. Traversing on the moon should consider all the global factors. The path is named mission-level path. In chapter 3, mission-level path planning problem is first modeled, followed with a Predictable Dynamic Environment (PDE) path planning method. It turns planning a path on the continuously varying environment to a series of global path searching on static environments.
     Traverse is one of the activities performing on the moon, but not all. Working progress of lunar rover is directed by a mission plan comprising all kinds of activities. So, activities are descripted and categorized at the beginning of chapter 5. Then, a generalized mission planning method producing activity sequences for lunar rover is finally formulated, based on PDE mission-level path planning approach in chapter 4.
     Because of the uncertainties of working on the moon, time consumption of every activity during plan execution may not conform to the original plan. Traditional deterministic mission plan will run into difficulties when applying to practical use. To solve this problem, a new flexible plan is proposed, where the beginning time of an activity is of flexibility. It can enhance the practical ability of a mission plan greatly. What's more, a fashion of computing the flexible interval of every activity in a sequence is given out and simulated.
引文
蔡自兴.2009.机器人学(第二版)[M].北京:清华大学出版社,220-221.
    董光亮,郝万宏,李海涛 等.2010.同波束干涉测量对月面目标相对定位[J].清华大学学报(自然科学版),50(7):1128-1124.
    胡中华,赵敏.2009.无人机任务规划系统研究及发展[J].航天电子对抗,25(4):49-54.
    焦震,高海波,邓宗全,等.2010基于地面力学的月球车爬坡轮—地相互作用模型[J].机器人,32(1):70-76.
    李春来,刘建军,任鑫等.2010.嫦娥一号图像数据处理与全月球影像制图[J].中国科学:地球科学,40(03):294-306.
    李志林朱庆.2003.数字高程模型[M].武汉:武汉大学出版社.
    林一平.2009.中国高校月球车研发成果丰硕[J].中国航天,2009(9):9-14.
    欧阳自远,等.2005.月球科学概论[M].北京:宇航出版社.
    史美萍,吴军,等.2006.面向月球车路径规划的多约束环境建模方法[J].国防科技大学学报,28(5):104-108.
    史美萍.2006.基于人机协同的月球车路径规划技术研究[D]:[博士].长沙:国防科学技术大学,17-32.
    宋泾舸,查建中,陆一平.2007.智能规划研究综述——一个面向应用的视角[J].智能系统学报,2(2):18-25.
    汤国安,刘学军等.2005.数字高程模型及地学分析的原理与方法[M].北京:科学出版社.
    王贵财,王亮,崔平远。2009.一种星球漫游车的增强环境地形重构[J].光电工程,36(8):56-61.
    王学谦,梁斌,徐文福等.2009.空间机器人遥操作地面验证技术研究[J].机器人,31(1):8-14.
    徐瑞,徐晓飞,崔平远.2004.基于时间约束网络的动态规划调度算法[J].计算机集成制造系统,10(2):188-194.
    刑立宁,陈英武.2006.任务规划系统研究综述[J].火力与指挥控制,31(4):1-4.
    杨艳春,鲍劲松,金烨.2010.基于虚拟现实环境的六轮月球车运动性能分析[J].上海交通大学学报,44(8):1079-1083.
    张伍,党兆龙,贾阳等.2008.月面数字地形构造方法研究[J].航天器环境工程,25(04):301-306.
    张明,李清毅,许晓霞.2007.月球表面地形数学建模方法[J].航天器环境工程,24(6):341-344
    Ai-Chang M, Bresina J, Charest L, et al.2004 Mapgen:Mixed-initiative planning and scheduling for the mars exploration rover mission[J]. IEEE Intelligent Systems,19(1):8-12.
    Araki H, Tazawa S, et al.2009. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry[J]. Science 323(5916):897.
    Bernard D, Dorais G, Gamble E, et al.1999. Spacecraft Autonomy Flight Experience:The DS1 Remote Agent Experiment[C]. Proceedings of the AIAA Conference 1999, Albuquerque, NM.
    Biesiadecki J J, Baumgartner T, Bonitz G, et al.2005. Mars Exploration Rover surface operations: Opportunity at Meridiani Planum[C]. Proceedings in International Conference on Systems Man and Cybernetics:1823-1830.
    Biesiadecki J J, Maimone M W.2006. The Mars Exploration Rover surface mobility flight software:driving ambition[C]. In IEEE Aerospace Conference Vol.5. USA:Big Sky, Montana.
    Biesiadecki J J, Leger P C, Maimone M W.2007. Tradeoffs between directed and autonomous driving on the mars exploration rovers[J]. International Journal of Robotics Research,26(1): 91-104.
    Bresina J, Jonsson A, et al.2005. Activity planning for the mars exploration rovers[C]. The Fifteenth International Conference on Automated Planning and Scheduling (ICAPS 2005), Monterey, California, USA.
    Bualat M G, Kunz C G, Wright A R, et al.2004. Developing an autonomy infusion infrastructure for robotic exploration[C]. IEEE Proceedings in Aerospace Conference, Vol.842:849-860.
    Carsten J, Rankin A, Ferguson D, et al.2007. Global path planning on board the mars exploration rovers[C]. in Aerospace Conference, IEEE:1-11.
    Chang M Ai, Bresina J, Charest L, et al.2004. Mapgen:Mixed-initiative planning and scheduling for the mars exploration rover mission[J], IEEE Transactions on Intelligent Systems,19(1): 8-12
    Chien S, Knight R, Stechert A, et al.1999. Using iterative repair to increase the responsiveness of planning and scheduling for autonomous spacecraft[C]. Workshop on Scheduling and Planning meets Real-time Monitoring in a Dynamic and Uncertain World(IJCAI-99), Stockholm, Sweden, August 1999.
    Choset H, Burdick Joel.2000. Sensor-based exploration:the hierarchical generalized Voronoi graph[J]. The International Journal of Robotics Research,19(2):96-125.
    Cook A C, Spudis P D, et al. Lunar topography and basins mapped using a Clementine stereo digital elevation model[C].33rd Annual Lunar and Planetary Science Conference.
    Elachi C, Kobrick M, Roth L, et al.1976. Local lunar topography from the Apollo 17 ALSE radar imagery and altimetry[J]. Moon,15:119-131.
    Elnagar A, Basu A.1993. Heuristics for local path planning[J]. IEEE Transactions on Systems, Man and Cybernetics,23(2):624-634.
    Estlin T, Fisher F, Gaines D, et al.2002. Continuous Planning and Execution for the Autonomous Rover[C]. Proceedings of the Third International NASA Workshop on Planning and Scheduling for Space, Houston, TX, October 2002.
    Estlin T, Gaines D, Chouinard C, et al.2007. Increased mars rover autonomy using ai planning, scheduling and execution[C]. IEEE International Conference on Robotics and Automation: 4911-4918.
    Gennery D B.1999. Traversability analysis and path planning for a planetary rover[J]. Autonomous Robots 6:131-146.
    Ghallab M, Nau D S, Traverso P.2004. Automated planning:theory and practice[M]. Elsevier.
    Harvey B.2007. Soviet and Russian lunar exploration [M]. Springer.
    Hirzinger G, Brunner B, et al.1993. Sensor-based space robotics-ROTEX and its telerobotic features[J]. IEEE Transaction on Robotics and Automation,9(5):649-663
    Howard A, Seraji H, Werger B.2002. Fuzzy terrain-based path planning for planetary rovers in Fuzzy Systems[C]. Proceedings of the 2002 IEEE International Conference on:316-320.
    Hwang Y K, Ahuja N.1992. Gross motion planning-a survey[J]. ACM Computing Surveys, 24(3):219-291.
    Ishigami G, Nagatani K, Yoshida K.2007. Path planning for planetary exploration rovers and its evaluation based on wheel slip dynamics[C]. IEEE International Conference on Robotics and Automation:2361-2366.
    Jiang K, Seneviratne L S, Earles S W E.1993. Finding the 3d shortest path with visibility graph and minimum potential energy[C]. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems:679-684.
    Khatib O.1986. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots[J]. The International Journal of Robotics Research,5(1):90-98.
    Knight S, Rabideau G, Chien S, et al.2001. Casper:Space exploration through continuous planning[J]. IEEE Intelligent Systems,16(5):70-75.
    Koenig S, Likhachev M.2002 Improved fast replanning for robot navigation in unknown terrain[C]. Proceedings in IEEE International Conference on Robotics and Automation: 968-975.
    Landis G A,2004, Robots and humans:synergy in planetary exploration[J], Acta Astronautica, 55(2004):985-990.
    Latombe J-C.1991. Robot Motion Planning[M]. Kluwer Academic Publishers.
    Legar C, Trebi-Ollennu A, Wright R, et al.2005. Mars Exploration Rover surface operations: driving Spirit at Gusev Crater:Proceedings in International Conference on Systems Man and Cybernetics[C]. IEEE:1815-1822.
    Lindemann R A, Voorhees C J.2005. Mars exploration rover mobility assembly design, test and performance, in IEEE International Conference on Systems, Man and Cybernetics [C]. Vol.451: 450-455.
    Liu Y H, Arimoto S.1991. Proposal of tangent graph and extended tangent graph for path planning of mobile robots[C]. Proceedings in IEEE International Conference on Robotics and Automation:312-317.
    Lyndon B. Johnson Space Center,1975, Apollo program summary report[M]. USA.
    Maki J N, Herkenhoff K E, Squyres S W, et al.2003. Mars Exploration Rover engineering cameras[J]. Journal of Geophysical Research,108(E12):1-24.
    Marshall Space Flight Center.1969. Lunar Surface Models[R]. NASA SP-8023.
    Matthies L, Maimone M, Johnson A, et al.2007. Computer vision on Mars[J]. International Journal of Computer Vision,75(1):67-92.
    Mishkin A H, Morrison J C, Nguyen T T, et al.1998. Experiences with operations and autonomy of the mars pathfinder microrover, Proceedings in Aerospace Conference[C]. IEEE(332): 337-351.
    Murphy R R.2000. Introduction to Al robotics[M]. USA:MIT press:25-39.
    Noborio H, Naniwa T, Arimoto S.1990. A quadtree-based path planning algorithm for a mobile robot[J]. Journal of Robotic Systems,7(4):55-74.
    Pai D K, Reissell L-M.1998. Multiresolution rough terrain motion planning[J]. IEEE Trans. Robotics & Automation,14(1):19-33.
    Patrick U, EndoY, Wagner A.2007. Integrated Mission Specification and Task Allocation for Robot Teams-Design and Implementation[D]. IEEE International Conference on Robotics and Automation:10-14 April.
    Rekleitis I, Bedwani J L, Dupuis E, et al.2008. Path planning for planetary exploration[C], in Canadian Conference on Computer and Robot Vision:61-68.
    Scholten F, Oberst J, et al.2010. Towards Global Lunar Topography using LROC WAC Stereo Data[C].41th Lunar and Planetary Science Conference, The Woodlands, Texas.2111-2112
    Shankar U J, Wen-Jong S, Criss T B, et al.2008. Lunar terrain surface modeling for the alhat program[C]. in IEEE Aerospace Conference:1-10.
    Sheridan T B,1993, Space teleoperation through time delay:review and prognosis[J], IEEE Transactions on Robotics and Automation,9(5):592-606
    Shirley D, Matijevic J.1997. Mars Rovers:Past, Present and Future, Princeton Space Studies Institute 20th Anniversary Conference[C]:Princeton, NJ.
    Simmons R, Apfelbaum D.1998. A task description language for robotic control[C], Proceedings of the IEEE Intelligent Robots and Systems Conference, Vancouver, Canada, October 1998.
    Singh S, Simmons R, Smith T, et al.2000. Recent progress in local and global traversability for planetary rovers[C]. Proceedings in IEEE International Conference on Robotics and Automation:1194-1200.
    Steger-Jensen K, Hvolby H-H.2002. Constraint-based planning in Advanced Planning and Scheduling Systems[C], The 8th International Conference on Concurrent Enterprising. Rome, Italy.
    Stentz A.1995a. The Focussed D* Algorithm for Real-Time Replanning[C]. Proceedings of The 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal, Canada, August 1995.
    Stentz A, Hebert M.1995b. A Complete Navigation System for Goal Acquisition in Unknown Environments[J]. Autonomous Robots,2(2).
    Stentz A.1995c. Optimal and Efficient Path Planning for Unknown and Dynamic Environments[J], International Journal of Robotics and Automation,10(3).
    Stentz A.2002 CD*:A Real-time Resolution Optimal Re-Planner for Globally Constrained Problems[C]. Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-02), Edmonton, AB, Canada, July.
    Tompkins P, Stentz A, Whittaker W.2002. Mission planning for the sun-synchronous navigation field experiment[C]. Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington DC. May.
    Tompkins P, Stentz A, Wettergreen D.2004. Global path planning for mars rover exploration[C]. Proceedings in Aerospace Conference. IEEE, Vol.802:801-815.
    Tompkins P, Stentz A, Wettergreen D.2006. Mission-level path planning and re-planning for rover exploration[J]. Robotics and Autonomous Systems,54(2):174-183.
    Tunstel E, Maimone M, Trebi-Ollennu A, et al.2005. Mars exploration rover mobility and robotic arm operational performance[C]. Proceedings in International Conference on Systems, Man and Cybernetics, IEEE.
    Volpe R, Nesnas I, Estlin T, et al.2001. The claraty architecture for robotic autonomy[C]. Proceedings in IEEE Aerospace Conference:1/121-121/132.
    Wright J, Hartman F. Cooper B.2001. Immersive Environment Technologies for Planetary Exploration[C]. IEEE Virtual Reality Proceedings,13-17 March.
    Wright J, Hartman F, Cooper B, et al.2006. Driving on mars with rsvp[J]. Robotics & Automation Magazine,13(2):37-45.
    Yang C, Maimone M W, Matthies L.2006. Visual odometry on the mars exploration rovers-a tool to ensure accurate driving and science imaging[J]. Robotics & Automation Magazine,13(2): 54-62.
    Ye C.2007. Navigating a Mobile Robot by a Traversability Field Histogram[J], IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,37(2):361-372.
    Yoon W-K, Goshozono T, Kawabe H, et al.2001. Model-based teleoperation of a space robot on ETS-Ⅶ using a haptic interface[C]. Proceedings of the IEEE International Conference on Robotics & Automation:407-412

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700