六轮摇臂式月球车运动协调控制模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的发展和国民经济实力的增强,探月计划已被纳入日程。月球表面地形复杂、未知,加之月球车所携带的能源有限,因此,降低月球车行驶的能耗性,充分利用有限的能源,是保证探月任务顺利完成的关键。
     为消除六轮摇臂式月球车行进过程中的寄生功率损失,从而降低能耗,提出了运动协调控制模式。运动协调规划模型是从寄生功率产生原因入手,以月球车姿态角为状态变量,以电机转速为规划变量,电机转矩等为中间变量,以六轮瞬时功率之和为目标函数,以满足速度投影定理的运动学模型、准静态平衡力学模型、驱动电机额定功率、地面驱动力系数、电机最大驱动力等为约束条件的有约束最优化模型。在对规划模型进行整理后,基于Kuhn-Tucker条件求解规划模型,并将最优解作为依据控制月球车行进。仿真表明,运动协调控制模式可以有效减少寄生功率损失,降低能耗。
     根据摇臂式悬架的被动适应地形特性,提出了根据地形信息计算月球车姿态角的模型,结合运动协调控制模式进一步计算运动协调控制参数,最终计算通过路径所需能量。在此基础上,在分析了现有路径规划系统的片面性和局限性后,提出了以通过路径所需能量、所需时间、路径起伏状况、路径长度等为属性的路径多属性决策系统。该系统采用TOPSIS法,从若干条可通行路径中决策出最优路径。仿真表明,路径多属性决策系统所优选出的最优路径,兼顾低能耗性、快速性、平稳性等要求。
     作为路径多属性决策系统的拓展,提出了月球车群的路径多目标优选动态规划系统。该系统针对由两轮并列式探路月球车和六轮摇臂式主月球车组成的月球车群,提出了“探路月球车往复式前进,主月球车路径多目标优选动态规划”的月球车群路径决策方式。仿真表明,虽然路径多目标优选动态规划系统消耗更多的时间,但是降低了能耗。
     为避免由于模型不准确所产生的误差,降低控制系统对视觉系统的依赖,提出了结合运动协调控制模式的马尔可夫预测控制系统。该系统针对月球表面地形分布所具有的马尔可夫性和月球车摇臂式悬架的被动适应地形特性,通过采用马尔可夫预测方法预测下一状态的地形信息,预测下一状态的月球车姿态角,从而预测下一状态的运动协调控制参数。仿真验证了该系统的正确性。由于该系统是针对研究对象特性所选用的方法,从而避免了常规预测方法的通用模型,减少了计算量。
     为确定运动协调控制模式在实际应用中的控制效果,充分验证运动协调控制策略的有效性,进行了原理样机实验。实验以现有的六轮摇臂式月球车原理样机为本体,构建了由上位机、数模转换模块、驱动模块、传感器模块、电源模块等组成的硬件系统,编写了由控制策略算法程序、传感器数据读取程序、数模转换模块控制程序等组成的软件系统,最终构成原理样机实验平台。将相同驱动参数控制下和协调控制策略控制下月球车的能耗作为实验结果。通过十条随机路径上的实验结果对比表明,运动协调控制模式可有效降低能耗,最高为5.4%,最低为0.6%。通过分析可能的误差原因,提出了实验的改进措施。
     针对理论研究和实验过程中发现的问题,提出了若干条可以改进和深入研究的方向,其中包括运动协调控制策略在其他摇臂式月球车中的应用、硬质地面假设条件到松软土壤实际状况的转换、配备随动轮的协调控制装置等。这些问题不仅为运动协调控制模式投入实践奠定了基础,也为今后的深入研究指明了方向。
With the development of space technology and the strength of the national economy,Lunar exploration plan has been included in the agenda. Lunar terrain is complex and unkown, and energy on luanr rover is limited, so it’s key to Lunar exploration that making full use of limited energy. And decreasing energy consumption has become more important.
     To eliminate parasitic power losses of six-wheeled rocker lunar rover and lower energy consumption, a coordinated motion control mode was brought out, which solved from a coordinated motion programming model. The coordinated motion programming model, aiming at causes of parasitic power losses, was an constrained optimization model, whose state variables were attitude of lunar rover, planning variables were speed and torque of motors, objective function was energy consumption of six driving wheels, and constrains were kinematics model following theorem of projection of velocity, quasi-static balance force model, rated power of driving motor, driving-force coefficient of ground and max driving force of motor. The optimal solutions of the coordinated motion programming model, solved based on the Kuhn-Tucker conditions, was applied as the coordinated motion control strategy to the control on lunar rover.
     According to the passively deformation adaptability of the rocker suspension, a calculation on the attitudes of lunar rover based on terrain information was carried out. The driving parameters were calculated associated with the coordinated motion control mode, and energy consumption for any path was got. On this basis, aiming at limitation and one-sidedness of existing path programming system, a multi-attribute decision-making system was brought, whose attributes were energy consumption, time consumption, roughness of path and length of path. TOPSIS law was brought in this system and optimal path was picked out from several tranversibal paths. Simulation shows that the optimal path from the multi-attribute decision-making system considers to low-power, fast and smooth.
     As the extension of the multi-attribute decision-making system, Dynamic Programming and Multi-objective Optimization on path for lunar rover group, consist of two parallel wheeled rover and six-wheeled rocker rover, was brought out. After slave rovers moving forwards and backwards, path of master rover was obtained from Dynamic Programming and Multi-objective Optimization on path of slave rovers. Simulation shows that although time consumption increased, energy consumption reduced.
     To avoid error from inaccuracy of model and reduce reliance on the visual system of the control system, a Markov predictive control system combine with the coordinated motion control mode was researched, based on the Markov of terrain on lunar surface and the passively deformation adaptability of the rocker suspension. The terrain information of next state was predicted, so the attitude of rover and the coordinated driving control parameters were predicted. Feasibility of this system was verified by MATLAB simulation. For the pertinence to characters of research object, general model of conventional method was avoid and computational complexity was reduced.
     To determine the effectiveness of coordinated motion control mode, an experiment on prototype was carried. The experiment platform was foundated on the six-wheeled rocker prototype. Hardware system of platform was host computer, D/A converter, driving module, sensing module and power module. And software system of platform was control strategy program, senor reading program and D/A converter control program. The energy consumption under coordinated motion control strategy was measured as the experiment results, compared with the energy consumption under same control parameters for six wheels. The results on ten random paths show that energy consumption was reduced by the coordinated motion control strategy, up to 5.4 percent and down to 0.6 percent. Some improvements were brought by analyzing the possible causes of error.
     For some phenomenon in theoretical research and experiment, several improvement and future research were brought, such as application on other rocker rovers of coordinated motion control strategy, conversion from rigid ground to soft ground, and coordinated motion control equipment with follower wheel. These problems not only lay a foundation for application of coordinated motion control strategy, but also point out the directions for the future research.
引文
1 W. C. Feldman, B. L. Barraclough, S. Maurice, et al. Major Compositional Units of the Moon: Lunar Prospector and Clementine Data. Science. 1998 ,281:1489~1493.
    2 B. H. Foing. The Moon as a Platform for Astronomy and Space Science. Advanced Space Research. 1996, 18(11):17~23.
    3杭科.中国开展月球探测工程的重大意义.中国航天. 2007, (11):63~64.
    4 Jet Propulsion Laboratory. Planetary Mission Summaries: Introduction and Overview. JPL SP43-10, Vol.1.NASA-CR-147093
    5邹永廖,欧阳自远,李春来.月球探测与研究进展.空间科学学报. 2000, 20(10):93~103
    6欧阳自远,李春来,邹永廖等.月球探测的进展与我国的月球探测.中国科学基金. 2005, (4):193~197
    7欧阳自远.月球探测的进展和我国月球探测的科学目标.贵州工业大学学报. 2004, 32(6):1~7.
    8 http://news.xinhuanet.com/newscenter/2007-12/12/content_7235826.htm
    9 M. Maurette. Robots for Lunar Exploration: Present and Future. Advanced Space Research. 1999, 23(11):1894~1855
    10 Sibing He. China’s Moon Project Change: Stratagem and Prospects. Advanced Space Research 2004, 31(11):2353~2358.
    11刘晓川.月球探测关键技术的发展分析.中国航天. 2005, (7):39~44.
    12梁斌,王巍,王存恩.未来我国发展月球车的初步设想.中国航天. 2006, (1):29~33.
    13紫晓.嫦娥工程二、三期研究展望.中国航天. 2007, (11):58~62
    14 B. Bettyeb. Lunar Roving Vehicle: Historical Origins, Development and Deployment. Journal of the British interplanetary Society. 2005, 48(5): 199~212.
    15 J. DeLafongtaine, D. Kassing. Technologies and Concepts for Lunar Surface Exploration. Acta Astronautica. 1996, 38(2):125~129
    16李玉海.能量学与哲学.山西科学技术出版社,2005:13~15
    17 http://spacemodels.nuxit.net/lunokhod/reference/Lunokhod-arriere-s.JPG
    18 M. Maurette. Robots for Lunar Exploration: Present and Future. Advanced Space Research. 1999,23(11):1894~1855
    19 M. G. Bekker. The Development of A Moon Rover. Journal of the BritishInterplanetary Society. 1985,38(4):537~543
    20 S. Hayati, R. Volpe, J. Balaram, et al. The Rocky 7 Rover: A Mars Sciencecraft Prototype. 1997 IEEE International Conference on Robotics and Atuomation. 1997:2458~2464
    21 R. Volpe, J. Balaram, T. Ohm, et al. Rocky 7: A Next Generation Mars Rover Prototype. Advanced Robotics. 1997,11(4):341~358
    22 D. L. Shirley. Touching Mars: 1998 Status of the Mars Robotic Exploration Program. Acta Astronautica. 1995,45(4):249~265
    23 Soviet Lunar Missions. http://nssdc.gsfc.nasa.gov/planetary/lunar/lunarussr.html
    24 R. J. Laurance. ESA Study for the First Lander/Rover Mission: A Precursor Mission to the Moon. Advanced Space Research. 1996,18(11):125~127
    25 S. W. Thurman, V. M. Pollmeier. Guidance and Navigation for the Mars Pathfinder Mission. Acta Astronautica. 1995,35(Suppl.): 545~554
    26 D. C. Ferguson, D. M. Wilt, A. F. Hepp, et al. The Mars Pathfinder Wheel Abrasion Experiment. Materials and Design. 2001,22:555~564
    27 J. Matijevic. Sojourner: The Mars Pathfinder Micro-rover Flight Experiment. Space Technology. 1997, 17(3):143~149
    28 A. H. Mishkin, J. C. Morrison, T. T. Nguyen, et al. Experiences with Operations and Autonomy of the Mars Pathfinder Microrover. 1998 IEEE Aerospace Conference Proceedings. 1998:337~351
    29奇正.机器人车漫游火星.机器人技术与应用. 1997,6:13~16
    30 J. Biesiadecki, M. W. Maimone and J. Morrison. The Athena SDM Rover: a Testbed for Mars Rover Mobility. International Symposium on Artificial Intelligence, Robotics, and Automation in Space i-ASIRAS’01.2001
    31 E. Tunstel, T. Huntsberger, A. Trebi-Ollennu, et. al. FIDO Rover System Enhancements for High-Fidelity Mission Simulations. Proceeding of 2002 International Conference on Intelligent Autonomous Systems. 2002:365~377
    32 P. S. Schenker, E.T. Baumgartner, P. G. Backes, et. al. FIDO: A Field Integrated Design & Operations Rover for Mars Surface Exploration. The 2001 International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2001:188~201
    33 E. T. Baumgartner. In-situ Exploration of Mars Using Rover Systems. Proceeding of the AIAA Space 2000 Conference. 2002:32~39
    34 E. Tunstel, T. Huntsberger, H. Aghazarian, et. al. FIDO Rover Field Trials as Rehearsal for the NASA 2003 Mars Exploration Rovers Mission. Proceeding of
    5th Biannual World Automation Congress. 2002:320~327
    35 E. T. Baumgartner, H. Aghazarian, A. Trebi-ollennu. Rover Localization Resultsfor the FIDO Rover. Proceeding of SPIE. 2001: 34~44
    36 P. S. Schenker, T. L. Huntsberger, P. Pirjanian, et al. Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic Colonization. Autonomous Robots. 2003,14: 103~126
    37 T. Huntsberger, H. Aghazarian, Y. Cheng, et al. Rover Autonomy for Long Range Navigation and Science Data Acquisition on Planetary Surfaces. Proceeding of 2002 IEEE International Conference On Robotics & Automation. 2002:3161~3168
    38 G. Sohl, Abhinandan Jain. Wheel-Terrain Contact modeling in the ROAMS Planetary Rover Simulation. In Proc. of IDETC’05.
    39 T. D. Murphey, J. W. Burdick. A Controllability Test and Motion Planning Primitives for Overconstrained Vehicles. 2001 ICRA.IEEE International Conference on Robotics & Automation. 2001:2716~2722
    40 E. Tunstel, M. Maimone, A. Trebi-Ollennu, et al. Mars Exploration Rover Mobility and Robotic Arm Operational Performance. 2005 International Conference on Systems, Man and Cybernetics. 2005:1807~1814
    41 P. C. Leger, A. Trebi-Ollennu, J. R. Wright, et al. Mars Exploration Rover Surface Operations: Driving Spirit at Gusev Crater. 2005 International Conference on Systems, Man and Cybernetics. 2005:1815~1822
    42 J. J. Biesiadecki, E. T. Baumgartner, R. G. Bonitz, et al. Mars Exploration Rover Surface Operations: Driving Opportunity at Meridiani Planum. IEEE Robotics and Atuomation Magazine. 2006,13(2):63~71
    43 Y. Cheng, M. W. Maimone and L. Matthies. Visual Odometry on the Mars Exploration Rovers. 2005 International Conference on Systems, Man and Cybernetics. 2005:903~910
    44 S. B. Goldberg, M. W. Maimone and L. Matthies. Stereo Vision and Rover Navigation Software for Planetary Exploration. 2002 IEEE Aerospace Conference Proceedings. 2002: 2025~2036
    45 J. J. Biesiadecki, C. Leger and M. W. Mainone. Tradeoffs Between Directed and Autonomous Driving on the Mars Exploration Rovers. 2005 International Symposium of Robotics Research. 2005: 91~104
    46 R. Volpe. Rover Functional Autonomy Development for the Mars Mobile Science Laboratory. 2003 IEEE Aerospace Conference Proceedings. 2003: 643~652
    47 J. J. Biesiadecki, M. W. Maimone. The Mars Exploration Rover Surface Mobility Flight Software: Driving Ambition. 2006 IEEE Aerospace Conference Proceedings. 2006: 15~30
    48 G. E. Reeves, J. F. Snyder. An Overview of the Mars Exploration Rovers FlightSoftware. 2005 IEEE International Conference on Systems, Man, and Cybernetics. 2005: 1~7
    49 D. Christian, D. Wettergreen, M. Bualat, et al. Field Experiments with the Ames Marsokhod Rover. Proceeding of the 1997 Field and Service Robotics Conference. 1997: 89~95
    50 D. Bonnafous, S. Lacroix, T. Simeon. Motion Generation for a Rover on Rough Terrains. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001: 784~789
    51 T. Peynot, S. Lacroix. Enhanced Locomotion Control for a Planetary Rover. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2003: 311~316
    52国产月球车首次亮相. http://news.xinhuanet.com/photo/2006-10/30/content_ 5268980 .htm
    53中国自行研制的两款"月球车"原理样机在沪亮相. http://news3.xinhuanet.com/ local/2007-03/31/content_5919734.htm
    54胡明.六轮摇臂转向架式月球探测车的设计及其理论研究.哈尔滨工业大学博士学位论文. 2004:16~20
    55高海波.行星轮式月球探测车的设计与研究.哈尔滨工业大学博士学位论文. 2004:22~23
    56李运堂.两轮并列式月球车设计.哈尔滨工业大学硕士学位论文. 2002
    57毕贞法.两轮并列式月球车的群控系统研究.哈尔滨工业大学博士学位论文. 2006:36~37
    58陶建国,邓宗全,高海波等.六圆柱-圆锥轮式月球车的设计.哈尔滨工业大学学报. 2006,1(38): 4~7
    59梁斌,王巍,王存恩.开发我国月球车的初步设想.国际太空. 2005,2: 22~25
    60王佐伟,吴宏鑫.非线性离散时间系统的自适应模糊补偿控制.控制与决策. 2005,2 (20):147-151
    61王佐伟,吴宏鑫,梁斌.月球探测车动力学建模与运动协调控制.第二十二届中国控制会议论文集-机器人控制. 2003: 554~558
    62王佐伟,吴宏鑫.月球探测车模糊变结构运动协调控制. 2003年中国智能自动化会议. 2003: 231~235
    63王巍,梁斌,刘良栋等.月球机器人高精度定位模糊神经网络直接自适应控制.高技术通讯. 2001,8: 89~92
    64汝书伟,崔平远,居鹤华.一种自适应的月球车驱动控制算法.计算机工程与应用. 2005,31: 168~170
    65丁希仑,洪弈光,赵志文等.自动球形机器人及其特性分析.机器人. 2001,5: 15~18
    66刘方湖,陈建平,马培荪.五轮月球机器人及其特性分析.机械设计. 2001,5(5): 15~18
    67刘方湖,马培荪,曹志奎.五轮铰接式月球机器人的运动学建模.机器人. 2001,6(23): 481~485
    68刘方湖,马培荪,陈建平等.五轮铰接式月球机器人的全局路径规划.上海交通大学学报. 2001,12(35): 1785~1788
    69刘方湖,陈建平,马培荪,等.五轮铰接式月球机器人(FWALR)的智能模糊控制.上海交通大学学报. 2002,3(36): 297~301
    70王文超,曹志奎,马培荪等.转臂式八轮移动月球机器人设计与分析.驱动系统技术. 2003,9: 27~31
    71孟江华,唐键,朱纪洪等.六轮月球探测机器人原理试验车.第二届月球探测技术研讨会论文集. 2001: 195~201
    72骆训纪,孙增圻,朱纪洪.月球漫游车仿真研究发展概况.第二届月球探测技术研讨会论文集. 2001: 188~195
    73林明,唐键,朱纪洪等.清华月球车原理样机系统. 2002年深空探测技术与应用科学国际研讨会. 2002: 86~94
    74贺汉根,李圣怡,徐昕等.对月球探测机器人总体方案的设想及相关技术的研究.第二届月球探测技术研讨会论文集. 2001: 66~75
    75李焱,贺汉根.应用遥编程的月球探测机器人遥操作技术.第二届月球探测技术研讨会论文集. 2001:125~130
    76李圣怡. KDR-1无人驾驶自由移动探测车.第二届月球探测技术研讨会论文集. 2001:145~146
    77李圣怡,刘阳,戴一帆等.月球探测车研制及其机电系统关键技术研究.第二届月球探测技术研讨会论文集. 2001:155~165
    78邓宗全,胡明,高海波.摇臂-转向架式行星探测车移动系统的准静态分析.机器人. 2003, 25(3): 217~221
    79胡明,邓宗全,高海波,等.摇臂-转向架式月球探测车越障通过性分析.上海交通大学学报. 2005,39(6): 929~932
    80李海滨,段志信,康补晓.基于摇臂-转向架结构月球探测车的越障性能分析.重庆工学院学报. 2005, 19(11): 1~5
    81万仲平,费浦生.优化理论与方法.武汉大学出版社,2004: 144~172
    82肖柳青,周石鹏.实用最优化方法.上海交通大学出版社,2000: 67~71
    83谢政,李建平,汤泽滢.非线性最优化.国防科技大学出版社,2003: 73~83
    84 K. Iagnemma, A. Rzepniewshi, S. Dubowshy. Control of Robotic Vehicles with Actively Articulated Suspensions in Rough Terrain. Autonomous Robots. 2003,14:5~16
    85 K. Iagnemma, A. Rzepniewshi, S. Dubowshy,etc. Mobile Robot Kinematic Reconfigurability for Rough-terrain. http://robots.mit.edu/publications/papers/ 2000_08_Iag_Rze_Dub_Pir.pdf
    86杨璐.月球车悬架的机理分析及参数优化.吉林大学硕士学位论文. 2007:86~88
    87 H. Marref, C. Barret. Sensor-based Fuzzy Navigation of an Autonomous Mobile Robot in an Indoor Environment. Control Engineering Practice. 2000, 8(7): 757~768
    88 H. R. Beom, H. S. Cho. Sonar-based Navigation Experiments on Mobile Robots in Indoor Environments. Proceedings of the 15th IEEE International Symposium on Intelligent Control. USA: IEEE, 2000: 395~401
    89 L. LEE,J. WU.Fuzzy Motion Planning of Mobile Robots in Unknown Environments.Journal of Intelligent Robotic Systems. 2003, 37: 177~191
    90 Yahja A,Singh S StentZ. An Efficient On-line Path Planner for Outdoor Mobile Robots. Robotics and Autonomous Systems. 2000,32(2-3):129~143
    91 Gracanin, K.P. Valananis, N.C. Tsourveloudis, M. Matijasvic. Virtual-Envirotnnent-based Navigation and Control of UnderwaterVehicles IEEE Robotics & Automon.1999(2):53~62
    92 Rui Araujo and Anibal T.de Almeida. Learning Sensor-Based Navigation of a Real Mobile Robot in Unknown Worlds. IEEE Tran.on System,Man and Cybernetics-Part B: cybernetics,1999(4):164~178
    93 Brock, Oliver, O. Khatib, S. Viji. Task-Consistent Obstacle Avoidance and Motion Behavior for Mobile Manipulation. IEEE International Conference on Robotics and Automation 2002,5:383~393
    94 Rui Araujo, Anfbal T. Learning Sensor-based Navigation of a Real Mobile Robot in Unkown Worlds. IEEE Trans. on Systems, Man and Cybernetics. 1999,4(29):164~177
    95 Anthony Stentz. Optimal and Efficient Path Planning for Artially-known Environments. Proc. of IEEE Conf. Robotics and Automation. Aan Diego, 1994:3310~3317
    96高自友,孙会君.现代物流与交通运输系统.人民交通出版社,2003: 112~114
    97李军,徐玖平.运筹学——非线性系统优化.科学出版社,2003: 12~15
    98薛毅.最优化原理与方法.北京工业大学出版社,2001: 242~253
    99 D.W.Clarke, C.Mohtadi, P.C. Tuffs. Generalized Predictive Control–Part 1: The Basic Algorithm. Automatica. 1987,23(2):137~148
    100 D.W.Clarke, C.Mohtadi, P.C. Tuffs. Generalized Predictive Control–Part 2: Extensions and Interpretations. Automatica.1987,23(2):149~163
    101 D.W.Clarke, C.Mohtadi. Properites of Generailized Preditctive Control. Automatica. 1989,25(6):859~875
    102李国勇.智能控制及其MATLAB实现.电子工业出版社,2005:285~289
    103舒迪前.预测控制系统及其应用.机械工业出版社,1996:176~191
    104张桂喜,马立平.预测与决策概论.首都经济贸易大学出版社.2006:102~108
    105傅德印.预测方法与应用.中国统计出版社.2003:170~175
    106 Markov. Description of the lunar surface. Univ. Chicago Press, 1962: 75~99
    107 Markov. The Relative Depths of Lunar Ring Mountains and Craters in Mare Nubium. Soviet Physics Doklady, 1966: 187~188
    108 Markov. Physical Nature of Different Zones of the Lunar Surface. Astronomy and Astrophysics.1971,10: 29~30
    109王玉梅.基于回归-马尔可夫的交通事故预测模型.鲁东大学学报(自然科学版).2006,22(3):174~177
    110徐建华.现代地理学中的数学方法.第二版.机械工业出版社,2002:93~97
    111胡锡健,韩东,朱维宝.股票价格的回归——马氏链分析与预测.预测.1997,5:66~72
    112艾山江,沙依提,韩东等.股票价格变动的马氏链分析.经济数学. 1996,1:112~116
    113罗积玉,邢瑛.经济统计分析方法及预测.清华大学出版社. 1987:335~352
    114韩东胡锡健.经济和金融数学模型的理论与实践.上海交通大学出版社,2003:86~91
    115 http://www.lpi.usra.edu/expmoon/science/craterstructure.html
    116 http://www.google.com/moon/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700