串联多关节悬架六轮月球车移动系统及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月球探测车(简称月球车)移动系统是月球着陆探测必不可少的设备,是月面巡视勘察和取样返回的主要实施工具,其运动学和动力学性能的优劣,直接关系到探测任务的完成与否。本文提出并深入研究了具有串联多关节悬架的六轮月球车移动系统,主要开展了以下几方面的工作。
     对月球车移动系统总体设计中的关键技术进行了深入研究。在对移动系统构型综合和分析的基础上,提出了兼有被动和主动两种地形适应方式的混合适应型六轮移动系统,总体方案采用六轮独立驱动以及通过连杆差动平衡机构连接的串联多关节悬架,以保障各车轮均载及良好的牵引性能。在总体设计的基础上,以外包络尺寸最小为目标函数,将运动能力保障条件转化为几何约束条件,进行了移动系统机构尺寸的优化设计计算,确定了移动系统的技术参数。在此基础上,进行了移动系统本体结构设计,采用了带有轮刺的圆柱—圆锥形薄壁轮体、陶瓷轴承以及金属橡胶减振器等技术,以解决月面环境适应性设计问题。根据结构设计,建立了移动系统Pro/E三维实体模型和ADAMS仿真模型,为样机研制和仿真分析奠定了基础。
     本文对所设计的移动系统的运动性能进行了深入研究。为了充分发挥该六轮移动系统混合适应型的优点,根据系统的特点设计了几种不同的运动模式,并阐述了各运动模式的运动原理,为移动系统的地形通过性分析提供了依据。在归纳分析了移动系统失去地形通过性的几种常见类型基础上,确定了系统地形纵向通过性和横向通过性的几何条件。对于移动系统的障碍通过性能力,根据月球车运动速度低的特点,采用了准静力学方法进行研究,建立系统的准静力学平衡一般方程,研究系统越障时的临界状态和通过能力;鉴于两轮同时越障难度最大,利用准静力学平衡方程,并确定出运动约束几何条件。对移动系统在被动适应和主动适应两种方式下,两轮同时爬越垂直障碍、穿越壕沟和爬坡的通过性条件分别进行了推导和计算,获得了越障能力与轮地牵引系数的关系曲线和极限条件。此外,建立相应的ADAMS越障模型,对移动系统各种运动模式下的越障通过性进行了仿真分析,并与理论计算结果进行了比较,验证了理论计算值的可信性。
     本文对移动系统进行运动学建模和仿真分析。应用考虑车轮滑移的轮地接触变换矩阵,并结合悬架的D—H变换矩阵,建立了该系统在三维地形中存在滑移运动的正运动学模型,进而推导了考虑滑移影响的运动速度雅克比矩阵,建立起车轮与主车体之间的运动速度关系。此外,给出了系统的逆运动学方程求解方法,建立了描述崎岖地形的路径模型,并利用ADAMS软件对崎岖月面运行的移动系统进行运动学仿真,以获得各车轮和主车体运动变化的规律。
     为分析移动系统的动力学特性,基于车辆——地面力学理论,通过引入和定义当量牵引系数概念,推导了松软地面环境下的轮地作用简化模型;并以此为基础,应用多体系统动力学中的凯恩方程法,建立了移动系统在崎岖地形下的动力学模型,推导出其动力学矢量方程式。对于移动系统的运动平顺性研究,鉴于系统振动理论模型及求解的复杂性,利用弹簧和阻尼模型模拟金属橡胶减振器,在ADAMS软件中构建了前轮装有减振器的移动系统运动仿真模型,对移动系统被动适应模式下,在水平硬地面和越障时的前、后车轮平台的运动平顺性进行了仿真对比,验证了所设计的金属橡胶减振器的减振效果。
     本文研制了具有串联多关节悬架的六轮月球车移动系统原理样机和车轮牵引特性多功能测试装置,对移动系统的圆柱——圆锥形车轮在松软沙土上的牵引特性进行了测试和分析,获得了车轮牵引特性各种指标的参数曲线,并给出了移动系统运动时车轮较适宜的滑转率范围。在构建的不同模拟月面地形环境下,对原理样机的移动速度和可控性、被动适应与主动适应两种方式的越障通过性、金属橡胶减振器的减振性能进行了重点测试,验证了理论计算和仿真分析结果的有效性;同时,为便于给移动系统的运动性能测试和分析提供比较基准,提出了综合考虑整机牵引特性的均一当量牵引系数概念,并给出了相应的测定方法。试验表明本文研制的移动系统原理样机能够在复杂、非结构化地形环境中成功运行,且具有较强的地形适应性和越障通过性。
A lunar rover is the major equipment of lunar surface exploring and sample returning, and its kinematic and dynamic characteristics will directly affect execution of lunar surface exploration
     This dissertation has put forward a six-wheeled lunar rover mobile system with series multi-articulated suspension, and systematically studied the mobile system. The research works focus on following aspects:
     The key technologies of overall design of the rover mobile system are studied. Based on configuration synthesis and analysis of rover chassis and suspension, a lunar rover mobile system in hybrid locomotion, which means the mobile system may be in either active locomotion or passive locomotion according to mobility demand, has been put forward in this dissertation. In the design concept,the rover mobile system has six individually motorized wheels and a multi-articulated suspension composed of two parts of series linkage frameworks connected by a differential balance linkage mechanism, and ensured with advantages of average weight and good traction on each wheel. Thereafter selected outline size minimizing as a object function and locomotion performances as constraints,the parameters of the rover mobile system are optimized. According to the optimal parameters, structure design of the rover mobile system has been performed, meanwhile lunar environment has been taking into serious account during design,and some technologies such as cylinder-conical wheel body with lugs, ceramic bearings,metal rubber vibration absorbers are applied to the rover mobile system. Furthermore, simulating models in Pro/E software and ADAMS software have been built up for making a prototype and simulation thereafter.
     Regarding to its performance analysis of the rover mobile system, locomotion modes have been designed to take advantage of its hybrid locomotion concept and be in favor of trafficability analysis of the rover mobile system, and therein mechanism and locomotion principle of the modes have been introduced. According to typical cases of trafficability loss, geometry limiting values of the trafficability of the rover mobile system have been defined along longitude and transverse. For analysis of obstacles trafficability of the rover mobile system, quasi-static method is applicable due to its very low locomotion velocity, so the quasi-static equilibrium equations have been derived to express critical conditions and solve limiting values of mobile system surmounting obstacles. Because it is the most difficult for two wheels simultaneously surmounting obstacles, quasi-static equilibrium equations and locomotion geometry constraints have been derived for analysis of two wheels climbing up a vertical obstacle, hurdling a ditch, and climbing on a slope in the passive locomotion mode or active locomotion modes respectively, curves of surmounted obstacle dimension versus equivalent traction ratio of wheel-soil and some limiting trafficability values have been obtained by solving equations. In addition, the corresponding simulations of mobile system to surmount above motioned obstacles in ADAMS have been accomplished, and the simulating results validate the correctness of theoretical calculating results by comparing with each other.
     Kinematics modeling and analysis of the rover mobile system in a 3-dimension terrain is another research aspect. The forward kinematics models involving wheel slips has been made on the basis of deriving wheel-soil interaction coordinate transform matrix and applying D-H coordinate transform matrix, velocity equations about the main body and wheels have been formed by Jacobian matrix. Then the inverse kinematics solutions have been farther derived, and a path model for mobile system kinematics has been described. The kinematics simulations of the rover mobile system moving on the rugged terrain have been carried out, and the variable curves of the main body have been obtained.
     With respect to its dynamics analysis of the rover mobile system, introducing and defining equivalent traction ratio, a simplified wheel-soil interaction model has been derived firstly on the basis of Soil-Vehicle Mechanics. The dynamics model of the rover system on the rugged terrain has been formed by applying the dynamic theory of multi-body system, Kane’s method and the simplified wheel-soil interaction model, and then the dynamic vector equations have been derived. Both for analysis of riding quality of the rover mobile system and for evading great complexity of its theoretical vibration model and computing, riding quality simulation has been carried out in ADAMS. During simulation, simulating vibration absorbers were installed on front wheels but not on other wheels, which are composed of springs and dampers to simulate metal rubber vibration absorbers. The simulation results validate the effectiveness of metal rubber vibration absorbers by comparing riding quality of platforms on front wheels and rear wheels, when the simulating mobile system moves on hard ground or climb over an obstacle.
     This dissertation has developed a prototype of presented rover mobile system with series multi-articulated suspension and a multi-purpose testbed to test the cylinder-conical wheel traction characteristics of the rover mobile system prototype on soft soil, traction characteristic curves of the wheels have been obtained, and that feasible wheel slips of the prototype on soft soil have been presented. Some simulating lunar surface terrains have been constructed for the mobile system prototype testing,and its locomotion performances in these simulating terrains have been tested such as mobile velocities, controllability, obstacles trafficability in passive locomotion mode or active locomotion modes, as well as function of metal rubber vibration absorbers. These testing experiments validate the correctness of theoretical computation and simulation for above locomotion performances of the mobile system. Meanwhile,in order to provide a comparability reference for testing and analysis of locomotion performances of the rover mobile system, the uniform equivalent traction ratio for full prototype traction is defined and its measuring method has been presented. Experiments prove that the rover mobile system prototype is applicable for rugged and unstructured terrain and strong capable of terrain adaptability and obstacles trafficability.
引文
1卢波.月球探测的意义及发展态势.国际太空, 1998, 4: 1~4
    2薛成位.月球探测势在必行.导弹与航天运载技术, 1998, 1: 1~2
    3 Jet Propulsion Laboratory. Planetary Mission Summaries: Introduction and Overview. JPL SP43-10, Vol.1 NASA-CR-147093: 110~112
    4 B. Burkhalter. Lunar Roving Vehicle: Historical Origins, Development and Deployment. Journal of the British Interplanetary Society, 1995, (48): 199~212
    5邹永廖,欧阳自远.重返月球——垦殖者的希望.百科知识, 1999, (3): 9~10
    6 Parkinson BOB. International Lunar Workshop. Space Flight, 1994, (8): 255~256
    7 P. Putz. Space Robotics in Europe: A Survey. Robotics and Autonomous Systems. 1998, 3(16): 51~52
    8王景泉,宋智. 21世纪国际月球与行星探测的发展趋势.国际太空, 1998, 4: 4~6
    9王存恩,王旭东,谢斌等.日本的月球卫星和月球机器人技术.第二届月球探测技术研讨会论文集.北京. 2001, 1: 262~265
    10王培垣.月球巡航车研究.第一届全国深空探测技术研究与发展研讨会论文集.哈尔滨, 2001, 1: 287~288
    11 M. Novara, P. Putz, L. Marechal, et al. Robotics for Lunar Surface Exploration. Robotics and Autonomous System, 1998, 23: 53~54
    12紫晓.嫦娥工程二、三期研究展望.中国航天. 2007, (11):58~62
    13欧阳自远.月球探测的进展与我国的月球探测(上).自然杂志. 2005, 27 (4): 187~190
    14欧阳自远.月球探测的进展和我国月球探测的科学目标.贵州工业大学学报. 2004, 32(6):1~7.
    15 K. Schiling, C. Jungius. Mobile Robots for Planetary Exploration. Espoo, Finland: IFAC Intelligent Autonomous Vehicles, 1995:109~119
    16李圣怡,戴一帆,刘阳.月球火星探测与月球探测车研制初探.第二届月球探测技术研讨会论文集.北京,2001:146~155
    17卡尔.萨根著,陈增林译,宇宙科学传奇.河北:河北人民出版社. 1984: 195~225
    18 G. C. Nandy, Y. S. Xu. Dynamic Model of A Gyrover Wheel. Proceedings of the IEEE International Conference On Robotics and Automation, 1998: 2683~2688
    19 A. Koshiyama, K.Yamafuji. Design and Control of An All-direction Steering Type Mobile Robot. The International Journal of Robotics Research. 1993,12(5): 411~419
    20王存恩.日本的月球探测器LUNAR-A.国际太空. 1997, 12: 16~19
    21 M. G. Bekker. The Development of A Moon Rover. Journal of the British Interplanetary Society. 1985, 38(4): 537~543
    22 J. Purvis, P. Klarer. Robotic All Terrain Lunar Exploration Rover (RATLER). American Nuclear Society’s 5th Topical Meeting on Robotics and Remote Handling, Knoxville, Tennessedd. 1993, 4: 323~341
    23 E. Rollins, J. Luntz, A. Foessel, et al. Nomad: A Demonstration of the Transforming Chassis. Proceedings of the IEEE International Conference on Robotics and Automation. 1998: 611~617
    24 W. R. Whittaker, D. Bapna. Atacama Desert Trek: A Planetary Analog Field Experiment.遥科学资料选编(三). 1998: 51~56
    25 D. Bapna, E. Rollins, J. Murphy, et al. The Atacama Desert Trek: Outcomes. Proceedings of IEEE International Conference on Robotics and Automation. 1998: 597~604
    26刘进长,辛健成.机器人世界.河南科学技术出版社. 2000: 93~104
    27 E. Tunstel. Evolution of Autonomous Self-righting Behaviors for Articulated Nanorovers. Proceedings of the 5th International Symposium on Artificial Intelligence. Robotics and Automation in Space. 1999: 341~346
    28 K. Takashi, K. Yoji, K. Yasuharu, N. Ichiro Small, light-weight rover“Micro5”for lunar exploration. Acta Astronautica. 2003, 52: 447~453
    29 T. P. Rivellini. Mars Rover Mechanisms Designed for Rocky 4. The 27th Aerospace Mechanisms Symposium, NTIS NO: N94~29630/8HDM: 37~49
    30奇正.机器人车漫游火星.机器人技术与应用. 1997, 6:13~16
    31 D. L. Shirley. Touching Mars: 1998 Status of the Mars Robotic Exploration Program. Acta Astronautica. 1995, 45(4-9): 249~265
    32 S. Hayati, R. Volpe, J. Balaram, et al. The Rocky 7 Rover: A Mars Sciencecraft Prototype. Proceedings of IEEE International Conference on Robotics and Automation. 1997: 2485~2464
    33 R. Volpe, J. Balaram, T. Ohm, et al. Rocky 7: A Next Generation Mars Rover Prototype. Advanced Robotics. 1997, 11(4): 341~358
    34 R. Volpe, T. Ohm, R. Petras, et al. A Prototype Manipulation System for Mars Rover Science Operation. Proceedings of the IEEE/RSJ International Conference on Robots and Systems. 1995: 1487~1492
    35 B. Sherwood. Fourth-Generation Mars Vehicle Concepts. Journal Spacecraft andRockets. 1994, 31(5): 834~838
    36 P. S. Schenker. FIDO Rover and Long-Range Autonomous Mars Science. In Intelligent Robots and Computer Vision XVⅢ,SPIE Proceedings 3837, Boston. 1999,11(2): 263~270
    37 D. Nesnas, M. Bajracharya, et al. Visual target tracking for rover-based planetary exploration. 2004 IEEE Aerospace Conference Proceedings, 2004: 747-760
    38 A. L. Kemurdjian. Planet Rover as an Object of the Engineering Design Work. Leuen Belgium: Proceedings of the 1998 IEEE International Conference on Robotics & Automation. 1998: 140~145
    39 R. A. Lindemann, C. J. Voorhees. Mars exploration rover mobility assembly design, test and performance. Proceedings of 2005 International Conference on Systems. 2005: 450~455
    40 R. Volpe. Rover Technology Development and Mission Infusion Beyond MER. IEEE AC paper, 2005: 1641
    41 M. K. Lockwood, R. W. Powell, et al. Entry configurations and performance comparisons for the Mars Smart Lander Journal of Spacecraft and Rockets. 2006, 43(2): 258~269
    42 A. L. Kemurdjian, V. Gromov, V. Mishkinyuk, et al. Small Marskhod Configuration. Proceedings of the 1998 IEEE International Conference on Robotics & Automation, 1992: 165~168
    43 A. L. Kemurdjian. Planet Rover as an Object of the Engineering Design Work. Leuen Belgium: Proceedings of the 1998 IEEE International Conference on Robotics & Automation, 1998: 140~145
    44 V. Kucherenko, A. Bogatchev et al. Chassis Concepts for the ExoMars Rover. In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation‘ASTRA 2004’ESTEC, 2004
    45 T. Thueer, A. Krebs, R. Siegwart. Comprehensive Locomotion Performance Evaluation of All-Terrain Robots. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, 2006: 4260~4265
    46 R. Siegwart, P. Lamon, T. Estier. Innovative Design for Wheeled Locomotion in Rough Terrain. Robotics and Autonomous Systems. 2002, 40: 151~162
    47 R. Bertrand, P. Lamon et al. The SOLERO Rover for Regional Exploration of Planetary Surfaces, Geophysical Research Abstracts. 2003, 5: 11850
    48 T. Thueer, P. Lamon et al. CRAB– Exploration Rover with Advanced Obstacle Negotiation Capabilities. In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics, 2006
    49 M. Maurette. Robots for Lunar Exploration: Present and Future. Advanced Space Research. 1999, 23(11): 1894~1855
    50 J. Bares, W. L. Whittaker. Configuration of Autonomous Walker for Extreme Terrain. The International Journal of Robotics Research, 1993, 12(6): 535~550
    51 E. Krotkov, R. Simmons. Planning and Control for Autonomous Walking with the Ambler Planetary Rover. The International Journal of Robotics Research, 1996, 15(2): 155~180
    52 VNIITRANMASH, Specimens of Space Technology, Earth-based Demonstrators of Planetary Rover, Running Mock-ups. Russian Mobile Vehicle Engineering Institute Research Report. 2002, 10~31
    53 R. Lindemann, D. B. Bickler et al. Mars Exploration Rover mobility development - Mechanical mobility hardware design, development, and testing .IEEE Robotics and Automation Magazine. 2006, 13(2): 19~26
    54 C. Chen, M. Trivedi. Reactive Locomotion Control of Articulated-tracked Mobile Robots for Obstacle Negotiation. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1993: 1349~1356
    55 R. F. Fogle, F. M. Heckendorn. Teleoperated Equipment for Emergency Response Applications at the Sanannah River Site. Journal of Robotic System. 1992, 9(2): 169~185
    56 M. Lagolnitzer, F. Richard, J. F. Samson, et al. Locomotion of An All-Terrain Mobile Robot. Proceedings of the IEEE International Conference on Robotics and Automation. 1992: 104~109
    57 F. X. Potel, F. Richard, P. Tournassoud. Design and Execution of Locomotion Plans. Proceedings of the International Conference on Advanced Robotics, 1991: 1045~1050
    58 T. Kubota1, Y. Kunii et al. Japanese lunar robotics exploration by co-operation with lander and rover. J. Earth Syst. Sci. 2005, 114 (6): 777~785
    59王旭东.中国航天的第三里程碑——发展我国月球探测及制导、导航和控制技术的设想.第二届月球探测技术研讨会论文集.北京, 2001, 1: 284~290
    60刘方湖,陈建平,马培荪,等.五轮月球机器人及其特性分析.机器人. 2001, 5: 15~18
    61李翠兰.一种新型的可被动适应崎岖表面的六轮月球漫游车.上海交通大学硕士学位论文. 2005, 2
    62刘方湖,马培荪,陈建平等.管道型轮腿式月球探测机器人.机械工程学报, 2002, 38(11): 42~48
    63孙增圻,胡金春,朱纪洪等.我国月球探测机器人总体方案设想及地面试验演示系统.第二届月球探测技术研讨会论文集.北京, 2001,1: 226
    64李圣怡,刘阳,戴一帆.月球探测车研制及其机电系统关键技术研究.第二届月球探测技术研讨会论文集.北京, 2001, 1: 59~160
    65尚建忠,罗自荣,张新访.两种轮式月球车悬架方案及其虚拟样机仿真.中国机械工程. 2006, 17( 1): 49~51
    66尚建忠,张新访,罗自荣.主动自适应悬架机器人概念样机及其配置模型和方法.国防科技大学学报, 2006, 28( 2 ):93~96
    67尚建忠,罗自荣,张新访,范大鹏.双曲柄滑块联动月球车设计及样机研制.中国机械工程. 2007, 18( 3): 348~351
    68陈学东,李小清.轮/足混合式行星表面探测机器人的运动设计. 2002年深空探测技术与应用科学国际研讨会. 2002:22~29
    69王颖,孙德敏.月球车控制方案初探.航天控制,2000, 1: 55~66
    70祝晓才.轮式移动机器人的运动控制.国防科技大学博士论文. 2006: 35~45
    71陈百超.月球车悬架研究及动力学仿真.吉林大学硕士学位论文. 2006:4~13, 48.
    72王明辉,马书根,李斌等.自重构形星球探测机器人控制系统的设计与实现.机器人. 2005, 27(3): 273~277.
    73丁希仑,洪弈光,赵志文等.自动球形行星探测机器人的研究.中南工业大学学报, 2000, 31: 438~441
    74王巍.六轮月球漫游车运动系统动力学、控制与仿真研究.哈尔滨工业大学工学博士学位论文. 2002:7~8
    75刘吉成,双锥轮月球车设计与仿真.哈尔滨工业大学硕士学位论文, 2004.
    76毕贞法,邓宗全,陶建国.变驱动半径两轮并列式月球车德稳定性分析.上海交通大学学报. 2007, 41(7):1204~1208
    77高海波.行星轮式月球车技术及其理论研究.哈尔滨工业大学工学博士学位论文. 2003,:1~17
    78胡明,邓宗全,高海波等.摇臂-转向架式月球探测车越障通过性分析.上海交通大学学报. 2005, 39(6): 928~932.
    79邓宗全,邱雪松,高海波.八轮扭杆摇臂式月球车车轮与月面间动载分析.机械设计, 2007, 24(6): 33~37
    80 N. Yoshioka, Y. Wakabayashi. Driving Technology and Preliminary Tests of Lunar Rovers. The 13th IFAC Triennial World Congress. 1996: 23~28
    81 H. Katoh, I. Nakatani. Walking Rover With Six Legs For Planetary Exploration.空间机器人及遥科学技术资料选编(三). 1998: 12~17
    82 J. E. Bares, W. L. Whittaker. Configuration of Automous Walkers for ExtremeTerrain. The International Journal of Robotics Research. 1993,12(6): 535~559
    83 W. Shields, S. Feteih, Patrick Hollis. Lunar Rover Trailer, Lunar Surface Operations Volume IV. NASA-CR-195554. 1993, 7: 23~28
    84王韬.基于多主题方法的关节式移动机器人自主越障控制.上海交通大学博士学位论文. 2000: 8~9
    85 N. Patel, A. Ellery. A comparative locomotion study for mars micro-rovers and mini-rovers. Proc. of the 55th International Astronautical Congress. Vancouver, Canada, 2004:1~11
    86 M. Takano. Mechanism of An Autonomous Mobile Robot and Its Control. Advanced Robotics. 1996, 4(3): 187~202
    87 F. Muir, C. P. Neuman. Resolved Motion Rate and Resolved Acceleration Servo-Control of Wheeled Mobile Robots. Proceedings of 1990 IEEE International Conference on Robotics and Automation. 1990: 1133~1140
    88 G. Compion, G. Bsatin, B. D’Andre’a-Novel. Structural Properties and Classification of Kinetic and Dynamic Models of Wheeled Mobile Robots. IEEE Transactions on Robotics and Automation. 1996, 12(1): 31~38
    89 R. Balakrishna, A. Ghosal. Modeling of Slip for Wheeled Mobile Robotics. IEEE Transactions on Robotics and Automation. 1995, 11(1): 22~34
    90 G. McDermott and M. Tarokh. A General Approach to Kinematics Modeling of All-Terrain Rovers. Proceedings of IEEE Int. Conf. on Systems, Man and Cybernetics. Waikoloa, HI, USA, 2005: 2019~2024
    91 M. Tarokh and G. McDermott. Kinematics Modeling and Analyses of Articulated Rovers. IEEE Transactions on Robotics. 2005, 21 (4): 539~553
    92 L. A. Randel. Quasi-static Mobility Analysis Tool for the Design of Lunar/Martian Rovers and Construction Vehicles, SAE (Society of Automotive Engineers) Transactions, 1990(99): 561~566
    93冯炜,胡于进,李左龙. 8×8越野车通过沟台能力的研究[J].汽车工程. 2004,26(4):527~532
    94兰凤崇,陈吉清,王予望.汽车垂直越障能力的计算及试验[J].汽车工程.1997,19(2): 116~120.
    95 G. Wamplter, M. Salecker, J. Witlenbury. Kinematics and Dynamics of Omnidirectional Vehicles with Mecanum Wheels. Mechstruct&Mach, 1989, 17(2): 165~177
    96 J. Barraquand, J. C. Latombe. Nonholonomic Multibody Mobile Robots: Controllability and Motion Planning in the Presence of Obstacles. Proceedings of 1991 IEEE International Conference on Robotics and Automation. 1992: 2328~2335
    97 Y. L. Zhao, L. S. Bement. Kinematics Dynamics and Control of Wheeled Mobile Robots. Proceedings of 1992 IEEE International Conference on Robots and Automation. 1992: 91~96
    98 K. Jizuka, Y. Sato, et al. Study on Wheel of exploration Robot on Sandy Terrain. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006: 4272~4277
    99刘述学.工程机械地面力学.机械工业出版社, 1992, 72~123
    100 M. G. Bekker.地面—车辆系统导论.机械工业出版社, 1978:80~200
    101 M. G. Bekker. The development of moon rover. Journal of the British Interplanetary, 1985,38: 537~543
    102 J. V Perumpral, J. B Lilzedahl, et al. A numerical method for predicting the stresss distributeon and soil deformation under a tractor wheel. Journal of Terramechanics. 1971, 8(1): 19~26
    103李杰,庄继德,赵旗.车辆地面力学弹塑性本构关系.吉林工业大学自然科学学报, 1999, 29(2): 1~7
    104庄继德.地面计算力学.机械工业出版社, 2001, 198~202
    105张克健.车辆地面力学.国防工业出版社. 2002, 126~128, 227~238
    106 A. R. Reece. Problems of Soil-Vehicle Mechanics. U. S. Army L. L. L. ATAC, No. 8479, Warren, Mich. 1964
    107 Z. Janosi, B. Hanamoto. Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils. Proceedings of the 1st International Conference of ISTVES. Torino, 1961
    108 O. Onafeko and A. R. Recce. Soil Stresses and Deformations Beneath Rigid Wheels. Journal of Terramech, 1967, 4 (1): 59-80
    109 J. Y. Wong, A. R. Reece. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stresses, Part I: Performance of Driven Rigid Wheels. Journal of Terramech., 1967, 4 (1): 81~98
    110 J. Y. Wong, A. R. Reece. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stresses, PartⅡ: Performance of Towed Rigid Wheels. Journal of Terramech., 1967, 4 (2): 7~25
    111 H. Shibly, K. Iagnemma. An equivalent soil mechanics formulation for rigid wheels in deformable terrain with application to planetary exploration rovers. Journal of Terramechanics.2005,(42):1~13
    112 K. Iagnemma, H. Shibly. On-Line Terrain Parameter Estimation for Planetary Rovers. Proc. of IEEE International Conference on Robotics and Automation. 2002, (30):3142~3147.
    113 K. Iagnemma, C. Brooks. Visual Tactile and Vibration-Based Terrain Analysisfor Planetary Rovers. Proceedings of the 2004 IEEE Aerospace Conference. 2004,(2):841~848
    114 K. Iagnemma,H. Shibly. Planning and Control Algorithms for Enhanced Rough-Terrain Rover Mobility. Proc. of the 6th International Symposium on Artificial Intelligence and Robotics and Automation in Space. 2001,(6):18~22
    115 K. Yoshida, H. Asai, et al. Motion Dynamics of Exploration Rovers on Natural Terrain: Experiments and Simulation. Proceedings of the 3rd International Conference on Field and Service Robotics, Helsinki, Finland, 2001: 281~286
    116 K. Yoshida, H. Hamano. Motion Dynamics and Control of a Planetary Rover With Slip-Based Traction Model. Proceedings of SPIE-The International Society for Optical Engineering. 2002, 4715: 275~286
    117 P. Arthur, S. Braga. Robot Navigation in Complex and Initially Unknown Environments. Proceedings of the 14th IFAC. 1999: 179~184
    118荣欣,张建斌,郭宏等.月球车润滑与密封技综述.润滑与密封. 2001, 3: 2~4
    119郑永春,欧阳自远,王世杰等.月壤的物理和机械性质.矿物岩石. 2004, 24 (4): 14~19
    120 S. P. Ramsey. Lubricant and Seal Technologies for the Next Generation of Lunar Roving Vehicles. 23rd International SAMPE Technical Conference. 1991, 10: 21~24
    121 D. B. Smith, J. R. Matijevic. System Architecture for A Planetary Rover. Proceedings of the NASA Conference on Space Tele-robotics. 1989, 1(1): 163~184
    122王巍,夏玉华,梁斌等.月球漫游车关键技术初探.机器人. 2001, 23(3): 280~282
    123刘暾,陕晋军.月球自动探测车设计中的几个问题.第二届月球探测技术研讨会论文集.北京, 2001, 1: 179~187
    124 D. Bickler. A New Family of JPL Planetary Surface Vehicles. Missions, Technologies & Design of Planetary Mobile Vehicles. France. 1992: 301~306
    125 R. J. Beard, B. K. Muirhead, M. D. Montemerlo, et al. Planetary Technology Development Requirements. Proceedings of the NASA Conference on Space, Telerobotics. 1989, 2(2): 251~264
    126 N. Yoshioka, Y. Nishio, Y. Wakabayashi. Integrated Test System for A Six-powered-wheel Lunar Rover, Proceedings of ICAR’95. 1995: 285~291
    127 K. Schilling. Control Aspects of Planetary Rovers. Control Engineering Practice. 1997, 5(6): 823~825
    128 P. S. Schenkerl. FIDO Rover and Long-Range Autonomous Mars Science. InIntelligent Robots and Computer Vision XVⅢ,SPIE Proceedings 3837, Boston. 1999,11(2): 263~270
    129 K. Iagnemma, A. Rzepniewski, S. Dubowsky, Control of Robotic Vehicles with Actively Articulated Suspensions in Rough Terrain. Autonomous Robots, 2003, (14): 5~16
    130侯军芳,白鸿柏,李冬伟等.高低温环境金属橡胶减振器阻尼性能试验研究.航空材料学报, 2006, 26(6): 50~54
    131夏宇宏,姜洪源,阎辉等.直角滑环式组合型金属橡胶密封件的密封机理及应用研究,宇航学报, 2003, 4:
    132 H. Nakashima , H. Fujii, A. Oida, et al, Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM. Journal of Terramechanics, 2007, 44(2):153~162
    133 Jicheng Liu, Haibo Gao, Zongquan Deng. Effect of Straight Grousers Parameters on Motion Performance of Small Rigid Wheel on Loose Sand. Information Technology Journal. 2008, 7(8):1125~1132
    134付宜利,徐贺,王树国等.沙地环境移动机器人驱动轮的发展概况综述.机器人技术与应用. 2004, 4: 22~29
    135 P. Arthur, S. Braga. Robot Navigation in Complex and Initially Unknown Environments. Proceedings of the 14th IFAC, 1999: 179~184
    136 A. Krebs, T. Thueer, S. Michaud, et al. Performance Optimization of All-Terrain Robots: A 2D Quasi-Static Tool. In proc. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, 2006: 4266~4271
    137 S. Michaud, L. Richter, T. Thueer, A. Gibesch, et al. Rover Chassis Evaluation and Design Optimisation using the RCET. Proc. of 9th ESA ASTRA, European Space Agency. ESTEC, Noordwijk, The Netherlands, 2006: 245~252
    138 P. Schenker, T. Huntsberger, P. Pirjanian, et al. Planetary rover developments supporting Mars exploration, sample return, and future human-robotic colonization. Auton. Robots. 2003,14: 103~126
    139郑建荣. ADAMS—虚拟样机技术入门与提高.机械工业出版社. 2002: 1~5
    140 J. Aizawa, N. Yoshioka. Designing of Lunar Rovers for High Work Performance. Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Nether lands, 1999: 63~68
    141洪炳熔,孟伟,韩学东等.月球探测机器人的系统建模.哈尔滨工业大学学报(中文版). 2003, 35(9): 1050~1052
    142 P. F. Muir, C. P. Neumann. Kinematics Modeling of Wheeled Mobile Robots.Journal of Robotic Systems. 1987, 4(2): 281~340
    143 J. C. Alexander, J. H. Maddocks. On the Kinematic of Wheeled Mobile Robots, International Journal Robotics Research. 1989, 8(5): 15~26
    144 B. d’Andrea-Novel, G. Bastin, G. Campion. Modeling and Control of Non-holonomic Wheeled Mobile Robots. Proceedings of the 1991 IEEE International Conference on Robotics & Automation. 1991: 1130~1135
    145 Y. Kanayama. Two-dimensional Wheeled Vehicle kinematics. Proceedings of the 1994 IEEE International Conference on Robotics & Automation. 1994: 3079~3084
    146 J. Borenstein. Control and Kinematics Design of Multi-degree of Freedom Mobile Robots with Compliant Linkage. IEEE Transactions. Robotics and Automation. 1995: 21~35
    147 W. Kim, D. H. Kim, B. J. Yi, et al. Kinematic Modeling of Mobile Robots by Transfer Method of Augumented Generalized Coordinates. IEEE International Conference on Robotics and Automation. Seoul, Korea. 2001: 3516~3522
    148 D. H. Shin, K. H. Park. Velocity Kinematic Modeling for Wheeled Mobile Robots. Proceedings of the 2001 IEEE International Conference on Robotics & Automation. Seoul, Korea. 2001: 3085~3091
    149 J. Balaram. Kinematic Observers for Articulated Rovers. Proceedings of the 2000 IEEE International Conference on Robotics and Automation. San Fransiso. CA, 2000: 2597~2604
    150 K. Iagnemma, A. Rzepnieski, S. Dubowsky, et al. Mobile Robot Kinematic Reconfigurability for Rough-Terrain. Proceedings of the SPIE Symposium on Sensor Fusion and Decentralized Control in Robotic Systems III. 2000: 4196
    151居鹤华.基于自主行为智能体的月球车运动规划与控制.哈尔滨工业大学工学博士学位论文. 2003:20~21
    152王佐伟,梁斌,吴宏鑫.六轮月球探测车运动学建模与分析.宇航学报. 2003, 9: 456~461
    153 M. Tarokh, G. McDermott, S. Hayati, et al. Kinematic Modeling of A High Mobility Mars Rover. Proceedings of the 1999 IEEE International Conference on Robotics &Automation, Detroit. Michigan, 1999: 992~998
    154 M. Tarohb, G. McDermott, J. Hung. Kinematics and Control of Rocky 7 Mars Rover. Technical Report, Department of Mathematical and Computer Sciences. San Diego State University, San Diego, CA, 1998, 8: 21~98
    155王锋.月球车连杆式差速平衡机构的设计与分析.哈尔滨工业大学工学硕士学位论文. 2007:22~31
    156蔡自兴.机器人学.清华大学出版社. 2000: 37~39
    157 S. Lacroix, A. Mallet, R. Chatila. Rover self localization in planetary-like environment [A]. Proceeding of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space.1999:433-440
    158蔡则苏,洪炳熔,刘玉强等.基于虚拟样机的月球探测机器人运动学建模.哈尔滨工业大学学报. 2004, 36(2): 1-6
    159 L. Richter, H. Hamacher. Investigating the locomotion performance of planetary microrovers with small wheel diameters and small wheel loads. Proceedings of the 13th international conference ISTVS, Munich, Germany, 719~726, 1999
    160 B. A. Ghosal. Modeling of Slip for Wheeled Mobile Robots. IEEE Transactions on Robotics & Automation. 1995, 11(1): 126~132
    161 R. Rajagopalan. A Generic Kinematic Formulation for Wheeled Mobile Robots. Journal of Robotics System, 1997, 14(2): 77~91
    162王佐伟,梁斌,吴宏鑫.六轮月球探测车运动学建模与分析.宇航学报. 2003, 24(5):456~461
    163刘延柱.多刚体系统动力学.高等教育出版社. 1996: 32~38
    164 K. Thanjavur, R. Rajagopalan. Ease of Dynamic Modeling of Wheeled Mobile Robots (WMRs) using Kane’s Approach. Proceedings of the 1997 IEEE International Conference on Robotics &Automation, Albuquerque, New Mexico, 1997: 2926~2931
    165 W. Nukulwuthiopas, T. Maneewan, S. Laowattana. Dynamic Modeling of a One-Wheel Robot by using Kane’s Approach. Proceedings of the 2002 IEEE International Conference on Industrial technology, Bangkok,Thailand, 2002: 156~161
    166杨凯,黄亚楼,徐国华.带拖车的轮式移动机器人系统的建模与仿真研究.系统仿真学报. 2000(1): 43~46
    167 M. H. Huang, E. David. Dynamic Simulation of Actively-Coordinated Wheeled Vehicle System on Uneven Terrain. Proceedings of the 1999 IEEE International Conference on Robotics & Automation. 1999: 202~211
    168何仁,李丽.重型牵引车平顺性的预测与分析.机械设计. 2008, 25(3): 56~59
    169王世明,贾鸿社.车辆悬架系统物理模型的建立和平顺性试验.拖拉机与农用运输车. 2005,4(2):13~15, 20
    170 R. Lindemann. Dynamic testing and simulation of the Mars exploration rover. In Proc. 2005 ASME Int. Design Eng. Tech. Conf. Comput. Inform. Eng. Conf., Long Beach, CA, 2005:24~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700