月球车建模分析及滑转量估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月球探测车的研制是一项复杂的系统工程,它涉及到众多领域的技术。本文针对新研制的八轮扭杆摇杆转向架式月球车进行多方面基础性研究,为其自主运动和控制提供理论保障和坚实基础。
     本文首先将对月球车进行运动学分析,分别对轮地接触、整车结构和滑移进行建模,得到适用于崎岖地形的月球车正运动学模型。针对驱动和转向情况对逆运动学模型进行求解,对驱动角速率和转向角速率的计算公式进行推导,并针对不同的地形情况,在Matlab中用优化的方法进行仿真和分析。
     由于滑转量是月球车在松软的月壤上行驶时所必须考虑的,是运动学滑移模型中的关键参数,然后围绕滑转量的估计,本文将对月球车进行动力学分析——从单个轮的轮地接触机理分析入手,推导出整车的动力学模型,并经过分析和简化推导出以滑转率为状态变量的控制模型。
     最后,针对以滑转率为状态变量的控制模型,采用滑模变结构理论,将根据指数趋近率方法设计控制器。为减小抖振,需对参数选取进行分析。并基于Matlab/Simulink进行仿真和分析。控制滑转率达到期望值,就可用滑转率的定义式对滑转量进行求解。滑转量的估计完善了月球车的运动学模型,将为其运动控制提供重要参数。
The development of lunar rover is a complex systemic project involved many techniques of different areas. This thesis provides some primary development on the platform of eight-wheel rocker-bogie lunar rover with torsion bar. And these are the solid foundation for autonomous motion and control.
     Firstly,kinematics analysis of the lunar rover is presented in this thesis. Kinematics modeling which is suitable for uneven terrain is combined by tire-soil interaction modeling, rover structure modeling and slip modeling. Drive angle velocity and turning angle velocity can be calculated by inverse kinematics modeling for drive and turning problems. Optimization is being used in simulation with different types of terrains to testify the kinematics modeling in Matlab.
     Secondly, slip is the key factor in slip modeling. It can not be neglect in the motion of lunar rover on fine grained soil. Dynamics analysis is needed to solve this problem. Dynamics modeling is deduced from tire-soil interaction mechanics. Control modeling with slip ratio as state variable is simplified from dynamics modeling after its analysis.
     Finally, the exponent approaching sliding mode control is adopted in the controller of the slip control modeling. In order to reduce the chattering, the choice of the coefficient is discussed. Analysis is conducted after the simulation in Matlab. As the slip ratio could be controlled at the expected area, the slip can be calculated by the definition of the slip ratio. So the slip modeling is perfect and it provides important motion information.
引文
1.欧阳自远,李春来,邹永廖,李建忠.月球探测的进展与我国的月球探测.中国科学基金. 2003, (4):193~197
    2.欧阳自远.月球探测的进展和我国月球探测的科学目标.贵州工业大学学报. 2003, 32(6):1~7
    3.邹永廖,欧阳自远,李春来.月球探测与研究进展.空间科学学报. 2000, 20(10):93~103
    4. Sibing He. China’s Moon Project Change: Stratagem and Prospects. Adv. Space Res. 2003, 31(11):2353~2358
    5. B. H. Foing. The Moon as a Platform For Astronomy and Space Science. Adv. Space Res. 1996, 18(11):17~23
    6. Saeed B Niku.机器人导论.电子工业出版社2004.1:16~98
    7. http://nssdc.gsfc.nasa.gov/planetary/lunar/ apollo_lrv.html
    8. http://pages.preferred.com/~tedstryk/lunokhod2.html
    9. http://www.aerospaceguide.net/spacecraft/lunakhod.html.
    10. K. Yoshida; The SpaceDyn: a MATLAB Toolbox for Space and Mobile Robots. J. of Robotics and Mechatronics, 2000, 12(4):411~416
    11. http://mars.jpl.nasa.gov/MPF/rovercom/rovintro.html.
    12. Bickler, D., A New Family of JPL Planetary Surface Vehicles, Missions, Technologies, and Design of Planetary Mobile Vehicles, 1992, 11(5): 301~306
    13. Nildeep Patel, Alex Ellery. Performance Evaluation of Autonomous Mars Mini-Rovers.1989.2:20~109
    14. James J. Zakrajsek, David B. McKissock, Jeffrey M. Woytach, el. Exploration Rover Concepts and Development Challenges. NASA/TM,2005, 2(3):213~555
    15. Siegwart R., Estier T., Crausaz Y., Merminod B., Lauria M., Piguet R..Innovative Concept for Wheeled Locomotion in Rough Terrain. In Proceedings of the Sixth International Conference on Intelligent Autonomous Systems, Venice, Italy, 2000: 75~79
    16. Siegwart R., Lamon P., Estier T..Lauria M., Piguet R.. Innovative design for wheeled locomotion in rough terrain, Journal of Robotics and Autonomous Systems. Elsevier.2002,40(2-3):151~162
    17.刘方湖,马培荪,曹志奎,五轮铰接式月球机人的运动学建模.机器人.2001,23(6):481~492
    18.王荣本,申振荣,陈百超,张志,金立.正反平行四边形悬架在月球车上的应用.中国宇航学会深空探测技术专业委员会第二届学术会议论文集.2005:389~393
    19.高海波,邓宗全,胡明,王少纯.行星轮式月球车移动系统关键技术.机械工程学报.2005, 12:156~161
    20.胡明,邓宗全,高海波,王少纯.摇臂-转向架式月球探测车越障通过性分析.上海交通大学学报. 2005.6(6):19~28
    21.邱雪松,邓宗全,胡明.月球探测车可展开式悬架的设计分析.中国宇航学会深空探测技术专业委员会,第二届学术会议论文集. 2005.11: 436~467
    22.陶建国,邓宗全,高海波,胡明.六圆柱-圆锥轮式月球车的设计.哈尔滨工业大学学报,2006, 38(1):57~62
    23.陶建国,邓宗全,方海涛,高海波.一种适于崎岖地形的轮式自动漫游车的研制Proceedings of the WCICA2006, 2006:112~116
    24.邱雪松,邓宗全,胡明.可展开式月球车车轮构型设计及构态变换分析,机械工程学报.2006,5(增刊):47~51
    25.毕贞法,邓宗全.两轮并列式月球车的性能及其稳定性分析.哈尔滨工程大学学报.2006,4(8):67~70
    26. P.F. Muir and C.P. Neumann, Kinematic modeling of wheeled mobile robots J. Robotic Systems, 1987, 4(2):282~340
    27. G. Campion, G. Bastin and diAndrea-Novel, Structural properties and classification of kinematic and dynamic models for wheel mobile robots, IEEE Trans. Robotics and Automation, 1996.2 12(1):125~129
    28. J. Borenstein, Control and kinematics design of multi-degree of freedom robots with compliant linkage IEEE Tarns. Robotics and Automation, 1995, 4(6):21~35
    29. R. Rajagopalan, A generic kinematic formulation for wheeled mobile robots, J. Robotics Systems, 1997, 14(2):77~91
    30. R. L. Williams, B. E. Carter, P. Gallina and G. Rosati, Dynamic model with slip for wheeled omnidirectional robots”IEEE Trans. Robotics and Automation, 2002, 18(3):285~293
    31. B.J. Choi and S.V. Sreenivasan, Gross motion characteristics of Articulatedmobile robots with pure rolling capability on smooth uneven surfaces, IEEE Trans. Robotics and Automation, 1999, 15(2):340~343
    32. K. Iagnemma and S. Dubowski, Vehicle-ground contact angle estimation with application to mobile robot traction, Proc. 7 Int. Conf. on Advances on Robot Kinematics, Ark 2000:137~146
    33. J. Balaram, Kinematic observers for articulated rovers, Proc. IEEE Int. Conference on Robotics and Automation, San Francisco, CA, 2000:2597~2604
    34. M uir P F &Neuman C P. Kinematicmodeling of wheeled mobile robots. J. of Robotic Syst. , 1987, 4(2):281~340
    35.王佐伟,梁斌,吴宏鑫.六轮月球车运动学建模与分析.宇航学报. 2003.9, 24(5):59~63
    36. Kazuya Yoshida,Hiroshi Hamano. Motion Dynamics and Control of a Planetary Rover With Slip-Based Traction Model. IEEE Transactions on SystemsScience and Cybernetics, 1968, 4:100~107
    37.居鹤华,崔平远.具有滑移的摇臂式月球车建模与控制.机械工程学报. 2005.9, 41(9):98~103.
    38.洪嘉振.计算多体系统动力学.高等教育出版社. 2003:9~11
    39. http://www.functionbaychina.com.cn/coretech/index.html
    40.张福学.机器人学.电子工业出版社. 1996.9:58~99
    41.蔡自兴.机器人学.清华出版社. 2003.12:21~223
    42.张铁.机器人学.华南理工大学出版社. 2005.1:13~58
    43. Robin R.Murphy.人工智能机器人学导论.电子工业出版社. 2004.10:32~77
    44.白井良明.机器人工程.科学出版社. 2001.2:12~34
    45.苏宏业,褚健,鲁仁全,嵇小辅.不确定时滞系统的鲁棒控制理论.科学出版社. 2007.7:21~77
    46.刘金琨.滑模变结构控制MATLAB仿真.清华大学出版社. 2005.10:56~143
    47.张昌凡.滑模变结构的智能控制理论及应用研究.科学出版社. 2005.3.21~47
    48. SU W C, DRA KUNOV S V, OZGUNER U, et al. Sliding mode with chattering convergence in reduction in sampled data systems. Proc of the 32nd IEEE Conf on Decision and Control. San Antonio, USA: IEEE Press, 1993, 12:2452~2457
    49. KACHROO P, TOMIZUKA M. Chattering reduction and errorthe sliding-mode control of a class of nonlinear systems. IEEE Trans on Automatic Control, 1996, 41(7):1063~1068
    50. KANG B P, JU J L. Sliding mode controller manipulators using virtual plant/controller. Mechatronics,1997, 7(3):277~286
    51.郑锋,程勉,高为炳,一类时滞系统的变结构控制.自动化学报, 1995, 21(2):221~225
    52.庄开宇,张克勤,江大学学报, 2002, 36(5): 482~485
    53.肖雁鸿,葛召炎,周靖林,全滑模变结构控制系统.电机与控制学报, 2002, 6(3):233~236
    54.张天平,冯纯伯,基于模糊逻辑的连续滑模控制.控制与决策, 1995, 10(6):503~507

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700