考虑界面相的复合材料宏—细观渐进损伤解析模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强树脂基复合材料的刚度、强度等宏观力学性能均是由其细观组分结构与性能决定的,为了充分发挥复合材料的可设计性优势,从细观材料组分层面来揭示宏观力学性能的本质是十分必要的。在此需求下,宏-细观协同分析力学模型的研究成为了热点。人们不断地深入了解复合材料细观结构与性能的同时,那些能够和宏观力学分析方法很好相结合的细观力学模型也在迅速地发展,其中通用单胞方法(GMC)就是颇具代表性,有限容积直接平均细观力学方法(FVDAM)则是目前处于发展阶段并且颇具潜力的细观力学方法。这两种方法都是半解析的形式,所以比较容易同现有的商业有限元软件相结合来构建宏-细观分析模型。
     本文分别以GMC和FVDAM这两种细观力学方法为基础,面向复合材料的不同层面提出了具有普适性的宏-细观渐进损伤解析模型。本文模型突破了传统宏-细观模型计算效率的瓶颈,并且可以更加细致地考虑细观组分的结构、缺陷及损伤。利用本文提出的模型,研究了单向板的材料常数、单向板横向拉伸/压缩性能、层合板强度和层合板钉连结构的挤压性能,从细观纤维、基体和界面相组分的层面揭示了细观组分性能与结构对宏观力学性能的影响规律。本文主要工作内容如下:
     (1)基于GMC和FVDAM细观力学方法,考虑不同的纤维分布,构建了包含细观组分(纤维、界面和基体)的代表性体积单元解析模型。研究了纤维分布和界面相性能对宏观弹性常数预报的影响,通过与实验数据对比,验证了本文模型的合理性与高精度;从细观组分应力和损伤的角度(例如基体、界面相的应力状态)揭示了单向板横向拉伸/压缩的破坏机理及损伤模式,最终指出GMC和FVDAM这两种细观力学方法在预报单向板横向拉伸/压缩的失效行为方面的优势与不足。
     (2)将本文提出解析模型与经典层合板理论相结合,进一步提出了宏-细观层合板强度预报解析模型,研究了不同基体组分失效准则(Max-strain、Max-stress、Tsai-Hill和Tsai-Wu)对双轴载荷下层合板(含单向板)强度谱预报的影响。应用本文的预报模型分析了“World-Wide Failure Exercise (WWFE)”中层合板强度预报的全部算例,包括四种材料体系、五种铺层类型、指定载荷下应力-应变曲线等方面。通过与实验数据对比发现本文的强度预报模型有着较广的适用范围和较高的预测精度。
     (3)将本文的宏-细观解析模型通过Abaqus用户自定义子程序USDFLD与有限元相结合,构建了基于细观组分失效判断的宏-细观强度预报模型。应用该模型对层合板连接结构的单钉双剪挤压破坏行为进行了研究,预报了三种典型的破坏模式(净拉伸、剪出和挤压破坏),同实验现象吻合很好,并分析了损伤形成的原因。然后研究了连接件的几何尺寸对其极限挤压强度的影响,并同实验对比验证了该模型的预测精度较高。
The stiffness, strength and macroscopic mechanical response of compositematerials are determined by the microscopic components and structures of them. It isnecessary to analyze the macroscopic mechanical response based on the microscopiccomponents and structures of composite materials in order to take full advantage ofthe designability for composte materials. The macro-micro multiscale model isbecoming a hot spot of research interest under this demand. These micromechanicalmethods are developed with high speed with in-depth understandings of mesoscopicstructures and performances of the composite materials. The Generalized Method ofCells (GMC) is a representative homogenized method and the Finite Volume DirectAveraging Miromechanics (FVDAM) is an emerging and promising micromechanicsmethod which is currently under-way to be developed. It is very easy to develop amacro/micro multiscale modle coubled with Finite Element Methods (FEM) due toboth of them are semi-analytical micromechanics methods.
     The general macro-micro progressive damage analytic models based on GMCand FVDAM are developed according to different structure levels in this paper. Themodels, in which more details such as structure, defects and damage can beconsidered, broke through the bottleneck of efficiency in traditional macro-micromodel. The material constants of unidirectional laminate, behavior of unidirectionallaminate under tensile/compressive loading, failure envelopes of composite laminatesand bearing strength of bolted laminates are studied by the analytic model presentedin this paper. The influence of micro-mechanical properties and structure ofcomponents such as fiber, matrix and interphase on the macro-mechanical propertiesare revealed. The main body of this paper is as follows,
     1. Four types of Representative Volume Element, including fiber, matrix andinterface, are constructed according to different fiber arrays, these models are used topredict the effective elastic properties of unidirectional composite laminate, then theeffects of micro-structure and properties of interface on the effective elasticproperties pridition of unidirectional composite laminate are studied. The accuracy ofthese models is anylized and verified by comparing the simulative value withexperimental data. Furthermore, the tensile/compressive failure behaviors arepredicted, and the predictive strengths with different RVEs are compared. Thedamage mechanism and failure modes are illustrated from micro-component levelsuch as stress of matrix and interface. Finally, the advantage and disadvantage inGMC model and FVDAM model are evaluated.
     2. Macro/micro multi-scale analysis models based on the GMC and FVDAMseparately coupled with classical lamination theory were conducted to predict biaxialfailure envelopes of composite laminates, applying failure criteria such as Max-strain,Max-stress, Tsai-Hill and Tsai-Wu failure criteria at the constituent level. And thenthese multi-scale models were used to analyze the all of the examples in the WorldWide Failure Exercise (WWFE), including foure material systems, five layups andthe stress-strain curves under applied loadings. It is focused to compare the accuracyand applicability of GMC and FVDAM model separately and finally thehigh-performaces of these models are indicated.
     3. A specimen-level multiscale methodology based on GMC which isimplemented in ABAQUS through the user subroutine USDFLD has been developedto predict the progressive damage of composite bolted joint laminates. The three maintypes of failure modes (net-tension, shear-out and bearing failure) are simulated, andthe accuracy was verified through comparing the simulative results with experimentalfailure modes. Finally, the effect of geometry of specimen on the limit strength ofcomposite bolted joint laminates was studied, and the accuracy was demonstrated bybeing compared with experimental data.
引文
1.春胜利,黄榴红,李勇峰.碳纤维及其在复合材料方面的应用.玻璃钢,2005,2:5~14
    2.杜善义.先进复合材料与航空航天.复合材料学报,2007,24(1):1~11
    3. J.W. Kim, D.G. Lee. Measurement of Fiber Orientation Angle in FRP byIntensity Method. Journal of Materials Processing Technology.2008,201(1-3):755~760
    4. Daniel Trias, Josep Coata, Bodo Fiedler, Thomas Hobbiebtunken, Jorge.E.Hurtado. A Two-Scale Method for Matrix Cracking Probablity inFiber-reinforced Composites Based on a Statistical Representative VolumeElement. Composites Science and Technology,2006,66:1766~1777
    5. P.K. Gotsisa, C.C. Chamisa, L. Minnetyanb. Prediction of composite laminatefracture: micromechanics and progressive fracture,Composites Science andTechnology,Volume58, Issue7, July1998, Pages1137–1149
    6. W. Voigt. über die Beziehung Zwischen den Beiden Elastizit tskonstantenIsotroper K rper. Wiedemanns Annalen.1889,38:573~587
    7. A. Reuss. Berechnung der Fliessgrenze von Mischkristallen auf Grund derPlastizitatsbedingung fur Einkristalle. Zeitschrift fur Angewandte Mathematikund Mechanik.1929,9:49~58
    8. R. Hill. The Elastic Behavior of a Crystalline Aggregate. Proceedings of thePhysical Society Section A.1952,65(5):349~354
    9. E. H. Mansfield. On the Elastic Moduli of Unidirectional Fibre ReinforcedComposites. Technical Report, Reports and Memoranda No.3782.1974
    10. Z. Hashin, S. Shtrikman. A Variational Approach to the Theory of the ElasticBehaviour of Multiphase Materials. Journal of the Mechanics and Physics ofSolids.1963,11(2):127~140
    11. C. C. Chaims. Failure Criteria for Lamentary Composites. Testing and Design,ASTM STP460.1969:336~460
    12. Z. Hashin, B. W. Rosen. The Elastic Moduli of Fiber-Reinforced Materials.Journal of Applied Mechanics.1964,31:223~232
    13. R. Hill. A Self-consistent Mechanics of Composite Materials. Journal of theMechanics and Physics of Solids.1965,13(4):213~222
    14. R. M. Christensen, K. H. Lo. Solution for Effeetive Shear Properties ofThree-phases Sphere and Cylinder Models. Journal of the Mechanics andPhyics of Solids.1979,27:315~330
    15. J. D. Eshelby. The Determination of the Elastic Field of an Ellipsoidal Inclusionand Related Problems. Proceedings of the Royal Society London Series A.1957,241(1226):367~396
    16. J. D. Eshelby. The Elastic Field Outside an Ellipsoidal Inclusion. Proceedin gsof the Royal Society.1959,252(1271):561~569
    17. T. Mori, K. Tanaka. Average Stress in Matrix and Average Energy of Materialswith Misfitting Inclusion. Acta Metallurgica.1973,21(5):571~574
    18. H. A. Luo, G. J. Weng. On Eshelby's Tensor in a Three-Phase CylindricallyConcentric Solid and the Elastic Moduli of Fiber Reinforced Composites.Mechanics of Materials.1989,8(2-3):77~88
    19. Y. Benveniste, G. J. Dvorak, T. Chen. Stress Fields in Composites with CoatedInclusions. Mechanics of Materials.1989,7(4):305~317
    20. Y. Benveniste, G. J. Dvorak, T. Chen. On Effective Properties of Compositeswith Coated Cylindrically Orthotropic Fibers. Mechanics of Materials.1991,12(3-4):289~297
    21. A. Dasgupta, S. M. Bhandarkar. A Generalized Self-Consistent Mori-TanakaScheme for Fiber-Composites with Multiple Interphases. Mechanics ofMaterials.1992,14(1):67~82
    22.梁军,杜善义.一种含夹杂和微裂纹分布复合材料的弹性常数预报方法.复合材料学报.1997,14:102~108
    23. J. Cheng, E. H. Jordan, K. P. Walker. A Simple Accurate Method for CalculatingLocal Stresses around Individual Fibers in Periodic Composites. Composites:Part B.1999,30:453~463
    24. W. L. Ko. Finite Element Microscopic Stress Analysis of Cracked CompositeSystems. Journal of Composite Materials.1978,12:97~115
    25. J. R. Brockenbrough, S. Suresh, H. A. Wienecke. Deformation of MMCs withContinuous Fibers: Geometrical Effects of Fiber Distribution and Shape. AetaMetal1Materials.1991,39:735~752
    26. H. C. Brown, H. L. Lee, C. C. Chamis. Fiber Shape Effects on metal matrixcomposite behavior. NASA TM-106067.1992
    27. C. T. Sun, R. S. Vaidya. Prediction of Composite Properties from aRepresentative Volume Element. Composites Science and Technology.Composites Science and Technology.1996,56:171~179
    28. Z. H. Xia, Y. F. Zhang, F. Ellyin. A Unified Periodical Boundary Condition forRepresentative Volume Element of Composites and Applications. InternationalJournal of Solids and Structures.2003,40(8):1907~1921
    29. Z. H. Xia, C. W. Zhou, Q. L. Yong, X. W. Wang. On Selection of Repeated UnitCell Model and Application of Unified Periodic Boundary Condition inMicro-Mechanical Analysis of Composites. International Journal of Solids andStructures.2006,43(2):266~278
    30. Y. F. Zhang, Z. H. Xia, F. Ellyin. Nonlinear Viscoelastic MicromechanicalAnalysis of Fiber-Reinforced Polymer Laminates with Damage Evolution.International Journal of Solids and Structures.2005,42(2):591~604
    31. M. M. Aghdam, D. J. Smith, M. J. Pavier. Finite Element MicromechanicalModeling of Yield and Collapse Behaviour of Metal Matrix Composites.Journal of the Mechanics and Physics of Solids.2000,48(3):499~528
    32.吕毅,吕国志,吕胜利.细观力学方法预测单向复合材料的宏观弹性模量.西北工业大学学报.2006,24(6):787~790
    33. G. J. Dvorak, Y. A. Bahei-El-Din. Elastic-plastic Behavior of FibrousComposites. Journal of the Mechanics and Physics of Solids.1979,27:51~72
    34. J. L. Teply, G. J. Dvorak. Bounds on Overall Instantaneous Properties ofElastic-plastic Composites. Journal of the Mechanics and Physics of Solids.1988,36:29~28
    35. J. F. Wu, M. S. Shephard, G. J. Dvorak, Y. A. Bahei-El-Din. A Material Modelfor the Finite Element Analysis of Metal Matrix Composites. CompositesScience and Technology.1989,35:347~366
    36. J. J. Laekney, P. L. N. Murthy, P. K. Gotsis. High Temperature CompositeAnalyzer (HITCAN) theoretical manual, Version1.0. NASA-TM-106001,1993
    37. P. L. N. Murthy, C. C. Chamis. Metal Matrix Composite Analyzer (METCAN):Theoretical Manual. NASA-TM-106025,1993
    38. Seung-Jo Kim, Eui-Sup Shin. A Thermoviscoplastic Theory for CompositeMaterials by using a Matrix-Partitioned Unmixing-Mixing scheme. Journal ofComposite Materials.1996,30(15):1647~1669
    39. M. R. Garnich, A. C. Hansen. A Multicontinuum Theory for Thermal-elasticFinite Element Analysis of Composite Materials. Journal of CompositeMaterials.1997,31(1):71~86
    40. S. Ghosh. A Material based Finite Element Analysis of heterogeneous Mediainvolving Dirichlet tessellations. Computer Methods in Mechanics andEngineering.1993,104:211~247
    41. S. Ghosh, Z. Nowak,K. Lee. Quantative Characterization and Modeling ofComposite Micromechanics by Voronoi Cells. Acta Materials.1997,45(6):2215~2234
    42. K. Lee, S. Moorthy, S. Ghosh. Multiple Scale Computational Model forDamage in Composite Materials. Computer Methods in Mechanics andEngineering,1999,172:175~201
    43.黄争鸣.复合材料细观力学引论.科学出版社.2003:23~28
    44. M. Paley, J. Aboudi. Micromechanical Analysis of Composites by theGeneralized Cells Model. Mechanics of Materials.1992,14(2):127~139
    45. M J Pindera, B A Bednarcyk. An Effcient Implementation of the GeneralizedMethod of Cells for Unidirectional, Multi-Phased Composites with ComplexMicrostructures. Composites Part B.1999,30:87~105
    46. J Aboudi, M J Pindera, S M Arnold. Higher-order theory for functionally gradedmaterials. Composites: Part B,1999,30:777~832
    47. J Aboudi, M J Pindera, S M Arnold. Linear thermoelastic higher-order theoryfor periodic multiphase materials. J. Appl. Mech.2001,68(5):697~707
    48. J Aboudi, M J Pindera, S M Arnold. High-Fidelity Generalized Method of Cellsfor Inelastic Periodic Multiphase Materials. NASA TM-2002-211469,2002
    49. J Aboudi, M J Pindera, S M Arnold. Higher-order theory for periodicmultiphase materials with inelastic phases. Int. J. Plasticity.2003,19(6):805~847
    50. Y Bansal, M J Pindera. A second look at the higher-order theory for periodicmultiphase materials. J. Appl. Mech.2005,72(2):177~195
    51. Marcio A.A. Cavalcante, Severino P.C. Marques, Marek-Jerzy Pindera.Parametric Formulation of the Finite-Volume Theory for Functionally GradedMaterials—Part I: Analysis. Journal of Applied Mechanics,2007,74:935-945
    52. Marcio A.A. Cavalcante, Severino P.C. Marques, Marek-Jerzy Pindera.Parametric Formulation of the Finite-Volume Theory for Functionally GradedMaterials—Part II: Numerical Results. Journal of Applied Mechanics,2007,74:946-957
    53. Marcio A.A. Cavalcante, Severino P.C. Marques, Marek-Jerzy Pindera.Computational aspects of the parametric finite-volume theory for functionallygraded materials.Computational Materials Science,2008,44:422-438
    54. Mahendra Gattu, Hamed Khatam, Anthony S. Drago, Marek-Jerzy Pindera.Parametric Finite-Volume Micromechanics of UniaxialContinuously-Reinforced Periodic Materials With Elastic Phases. Journal ofEngineering Materials and Technology,2008,130(031015)
    55.戴兰宏.纤维增强金属基复合材料(FRMMCs)剪切破坏机理及强度的概念设计.中国科学院力学研究所.北京.1996
    56. C. F. Jenkins. Report on Materials of Construction Used in Aircraft and Ai rcraftEngines. Great Britain Aeronautical Reaearch Committee.1920
    57. R. Hill. A Theory of the Yielding and Plastic Flow of Anisotropic Metals.Proceedings of the Royal Society of London. Series A.1948,193(1033):281~297
    58. S. W. Tsai. Strength Characteristics of Composite Materials. Technical Report,NASA CR-224.1965
    59. O. Hoffman. The Brittle Strength of Orthotropic Materials. Journal ofComposite Materials.1967,1(2):200~206
    60. S. W. Tsai, E. M. Wu. A General Theory of Strength for Anisotropic Materials.Journal of Composite Materials.1971,5(1):58~80
    61. Z. Hashin. Failure Criteria for Unidirectional Composites. Journal of AppliedMechanics.1980,47(2):329~334
    62. Z. Hashin, A. Rotem. A Fatigue Failure Criterion for Fiber Reinforced Materials.Journal of Composite Materials.1973,7(4):448~464
    63. F. K. Chang, K. Y. Chang. A Progressive Damage Model for LaminatedComposites Containing Stress Concentrations. Journal of Composite Materials.1987,21(9):834~855
    64. F. K. Chang, L. B. Lessard. Damage Tolerance of Laminated CompositesContaining an Open Hole and Subject to Compressive Loadings: part I-Analysis.Journal of Composite Materials.1991,25(1):2~43
    65. A. Puck, H. Schurmann. Failure Analysis of FRP Laminates by Means ofPhysically Based Phenomenological Models. Composites Science andTechnology.1998,58(7):1045~1067
    66. E. C. Edge. Stress-Based Grant-Sanders Method for Predicting Failure ofComposite Laminates. Composites Science and Technology.1998,58(7):1033~1041
    67. S. Kyriakides, R. Arseculeratne, E. J. Perry, K. M. Liechti. On The CompressiveFailure of Fiber Reinforced Composites. International Journal of Solids andStructures.1995,32(6):689~738
    68. Hinton M J, Soden P D. Predicting failure in composite laminates: backgroundto the exercise[J]. Composites Science and Technology,1998,58(7):1001–1010.
    69. Soden P D, Hinton M J, Kaddour A S. Lamina properties, lay-up configurationand loading conditions for a range of fibre reinforced composite laminates[J].Composites Science and Technology,1998,58(7):1011–1022.
    70. Soden P D, Hinton M J, Kaddour A S. A comparison of the predictivecapabilities of current failure theoris for composite laminates[J]. CompositesScience and Technology,1998,58:1225–1254.
    71. Soden P D, Hinton M J, Kaddour A S. Biaxial test results for strength anddeformation of a range of E-glass and carbon fibre reinforced compositelaminates: failure exercise benchmark data[J]. Composites Science andTechnology,2002,62:1489–1514.
    72. Kaddour A S, Hinton M J, Soden P D. A comparison of the predictivecapabilities of current failure theories for composite laminates: additionalcontributions[J]. Composites Science and Technology,2004,64:449–476
    73.黄争鸣,张华山.纤维增强复合材料强度理论的研究现状与发展趋势—“破坏分析奥运会”评估综述[J].力学进展,2007,37(1):80–98.
    74. S. J. Mayes, A. C. Hansen. Multicontinuum Failure Analysis of CompositeStructural Laminates. Mechanics of Advanced Materials and Structures.2001,8(4):249~262
    75. S. J. Mayes, A. C. Hansen. Composite Laminate Failure Analysis UsingMulticontinuum Theory. Composites Science and Technology.2004,64(3-4):379~394
    76. C. C. Chamis, L. Minnetyan. Computational Simulation of Damage Progressionof Composite Thin Shells Subjected to Mechanical Loads. Theoretical andApplied Fracture Mechanics.1996,25(3):211~224
    77. Z. M. Huang. A Bridging Model Prediction of the Ultimate Strength ofComposite Laminates Subjected to Biaxial Loads. Composites Science andTechnology.2004,64(3-4):395~448
    78. Ekh J, Sch n J. Effect of secondary bending on strength prediction of composite,single shear lap joints. Composites Science and Technology,2005,65:953~965
    79. Padhi G S, McCarthy M A, McCarthy C T. BOLJAT-A tool for designingcomposite bolted joints using three-dimensional finite element analysis.Composites, Part A,2002,33(11):1573~1584
    80. Yang B, Pan E, Yuan F G. Three-dimensional stress analyses in compositelaminates with an elastically pinned hole. International Journal of Solids andStructures,2003,40:2017~2035
    81.华玉,郦正能,冠长河,等.复合材料单钉接头的损伤累积模拟.航空学报,1995,16:153~159
    82. Tserpes K I, Labeas G, Papanikos P, etal. Stength prediction of bolted joints ingraphite/epoxy composite laminates. Composites: Part B,2002,33:521~529
    83.中国航空研究院.复合材料连接手册.北京,航空工业出版社,1994:56~57,61~73
    84.王震鸣.复合材料力学和复合材料结构力学.北京,机械工业出版社,1991:221~225,238~239
    85.航空航天工业部科学技术研究院.复合材料设计手册.北京,航空工业出版社,1990:320~321
    86.中国航空研究院.复合材料结构设计手册.北京,航空工业出版社,2001:147~148
    87. P.K. Gotsisa, C.C. Chamisa, L. Minnetyanb. Prediction of composite laminatefracture: micromechanics and progressive fracture,Composites Science andTechnology,Volume58, Issue7, July1998, Pages1137–1149
    88. Quinn W J, Matthews F L. The effect of stacking sequence on the pin-bearingstrength in glass fibre reinforced plastic. Journal of Composite Materials,1977,11:139~145
    89. Ramkumar R L, Tossavainen E W. Strength and lifetime of bolted laminates. In:Potter J M, Ed.Fatigue in Mechanically Fastened Composite and Metallic Joints.ASTM STP927, Philadelphia,1986.251~273
    90. Cooper C, Turvey G J. Effects of joint geometry and bolt torque on thestructural performance of single bolt tension joints in pultruded GRP sheetmaterial. Composite Structures,1995,32:217~226
    91. Chutima S, Blackie A P. Effect of pitch distance, row spacing, end distanceand bolt diameter on multi-fastened composite joints. Composite Part A,1996,27A:105~110
    92. Hart-Smith L.J. Mechanically fastened joints for advanced compositesphenomelogical consideration and simple analysis. Douglass Paper6748,1978:1~32
    93. Kretsis G, Matthews F L. The strength of bolted joints in glass fibre/epoxylaminates. Composites,1985,16:92~105
    94. Yan Y, Wen W D, Chang F K, etal. Experimental study on clamping effects onthe tensile strength of composite plates with a bolt-filled hole. Compostie: PartA,1999,30:1215~1229
    95. Agarwal B L. Static strength prediction of bolted joint in composite materials.AIAA,1980,18:1371~1375
    96. Wilson D W, Pipes R B. Analysis of the sharout failure mode in compositelaminates. In:1st Internationl Conference on Composite Structures, London,UK,1981:34~49
    97. York J L, Wilson D W, Pipes R B. Analysis of the net-tension failure mode incomposite bolted joints. Journal of Reinforced Plastics and Composite,1982,1:141~152
    98. Whitney J M, Nuismer R J. Stress fracture criteria for laminated compositescontaining stress concentrations. Journal of Composite Materials,1974,8:253~265
    99. Conti P. Influence of geometic parameters on the stress distribution around apin-loaded hole in a composite laminate. Composites Science and Technology,1986,25:1~19
    100. Rowlands R E, Rahman M U, Wilkinson T L, etal. Single andmultiple-bolted joints in orthotropic materials. Composites,1982,13:273~279
    101. Eriksson L I. Contact stresses in bolted joints of composite laminates.Composite Structures,1986,6:57~75
    102. Naik R A, Crews J H. Stress analysis method for a clearance-fit bolt unde rbearing condition. AIAA,1985,24:1348~1353
    103. Chen W H, Lee S S, Yeh J T. Three-dimensional contact stress analysis of acomposie laminate with bolted joint. Composite Structures,1995,30:287~297
    104. Padhi G S, McCarthy M A, McCarthy C T. BOLJAT-A tool for designingcomposite bolted joints using three-dimensional finite element analysis.Composites, Part A,2002,33(11):1573~1584
    105. Dano M L, Gendron G, Picard A. Stress and failure analysis ofmechanically fastened joints in composite laminates. Composite Structures,2000,50:287~296
    106. Yang B, Pan E, Yuan F G. Three-dimensional stress analyses in compositelaminates with an elastically pinned hole. International Journal of Solids andStructures,2003,40:2017~2035
    107. Chang F K, Scott R A, Springer G S. Strength of mechanically fastenedcomposite joints. Journal of Composite Materials,1982,16:470~494
    108. Chang F K, Scott R A. Failure strength of nonlinearly elastic compositelaminates containing a pin loaded hole. Journal of Composite Materials,1984,18:464~477
    109. Chang F K, Chang K Y. A progressive damage model for laminatedcomposites containing stress concentrations. Journal of Composite Materials,1987,21:834~855
    110. Yamada S E, Sun C T. Analysis of laminate strength and its distribution.Journal of Composite Materials,1978,12:275~284
    111. Hashin Z. Failure criteria for unidirectional fiber composites. Journal ofApplied Mechanics,1980,47:329~335
    112. Lessard L B, Shokrieh M M. Two-dimensional modeling of compositepinned-joint failure. Journal of Composite materials,1995,29:671~697
    113. Hung C L, Chang F K. Strength envelope of bolted composite joints underbypass loads. Journal of Composite materials,1996,30:1402~1435
    114. Chen W H, Lee S S, Yeh J T. Three-dimensional contact stress analysis of acomposie laminate with bolted joint. Composite Structures,1995,30:287~297
    115. Ye L. Role of matrix resin in delamination onset and growth in compositelaminates. Composite Science and Technology,1988,33:257~277
    116. Camanho P P, Matthews F L. A progressive damage model for mechanicallyfastened joints in composite laminates. Journal of Composite Materials,1999,23:2248~2249
    117. Tserpes K I, Labeas G, Papanikos P, etal. Stength prediction of bolted jointsin graphite/epoxy composite laminates. Composites: Part B,2002,33:521~529
    118. McCarthy C T, McCarthy M A. Progressive damage analysis of multi-boltcomposite joints with variable bolt-hole clearances, Composites, Part B,2005,36:290~305
    119. Chang F K, Scott R A, Springer G S. Strength of mechanically fastenedcomposite joints. Journal of Composite Materials,1982,16:470~494
    120. Camanho P P, Matthews F L. A progressive damage model for mechanicallyfastened joints in composite laminates. Journal of Composite Materials,1999,23:2248~2249
    121. Kermanidis T, Labeas G, Tserpes K I, etal. Finite element modeling ofdamage accumulation in bolted composite joints under incremental tensileloading. In: European Congress on Computational Methods in Applied Sciencesand Engineering, Barcelona,11-14September2000
    122. Riccio A, Scaramuzzino F. Influence of damage onset and progagation onthe tensile structural behaviour of protruding composite joints.4th GRACMCongress on Computational Mechanics, Patras,27-29June,2002
    123. P. Rajinder. New models for effective Young’s modulus of particulatecomposites, Composites B36(2005)513–523.
    124. J.Poutet, D.Manzoni, F.HageChehade, C.J.Jacquin, M.J.Bouteca,J.F.Thovert, P.M.Adler, The effective mechanical properties of random porousmedia,J. Mech.Phys.So1ids44(10)(1996)1587–1620.
    125. M.T.Tilbrook,R.Moon,M.Hoffman,On the mechanical properties ofalumina–epoxy composites with an interpenetrating network structure,Mater.Sci.Eng.A393(1–2)(2005)170–178.
    126. Paley M, Aboudi J. Micromechanical analysis of composites by thegeneralized cells model. Mechanics of Materials1992;14:127–139.
    127.赵琳,张博明.基于单胞解析模型的单向复合材料强度预报方法.复合材料学报,2010,27(5):86-92.
    128. Boming Zhang, Zhong Yang, Xinyang Sun, Zhanwen Tang. A virtualexperimental approach to estimate composite mechanical properties: Modelingwith an explicit finite element method. Computational Materials Science49(2010)645–651
    129. L. Liu, Y. J. Song, H. J. Fu, Z. X. Jiang, X. Z. Zhang, L. N. Wu, Y. D.Huang. The Effect of Interphase Modification on CarbonFiber/Polyarylacetylene Resin Composites. Applied Surface Science.2008,254(17):5342-5347
    130. J. Zhang, Q. P. Guo, M. Huson, I. Slota, B. Fox. Interphase Study ofThermoplastic Modified Epoxy Matrix Composites: Phase Behaviour Around aSingle Fibre Influenced by Heating Rate and Surface Treatment. Com positesPart A.2010,41(6):787-794
    131. Aragones D. Fracture Micromechanisms in C/Epoxy Composites underTransverse Compression. Master Thesis, Universidad Politecnica de Madrid.2007:23-24
    132. Hinton M J, Soden P D. Predicting failure in composite laminates:background to the exercise[J]. Composites Science and Technology,1998,58(7):1001–1010.
    133. Soden P D, Hinton M J, Kaddour A S. Lamina properties, lay-upconfiguration and loading conditions for a range of fibre reinforced compositelaminates[J]. Composites Science and Technology,1998,58(7):1011–1022.
    134. Soden P D, Hinton M J, Kaddour A S. A comparison of the predictivecapabilities of current failure theoris for composite laminates[J]. CompositesScience and Technology,1998,58:1225–1254.
    135. Soden P D, Hinton M J, Kaddour A S. Biaxial test results for strength anddeformation of a range of E-glass and carbon fibre reinforced compositelaminates: failure exercise benchmark data[J]. Composites Science andTechnology,2002,62:1489–1514.
    136. Kaddour A S, Hinton M J, Soden P D. A comparison of the predictivecapabilities of current failure theories for composite laminates: additionalcontributions[J]. Composites Science and Technology,2004,64:449–476.
    137.黄争鸣,张华山.纤维增强复合材料强度理论的研究现状与发展趋势—“破坏分析奥运会”评估综述[J].力学进展,2007,37(1):80–98.
    138.赵琳,张博明.基于单胞解析模型的单向复合材料强度预报方法[J].复合材料学报,2010,27(5):86–92.
    139. Tsai, S.W.,“Strength theories of filamentary structures,” in FundamentalAspects of Fiber Reinforced Plastic Composites (R.T. Schwartz and H.S.Schwartz, eds.), Wiley Interscience, New York,1968, pp.3-11.
    140. Tsai, S.W. and Wu, E.M.,“A General Theory of Strength for AnisotropicMaterials,” Journal of Composite Materials, Vol.5,1971, pp.58-80.
    141. Sung Kyu Ha, Kyo Kook Jin,Yuanchen Huang. Micro-Mechanics of Failure(MMF) for Continuous Fiber Reinforced Composites[J]. Journal of CompositeMaterials,2008,42:1873–1895.
    142. Ali Najafi, Mohit Garg, Frank Abdi. Failure Analysis of CompositeBolted Joints in Tension. AIAA2009-2505
    143.王丹勇,温卫东,崔海涛.复合材料单钉接头三维逐渐损伤破坏分析[J].复合材料学报,2005,22(3):168-174.
    144. Tserpes KI, Labeas G, Papanikos P, et al. Strength prediction of boltedjoints in graphite/epoxy composite laminates [J]. Composites: Part B,2002,33:521-529.
    145. Camanho PP, Matthews FL. A progressive damage model for mechanicallyfastened joints in composite laminates [J]. Journal of Comp osite Materials,1999,23:2248-2249.
    146.(美) StephenWTsai.复合材料设计[M].沈阳:航空工业部第六○一研究所,1988:155-156.
    147. Behavior of Pin-loaded Laminated Composites. B. Okutan Baba.Experimental Mechanics (2006)46:589–600

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700