长三角太湖地区云和气溶胶辐射特性的地基遥感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气溶胶气候效应尤其是气溶胶对云的几何和微物理特性的影响以及气溶胶与云的相互作用是气候变化研究中最不确定的问题之一。东亚对流层气溶胶及区域气候影响观测试验(EAST-AIRC)期间,南京信息工程大学建立了长三角地区气候与环境综合试验观测基地,旨在研究该地区云及气溶胶的辐射效应,并进一步研究两者的相互作用。本文利用该观测站2008年4月-2009年12月,多种地基遥感仪器联合探测的地面辐射、气溶胶以及云的微物理特性等资料,分析了长三角地区非降水云发生的概率、云底分布特征,卷云的垂直分布、辐射特性以及云的光学及微物理特性。同时研究了该地区长期的(2006-2009)气溶胶光学特性,气溶胶垂直分布的演变特征,评估了气溶胶直接辐射效应的量级及气溶胶对辐射能量垂直分配的影响。最后,为了解该区域的沙尘气溶胶的特性及其对云的特性的潜在影响,对该地区春季沙尘过程的气溶胶垂直结构及光学特性的演变、传输过程及其直接辐射效应进行了系统的分析。该研究对于认识气溶胶的气候效应以及气溶胶和云的相互作用具有重要的科学意义。主要结论为:
     1、建立了基于观测期间激光雷达完全衰减信号修正剩余脉冲的方法,该方法能在不增加或缺少剩余脉冲修正实验的情况下,增加剩余脉冲修正次数,进而提高激光雷达反演精度。
     2、一年(2008年6月到2009年5月)的观测资料表明,该地区全年非降水云的发生概率约为41%,且年平均的云量存在显著的日变化特性,日变化的幅度大约为24.6%。该地区云量及云底高度存在显著的季节性变化,云量冬季最大,而云底的大值则出现在春季和夏季。总的、白天观测的以及夜晚观测的云存在较高的年平均云底高度,其值分别为3.05±2.73,2.46±2.08和3.51±3.07km。全年夜晚卷云发生的概率为36.2%,夏季最大。平均的卷云特性分别为一云底:8.89±1.65km,云顶:10.73±1.86km,云厚:1.83±0.91km,消光后向散射率:25±17sr,消光系数:0.21±0.31km-1,光学厚度:0.34±0.33。其中12%为肉眼不可见卷云,约43%为薄卷云,而45%为光学厚卷云,夏季具有更多以及更厚的卷云。
     3、基于高光谱仪天顶辐射测量反演的云光学厚度能够很好的反映天顶方向云层随时间的演变,相比基于半球辐射通量测量的方法,对研究云的时间演变趋势更具有优势。即使在全天空有云的情况下,MODIS反演的云的特性同样受到云的不均异性的影响。地基与卫星反演结果的差异表明了该地区MODIS卫星云的产品依然存在着很大的不确定性,这需要更多的工作去改进地基与卫星产品验证的方法以及验证和改进MODIS卫星云特性的反演。该地区全年平均的液态水路径,云的光学厚度以及云滴有效半径的平均值分别为115.8±90.8g/m2,28.5±19.2和6.9±4.2μm。
     4、该地区多年(2006-2009)平均的气溶胶光学厚度(500nm)、波长指数(440-675nm)、单次散射反照率和不对称因子(675nm)分别为0.74±0.45,1.20±0.27,0.912±0.035和0.655±0.036,且逐年变化较小。光学厚度、单次散射反照率以及不对称因子夏季较大,冬季较小,而波长指数秋季大,春季小。各个季节的气溶胶主要集中在2km以下的范围,平均气溶胶消光系数大值均出现在近地面,并随高度的增加而减小。大的近地面气溶胶消光系数与较强的东风和东南风相关,表明站点东部及东南部人口稠密地区人类活动的排放的区域传输对该区域近地面气溶胶浓度具有主要贡献。春季、秋季及冬季,该区域500m和2500m高度上绝大部分气团均来自于我国的北部和西北部以及蒙古和西伯利亚地区,而夏季则主要来自于东部的海洋。春季,沙尘气溶胶不仅增加高层大气的气溶胶消光,同时也增加低层大气的气溶胶消光。
     5、气溶胶显著的影响了该区域的辐射收支,对地表具有显著的冷却作用,而对大气具有明显的加热作用。地面、大气顶以及大气内,年平均的气溶胶短波直接辐射强迫的量级分别为-34.8±9.1,-8.2±4.8和26.7±9.4W/m2。气溶胶可改变到达地表的直接和散射辐射的相对比例,减少和增加的直接和散射的年平均值分别为-109.2±49.4和66.8±33.3W/m2。地表到2km以下的范围内,年平均的加热率为0.74K/day.气溶胶导致的大气加热率的垂直分布是理解其对大气动力学影响,尤其是污染与边界层发展的反馈机制的关键。
     6、通过对2009年春季两次沙尘事件的观测分析表明,发生在我国西北部地区的沙尘气溶胶向我国东部地区的传输比现有的认识更为复杂。整个沙尘过程中存在多个混合气溶胶层以及高的沙尘气溶胶层。沙尘气溶胶具有较强的散射能力,使得更多的短波辐射反射回太空,因此辐射强迫作用在大气层顶更加明显。沙尘过程中气溶胶对辐射加热率有显著地影响,高沙尘气溶胶层对高层大气具有明显的加热作用,这将显著的影响低层大气对流的发展和大气稳定度。
Aerosol climatic effects, espectively the effects of aerosol on cloud geometric, mircophysic characteristics and interaction between the aerosol and cloud, are one of the most uncertain factors in climimate research. During the EAST-AIRC campaign, an atmospheric&environment observatory at the Yangtze Delta region of China was installed by Nanjing University of Information Science&Technology, where, hands of advanced instruments were jointly used to measure the surface radiation, aerosol and cloud properties to understand the radiative characteristics of aerosol and cloud, and further to estimate their interaction. This paper mainly focuses on the non-precipation cloud fraction, cloud base distribution, cirrus properties and cloud optical and mircophysic characteristics over this region. Meanwhile, long-term aerosol optical properties, vertical distribution, as well as the aerosol direct radiative effects were investigated, and the influences of aerosol on radiative energy distribution in atmosphere were firstly estimated. To understand the dust aerosol properties and their potential effects on cloud properties over East China, the aerosol optical properties, vertical evolution, transport behavor and radiative effects during the two dust events in2009were also analyzed. This study plays an important role on understanding the aerosol climate effects and the interaction between aerosol and cloud. The main conclusions are as follows:
     1. The new afterpulse correction method is estabilished based on complete attenuated signals, which can increase the times of afterpulse correction and improve the micropulse lidar retrieval accuracy under the lack of correction experiments condition.
     2. One year's (June2008-May2005) worth of observations showed that clouds occupy the sky41%of the time and annual mean cloud fractions experienced a significant diurnal cycle with amplitudes of~24.6%. The cloud fractions and cloud base height varied seasonally, with more cloud in winter and higher cloud base in spring and summer. High annual mean cloud base were found for total, daytime and nighttime clouds with3.05±2.73,2.46±2.08and3.51±3.07km, respectively. The occurrence of cirrus is approximate36.2%of total observational nights with peak in summer. The all detected annual mean cirrus properties are following:cloud base height:8.89±1.65km, cloud top height:10.73±1.86km, cloud thickness:1.83±0.91km, lidar ratio:25±17sr, extinction coefficient:0.21±0.31km-1, optical depth:0.34±0.33. Approximately12%of the cases are sub-visible cirrus, about43%are thin cirrus and45%are dense cirrus. More frequent, thicker cirrus occurred during summer.
     3. Cloud optical depth retrievals based on zenith radiance measurements by High-resolution analytical spectral devices success to capture the temporal tendency of overhead cloud and have more advantages of capturing the cloud temporal tendency than the retrievals based on hemispherical flux. Even for overcast cases, MODIS cloud retrievals are suffered the substantial cloud inhomogeneity. Our results indicated that the MODIS cloud products still suffer from variation limitations in this region and more works on the comparsion methods between surface and satellite, assessment and improvement of cloud properties retrieved from MODIS are needed. One year mean of cloud liquid water path, cloud optical depth and cloud droplet effective radius in this region is115.8±90.8g/m2,28.5±19.2and6.9±4.2μm, respectively.
     4. Multiyear (2006-2009) means of aerosol optical depth (AOD) at500nm, Angstrom exponent (a) at440-675nm, single scattering albedo(SSA) and asymmetric factor(ASY) at675nm are0.74±0.45,1.20±0.27,0.912±0.035and0.655±0.036with moderate inter-annual variations. AOD, SSA and ASY shows a maximum in summer and minimum in winter, and a is large in autumn and small in spring. The majority of aerosol particles were located below2km, and the maximum extinction coefficients were found near the surface and gradually decreased with height. Strong near-surface extinction coefficients were associated with relatively strong easterly and southeasterly wind, suggesting that the regional transport of locally generated aerosol particles from densely populated areas surrounding the site may contribute to loading at the surface at Taihu. In spring, autumn and winter, the majority of air masses ending at0.5and2.5km were tracked to northern/northwestern China, as well as remote regions of Mongolia and Siberia, and in summer, air masses originate over the seas to the east of site. Dust aerosols not only enhanced particle extinction coefficients at high altitudes, but also at low altitudes in spring.
     5. Heavy aerosol loading results in significant warming of the lower troposphere and cooling at the surface. Annual mean direct radiative forcing at the surface, top of atmosphere and within the atmosphere were34.8±9.1,-8.2±4.8and26.7±9.4W/m2. Meanwhile, aerosol can change the fraction of direct and diffuse components of surface global irradiance, with decrease annual mean direct radiance of-109.2±49.4and increase diffuse radiance of66.8±33.3W/m2. From the surface to2km, the mean heating rate is0.74K/day.The vertical profiles of heating induced by aerosols are the key to understand their impact on atmospheric dynamics, especially feedbacks between pollution and boundary layer development.
     6. Two dust events in spring in2009showed that the transport behavior of dust originatednorthwest China to southest is more complication than that we understanded. The existence of multiple and elevated dust layers consisting of mixtures of dust aerosols and anthropogenic pollution aerosols were found. Since dust aerosols have strong scattering, more shortwave radiation are reflected into space, so they have more significant forcing effects in the top of atmosphere. The high levels of dust aerosols significantly heat the upper atmosphere, which significantly affect convection and stability in the lower troposphere.
引文
曹贤洁,张镭,周碧,等.利用激光雷达观测兰州沙尘气溶胶辐射特性.高原气象,2009,28(5):1115-1120.
    车慧正,石广玉,张小曳.北京地区大气气溶胶光学特性及其直接辐射强迫的研究.中国科学院研究生院学报,2007,24(5):699-704.
    成天涛,吕达仁,徐永福.浑善达克沙地沙尘气溶胶的辐射强迫.高原气象,2005,24(6):920-926.
    董旭辉,杉本伸夫,白雪椿,等.激光雷达在沙尘观测中的应用—2004年春季北京和呼和浩特沙尘天气的解析.中国沙漠,2006,26(6):942-947.
    董云升,刘文清,刘建国,等.北京城区限车期间气溶胶特征激光雷达观测研究.光子学报,2009,29(2):292-296.
    杜其成,纪玉峰,徐赤东.MPL探测气溶胶水平分布数据处理方法研究.大气与环境光学学报,2008,3(1):23-27.
    盖长松.中国西北地区气溶胶光学厚度和波长指数观测数据的分析研究.北京:中国气象科学研究院硕士论文,2005.
    胡欢陵,吴永华,谢晨波,等.北京地区夏冬季颗粒物污染边界层的激光雷达观测.环境科学研究,2004,17(1):59-73.
    黄建平,何敏,阎虹如,等.利用地基微波辐射计反演兰州地区液态云水路径和可降水量的初步研究.大气科学,2010,34(3):548-558.
    黄艇,宋煜,胡文东,等.大连地区一次沙尘过程的激光雷达观测研究.2010,30(4):983-988.
    刘诚,明海,王沛,等.西藏那曲与北京郊区对流层气溶胶的微脉冲激光雷达测量.光子学报,2006,35(9):1435-1439.
    刘东,戚福弟,金传佳,等.合肥上空卷云和沙尘气溶胶退偏振比的激光雷达探测.大气科学,2003,27(6):1093-1100.
    刘君,华灯鑫,李言.紫外域激光雷达探测西安城区上空大气气溶胶时空剖面.光子学报,2007,36(8):1534.
    刘玉杰,牛生杰,郑有飞.用CE-318太阳光度计资料研究银川地区气溶胶光学厚度特性.南京气象学院学报.2004,27(5):615-622.
    毛节泰,张军华,王美华.中国大气气溶胶研究综述.气象学报,2002,60(5):625-634.
    毛建东,华灯鑫,何延尧.小型米散射激光雷达的研制及其探测.光子学报,2010,2:284-288.
    潘鹄,耿福海,陈勇航,等.利用微脉冲激光雷达分析上海地区一次灰霾过程.环境科学学报,2010,30(11):2164-2173.
    邱金桓.大气气溶胶光学厚度的宽带消光遥感方法及其应用.遥感学报,1997,1(1):15-23.
    邱金桓,林耀荣.关于中国大气气溶胶光学厚度的一个参数化模式.气象学报,2001,59(3):368-372.
    邱金桓,吕达仁,陈洪滨,等.现代大气物理学研究进展.大气科学,2003a,27(4):628-648.
    邱金桓,郑斯平,黄其荣,等.北京地区对流层中上部云和气溶胶的激光雷达探测.大 气科学,2003b,27(1):1-7.
    申彦波,沈志宝,汪万福.2001年春季中国北方大气气溶胶光学厚度与沙尘天气.高原气象,2003,22(2):185-190.
    沈志宝,魏丽.我国西北大气沙尘气溶胶的辐射效应.大气科学,2000,24(4):541-548.
    石广玉,王标,张华,等.大气气溶胶的辐射与气候效应.大气科学,2008,32(4):826-840.
    宋磊,吕达仁.上海地区大气气溶胶光学特性的初步研究.气候与环境研究,2006,11(2):203-208.
    孙毅义,李治平.测云偏振激光雷达.量子电子学,1994,11(1):49-54.
    谭浩波,吴兑,毕雪岩.南海北部气溶胶光学厚度观测研究.热带海洋学报,2006,25(5):21-25.
    佟彦超,刘文清,赵南京,等.北京奥运前期典型天气喇曼激光雷达观测研究.光子学报,2010,39(2):279-283.
    王宏波,王治华,何捷,等.成都地区中低层云的激光雷达探测.光子学报,2007,36(2):350-354.
    王莉萍,赵凤生,李占清.用MFRSR仪器观测气溶胶光学厚度.量子电子学报,2010,02:234-241.
    王天和.利用MFRSR反演西北混合相和沙尘云光学及物理特性的研究.兰州大学博士论文,2009.
    王向川,饶瑞中.大气气溶胶和云雾粒子的激光雷达比.中国激光,2005,32(10):1321-1324.
    王雁鹏,陈岩,董旭辉,等.激光雷达观测北京大气气溶胶的垂直分布.光谱实验室,2007,24(6):1153-1156.
    王跃思,辛金元,李占清,等.中国地区大气气溶胶光学厚度与Angstrom参数联网观测(200408-200412).环境科学,2006,27(9):1703-1711.
    吴永华,胡欢陵.L625激光雷达探测平流层气溶胶闭.光学学报,2001,21(005):1012-1015.
    夏俊荣.利用激光雷达探测兰州大气气溶胶辐射特性.兰州大学硕士论文,2005.
    夏祥鳌,王普才,陈洪滨,等.中国北方地区春季气溶胶光学特性地基遥感研究.遥感学报.2005,9(4):429-437.
    辛金元.中国地区气溶胶光学特性地基联网观测与研究.兰州大学博士学位论文,2007.
    辛金元,王跃思,李占清,等.中国地区太阳分光辐射观测网的建立与仪器标定.环境科学,2006,27(9):1697-1702.
    薛新莲,戚福弟,范爱媛,等.合肥地区卷云的激光雷达探测.量子电子学报,2006,23(4):527-532.
    延昊,矫梅燕,毕宝贵,等.国内外气溶胶观测网络发展进展及相关科学计划.气象科学,2006,26(1):110-117.
    杨婷,李杰,王自发,等.北京奥运会期间气溶胶光学特性垂直分布特征.气候与环境研究,2010,15(5):602-608.
    尹宏.大气辐射学基础.北京:气象出版社,1993,144-145.
    余长明,易帆.武汉上空平流层气溶胶的激光雷达探测结果的初步分析.空间科学学报,2004,24(4):261-268.
    张改霞,张寅超,胡顺星,等.车载测污激光雷达对大气边界层气溶胶的斜程探测.光学学报,2004,24(008):1015-1019.
    张改霞,张寅超,陶宗明,等,激光雷达几何重叠因子及其对气溶胶探测的影响.量子电子学报,2005,2:299-304.
    张军华,刘莉,毛节泰.地基多波段遥感西藏当雄地区气溶胶光学特性.大气科学,2000,24(4):349-358.
    张文煌,宋嘉尧,胡文超,等.激光雷达对半干旱地区云层的观测.兰州大学学报(自然科学版),2009,45(5):53-56.
    赵柏林,王强,毛节泰,等.光学遥感大气气溶胶和水汽研究.中国科学B辑,1983,10:951-962.
    钟志庆,周军,戚福弟,等.探测大气气溶胶消光系数的便携式米散射激光雷达闭.强激光与粒子束,2003,15(012):1145-1147.
    周秀骥,李维亮,罗云峰.中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟研究.大气科学,1998,22(4):418-427.
    Alexandrov, M. D., A. Marshak, B. Cairns, et al. Automated cloud screening algorithm for MFRSR data. Geophys. Res. Lett.,2004,31, L04118, doi:10.1029/2003GL019105.
    Alexandrov, M. D., A. A. Lacis, B. E. Carlson, et al. Characterization of atmospheric aerosols using MFRSR measurements. J. Geophys. Res.,2008,113, D08204.
    Alexandrov, M., A. Lacis, B. Carlson, et al. Remote sensing of atmospheric aerosols and trace gases by means of Multi-Filter Rotating Shadow-band Radiometer. Part I:Retrieval algorithm. J. Atmos. Sci.,2002,59,524-543.
    Amiridis, V., D. S. Balis, E. Giannakaki, et al. Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements. Atmos. Chem. Phys.,2009,9,2431-2440.
    Barker, H. W., T. J. Curtis, E. Leontieva, et al. Optical depth of overcast cloud across Canada: Estimates based on surface pyranometer and satellite measurements. J. Clim.,1998,11, 2980-2994.
    Barker, H. W. and A. Marshak. Inferring Optical Depth of Broken Clouds above Green Vegetation Using Surface Solar Radiometric Measurements. J. Atmos. Sci.,2001,58(20): 2989-3006.
    Bellouin B., Boucher O., Haywood J., et al. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature,2005,438,1138-1141.
    Boers, R. Simultaneous retrievals of cloud optical depth and droplet concentration from solar irradiance and microwave liquid, J. Geophys. Res.,1997,102,2981-2989.
    Bockmann C., U. Wandinger, A. Ansmann, et al. Aerosol lidar intercomparison in the framework of the EARLINET project.2. Aerosol backscatter algorithms. Appl. Opt., 2004,43,4:977-989.
    Campbell, J. R., and K. Sassen. Polar Stratospheric Clouds at the South Pole from Five Years of Continuous Lidar Data:Macrophysical, Optical and Thermodynamic Properties. J. Geophys. Res.,2008,113, D20204, doi:10.1029/2007JD009680.
    Campbell, J. R., D. L. Hlavka, J. D. Spinhirne, et al. Operational cloud boundary detection and analysis from micropulse lidar data. Proc. Eighth ARM Science Team Meeting, Tucson, AZ, U.S. Department of Energy,1998,119-122.
    Campbell, J. R., E. J. Welton, J. D. Spinhirne, et al. Micropulse Lidar observations of tropospheric aerosols over northeastern South Africa during the ARREX and SAFARI-2000 Dry Season experiments. J. Geophys. Res.,2003,108,8497, doi:10.1029/2002JD002563.
    Campbell, J. R., E. J. Welton, and J. Spinhirne. Continuous Lidar Monitoring of Polar Stratospheric Clouds at the South Pole. Bull.Amer. Meteor. Soc.,2009,90(5):613-617.
    Campbell, J. R., K. Sassen and E. J. Welton. Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles. J. Atmos. Oceanic Technol.,2008a,25,685-700.
    Campbell, J. R., D. L. Hlavka, E.J. Welton, et al. Full-time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites:Instrument and Data Processing. J. Atmos. Oceanic Technol.,2002,19,431-442.
    Charlson R. J., S. E. Schwartz, J. M. Hales, et al. Climate Forcing by Anthropogenic Aerosols. Science,1992,255(5043):423-430.
    Che, H., X. Zhang, H. Chen, et al. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J. Geophys. Res.,2009,114(D3): D03206, doi:10.1029/2008JD011030.
    Chen, W. N, C. W. Chiang, J. B. Nee. Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt.,2002,41(30):6470-6476.
    Chen, Z., W. Q. Liu, Y. J. Zhang, et al. Measurements of aerosol distribution by an elastic-backscatter lidar in summer 2008 in Beijing. Chinese Optical Letters,2009,7(9): 753-755.
    Chiang, C.-W., W. N. Chen, W. A. Liang, et al., Optical properties of tropospheric aerosols based on measurements of lidar, sunphotometer, and visibility at Chung-Li. Atmos. Environ.,2007,41(19):4128-4137.
    Chiu, J. C., A. Marshak, Y. Knyazikhin, et al. Remote sensing of cloud properties using ground-based measurements of zenith radiance. J. Geophys. Res.,2006,111, D16201, doi:10.1029/2005 J D006843.
    Christopher, S. A., J. Chou, J. Zhang, et al. Shortwave direct radiative forcing of biomass burning aerosols estimated using VIRS and CERES data. Geophys. Res. Lett.,2000, 27(15),2197-2200.
    Clothiaux, E. E., G. G. Mace, T. P. Ackerman, et al. An automated algorithm for detection of hydrometer returns in micropulse lidar data. J. Atmos. Oceanic Technol.,1998,15, 1035-1042.
    Coakley, J. A. Jr., W. R. Tahnk, A. Jayaraman, et al. Aerosol optical depths and direct radiative forcing for INDOEX derived from AVHRR:Theory. J. Geophys. Res.,2002, 107(D19),8009, doi:10.1029/2000JD000182.
    Comstock, J. M., T. P. Ackerman, and G. G. Mace. Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island:Cloud statistics and radiative impacts. J Geophys. Res.,2002,107(D23),4714, doi:10.1029/2002JD002203.
    Das K, S., J. B. Nee, C. W. Chiang.. A Lidar study of the effective size of cirrus ice crystals over Chung-Li, Taiwan. Journal of Atmospheric and Solar-Terrestrial Physics,2010, 72(9-10):781-788.
    Das, S. K., C. W. Chiang, J. B. Nee. Characteristics of cirrus clouds and its radiative properties based on lidar observation over Chung-Li, Taiwan. Atmos. Res.,2009,93(4): 723-735.
    Dong, X., P. Minnis, T. P. Ackerman, et al. A 25-month database of stratus cloud properties generated from ground-based measurements at the ARM SGP site. J. Geophys. Res., 2000,105,4529-4538.
    Dong, X., P. Minnis, B. Xi, et al. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility:Part Ⅰ:Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties. J. Clim.,2005,18(9):1391-1410.
    Dong, X., B. Xi, P. Minnis, et al. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part Ⅱ:Cloud Fraction and Surface Radiative Forcing. J. Clim.,2006,19(9):1765-1783.
    Dong, X., B. Xi, K. Crosby, et al. A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res.,2010,115, D17212.
    Dubovik, O., A. Sinyuk, T. Lapyonok, et al. Application of spheroid models to account for aerosol particle nonsphericity in remonte sensing of desert dust. J. Geophys. Res.,2006, 111, doi:10.1029/2005JD006619.
    Dubovik, O., A. Smirnov, B. N. Holben, et al. Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky-radiance measurements. J. Geophys. Res.,2000,105,9791-9806.
    Dubovik O., B. Holben, T. F. Eck, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci.,2002,59:590-608
    Dubovik, O., B. N. Holben, Y. J. Kaufman, et al. Single-scattering albedo of smoke retrieved from the sky radiance and solar transmittance measured from ground. J. Geophys. Res., 1998,103,31903-31924.
    Dupont, J. C., M. Haeffelin, Y. Morile, et al. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations. J. Geophys. Res.,2010,115, D00H24.
    Dupont, J. C., M. Haeffelin, Y. Morille, et al. Cloud properties derived from two lidars over the ARM SGP site. Geophys. Res. Lett.,2011,38, L08814, doi:10.1029/2010GL046274.
    Gadhavi H., and A. Jayaraman. Airborne lidar study of the vertical distribution of aerosol over Hyderabad, an urban site in central India, and its implication for radiative forcing calculations. Ann. Geophys.,2006,24(10),2461-2470.
    Guo J., Z. B. Sun, and Z. S. Liu. Comparison of Visibility Measurements over Horizontal Path by Micro-pulsed Lidar and Visibility Meter. Journal of Ocean University of China, 2007,6(3):315-318.
    He, Q. S., C. C. Li, J. T. Mao, et al. A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong. Atmos. Chem. Phys., 2006,6(11):3243-3256.
    He, Q., C. Li, J. T. Mao, et al. Analysis of aerosol vertical distribution and variability in Hong Kong. J. Geophys. Res.,2008,113(D14):D14211.
    Heese, B., and M. Wiegner. Vertical aerosol profiles from Raman polarization lidar observations during the dry season AMMA field campaign. J. Geophys. Res.,2008,113, D00C11, doi:10.1029/2007JD009487.
    Holben B.N., D. Tanre, A. Smirnov. An emerging ground-based aerosol climatology:aerosol optical depth from AERONET. J. Geophys. Res.,2001,106,12,067-12,097.
    Holben B. N., Y. J. Kaufman, T. F. Eck, et al. AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ.,1998,66,1-16.
    Huang, J. P., Z. W. Huang, J. R. Bi, et al. Micro-pulse Lidar measurements of aerosol vertical structure over the Loess Plateau. Atmospheric and Oceanic Science Letters,2008,1(1): 8-11.
    Huebert, B. J., T. Bates, P. B. Russell, et al. An overview of ACE-Asia:Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res.,2003,108(D23),8633, doi:10.1029/2003JD003550.
    IPCC. Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, et al.,(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007.
    Kahn, R., J. Anderson, T. L. Anderson, et al. Environmental snapshots from ACE-Asia. J. Geophys. Res.,2004,109, D19S14, doi:10.1029/2003JD004339.
    Keckhut, P., A. Hauchecorne, S. Bekki, et al. Indications of thin cirrus clouds in the stratosphere at mid-latitudes. Atmos. Chem. Phys.,2005,5(12):3407-3414.
    Kim D. H., B. J. Sohn, T. Nakajima, et al. Aerosol Optical Properties over east Asia determined from ground-based sky radiation measurements. J. GeoPhys. Res,2004,109: D022O9.
    Kim, D., C. Wang, A. M. L. Ekman, et al. Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol-climate model. J. Geophys. Res.,2008,113, D16309, doi:10.1029/2007JD009756.
    Kudo, R., A. Uchiyama, A. Yamazaki, et al. Seasonal characteristics of aerosol radiative effect estimated from ground-based solar radiation measurements in Tsukuba, Japan. J. Geophys. Res.,2010,115, D01204, doi:10.1029/2009JD012487.
    Lau K. M., and K. M. Kim. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett.,2006,33, L21810.
    Lee, K. H., Z. Li, M. S. Wong, et al. Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements. J. Geophys. Res.,2007,112, D22S15, doi:10.1029/2007JD009077.
    Leontieva, E., and K. Stamnes. Remote sensing of cloud optical properties from ground-based measurements of transmittance:A feasibility case. J. Appl. Meteorol., 1996,35,2012-2022.
    Li, F., A. M. Vogelmann, V. Ramanathan. Saharan Dust Aerosol Radiative Forcing Measured from Space. J. Climate,2004,17,2558-2571.
    Li, Z., F. Niu, K. H. Lee, et al. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products using ground-based measurements from the handheld Sun photometer network in China. J. Geophys. Res.,2007b,112, D22S07, doi:10.1029/2007JD008479.
    Li, Z., H. Chen, M. Cribb, et al. Preface to special section on East Asina Studies of Tropospheric Aerosols:An International Regional Experiment (EAST-AIRE). J. Geophys. Res.,2007a,112, D22s00, doi:10.1029/2007JD008853.
    Li, Z., K. H. Lee, Y. S. Wang, et al. First observation-based estimates of cloud-free aerosol radiative forcing across China. J. Geophys. Res.,2010,115:D01204.
    Li, Z., F. Niu, J. Fan, et al. Longterm impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci.,2011a,4,888-894, doi:10.1038/ngeo1313.
    Li, Z., C. Li, S. C. Tsay, et al. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC):An overview. J. Geophys. Res.,2011b,116, D00K34,doi:10.1029/2010JD015257.
    Liu J., Y. F. Zheng, Z. Li,e t al. Ground-based remote sensing of aerosol optical properties in one city in Northwest China. Atmos. Res.,2008,89,194-205.
    Liu, Y, Z. Wang, J. Wang, et al. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations. Remote Sens. Environ.,2010,115(2):508-513.
    Loeb N. G. and S. Kato. Top-of-Atmosphere Direct Radiative Effect of Aerosols from the Clouds and the Earth's Radiant Energy System Satellite Instrument (CERES). J. Clim., 2002,15:1474-1484.
    Mahesh, A., R. Eager, J. R. Campbell, et al. Observations of blowing snow at the South Pole. J. Geophys. Res.,2003,108,4707, doi:10.1029/2002JD003327.
    Mahesh, A., J. R. Campbell, and J. D. Spinhirne. Multi-year measurements of cloud base heights at South Pole by lidar, Geophys. Res. Lett.,2005,32, L09812.
    Mamouri R. E., V. Amiridis, A. Papayannis, et al. Validation of CALIPSO space-borne derived aerosol vertical structures using a ground-based lidar in Athens, Greece. Atmospheric Measurements and Technics,2009,2,513-522.
    Matthias V., J. Bosenberg, V. Freudenthaler, et al. Aerosol lidar intercomparison in the framework of the EARLINET project.1. Instruments. Appl. Opt.,2004a,43,12: 2578-2579.
    Matthias, V, D. Balis, J. Bosenberg, et al. Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations. J. Geophys. Res.,2004b,109, D18201.
    Mattis, I., A. Ansmann, D. Muller, et al. Multiyear aerosol observations with dual-wavelength Raman lidar in the framework of EARLINET. J. Geophys. Res.,2004,109, D13203, doi:10.1029/2004JD004600.
    Marshak, A., Y. Knyazikhin, K. D. Evans, et al. The "RED versus NIR" plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci.,2004, 61,1911-1925.
    Marshak, A., Y. Knyazikhin, A. B. Davis, et al. Cloud-vegetation interaction:Use of mormalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett.,1990,27(12):1695-1698.
    Meloni D., A. di Sarra, T. Di Iorio, et al. Influence of the vertical profile of Saharan dust on the visible direct radiative forcing. J. Quant. Spectrosc. Radiat. Transfer,2005,93, 397-413.
    Menon S., J. Hansen, L. Nazarenko, et al. Climate effects of black carbon aerosols in China and India. Science,2002,297,2250.
    Min, Q. L., and L. C. Harrison. Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP site. Geophys. Res. Lett.,1996,23, 1641-1644.
    Min, Q., E. Joseph, and M. Duan, Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer. J. Geophys. Res.,2004,109(D2):D02201.
    Mishra, M. K., K. Rajeev, B. V. Thampi, et al. Micro pulse lidar observations of mineral dust layer in the lower troposphere over the southwest coast of Peninsular India during the Asian summer monsoon season. Journal of Atmospheric and Solar-Terrestrial Physics, 2010,72(17):1251-1259.
    Mueller D, B. Heinold, M. Tesche, et al. EARLINET observations of the 14-22 May long-range dust transport event during SAMUM 2006:validation of results from dust transport modelling. Tellus B,2009,61B(1):325-339.
    Nakajima, T., S. C. Yoon, V. Ramanathan, et al. Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. J. Geophys. Res.,2007,112, D24S91, doi:10.1029/2007JD009009.
    Nakajima, T., M. Sekiguchi, T. Takemura, et al. Significance of direct and indirect radiative forcings of aerosols in the East China Sea region. J. Geophys. Res.,2003,108(D23), 8658, doi:10.1029/2002JD003261.
    Nishizawa, Tomoaki, Shoji Asano, et al. Seasonal Variation of Aerosol Direct Radiative Forcing and Optical Properties Estimated from Ground-Based Solar Radiation Measurements. J. Atmos. Sci.,2004,61,57-72.
    Niu F., Z. Li, C. Li, et al. Increase of wintertime fog in China:potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. J. Geophys. Res.,2010,115, D00K20, doi:10.1029/2009JD013484.
    Pal, S. R., W. Steinbrecht, and A. I. Carswell. Automated method for lidar determination of cloud base height and vertical extent. Appl. Opt.,1992,31,1488-1494.
    Pappalardo G, A. Amodeo, M. Pandolfi, et al. Aerosol lidar intercomparison in the framework of the EARLINET project.3. Raman lidar algorithm for aerosol extinction, backscatter, and Lidar ratio. Appl. Opt.,2004,43,28:5370-5385.
    Patadia, F., P. Gupta, and S. A. Christopher. First observational estimates of global clear sky shortwave aerosol direct radiative effect over land. Geophys. Res. Lett.,2008b,35, L04810,doi:10.1029/2007GL032314.
    Pan, L., H. Che, F. H. Geng, et al. Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta region. Atmos. Environ.,2011,44(21-22):2587-2596.
    Patadia, F., P. Gupta, S. A. Christopher, et al. A Multisensor satellite-based assessment of biomass burning aerosol radiative impact over Amazonia. J. Geophys. Res.,2008a,113, D12214, doi:10.1029/2007JD009486.
    Platt, C. M. R., and Coauthors. The Experimental Cloud Lidar Pilot Study (ELIPS) for cloud-radiation research. Bull.Amer. Meteor. Soc.,1994,75,1635-1645.
    Qiu, J. Two-wavelength Lidar Measurement of Cloud-aerosol Optical Properties. Advance in Atmospheric Sciences,1995,12(2):177-186.
    Ramachandran, S., R. Rengarajan, A. Jayaraman, et al. Aerosol radiative forcing during clear, hazy, and foggy conditions over a continental polluted location in north India. J. Geophys. Res.,2006,111, D20214, doi:10.1029/2006JD007142
    Ramanathan V., P. J. Crutzen, J. T. Kiehl, et al. Aerosols, climate and the hydrologic cycle. Science,2001,294,2119-2124.
    Ramanathan, V., M. V. Ramana, G Roberts, et al. Warming trends in Asia amplified by brown cloud solar absorption. Nature,2007,448,575-578.
    Rasch, P. J., W. D. Collins, and B. E. Eaton. Understanding the Indian Ocean Experiment (INDOEX) aerosol distributions with an aerosol assimilation. J. Geophys. Res.,2001, 106,7337-7355, doi:10.1029/2000JD900508.
    Reichardt, J. Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar. Phys. Chem. Earth, Part B,1999,24,255-260.
    Sassen, K., and J. M. Comstock. A mid-latitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part Ⅲ:Radiative properties. J. Atmos. Sci.,2001,58: 2113-2127.
    Sassen, K., and J. R. Campbell. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part Ⅰ:Macrophysical and Synoptic Properties. J. Atmos. Sci.,2001,58,481-496.
    Sassen, K., and B. S. Cho. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor.,1992,31,1275-1285.
    Satheesh S. K., and K. K. Moorthy. Radiative effects of natural aerosols:A review. Atmos. Environ.,2005,39(11):2089-2110.
    Schmid, B., D. A. Hegg, J. Wang, et al. Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne sunphotometer, airborne in-situ and shipbased lidar measurements. J. Geophys. Res.,2003,108:8656.
    Seifert, P., A. Ansmann, D. Miller, et al. Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon. J. Geophys. Res.,2007,112, D17205, doi:10.1029/2006JD008352.
    Shupe, M. D., V. P. Walden, E. Eloranta, et al. Clouds at Arctic Atmospheric Observatories, Part I:Occurrence and Macrophysical Properties. J. Appl. Meteor. Clim.,2010,50: 626-644.
    Smirnov A., B. N. Holben, I. Slutsker, et al. Cloud screening and quality control algorithms for the AERONET data base. Remote Sens. Environ.,2000,73:337-349.
    Sunilkumar, S. V., K. Parameswaran, and B. V. Thampi. Interdependence of tropical cirrus properties and their variability. Ann. Geophys.,2008,26(3):413-429.
    Sinyuk, A., O. Dubovik, B. Holben, et al. Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data. Remote Sens. Environ., 2007,107(1-2):90-108.
    Sivakumar, V, Y. Bhavanikumar, P. B. Rao, et al. Lidar observed characteristics of the tropical cirrus clouds. Radio Sci.,2003,38(6):1094.
    Yoona, S. C., J. W. Wonb, A. H. Omarc, et al. Estimation of the radiative forcing by key aerosol types in worldwide locations using a column model and AERONET data. Atmos. Environ.,2005,39:6620-6630.
    Stohl, A., T. Berg, J. F. Burkhart, et al. Arctic smoke-record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos. Chem. Phys.,2007,7,511-534.
    Syuichi Itahashi, Keiya Yumimoto, Itsushi Uno, et al. Structure of Dust and Air Pollutant Outflow over East Asia in the Spring. Geophys. Res. Lett.,2010,37, L20806, doi:10.1029/2010GL044776
    Tahnk, W. R., and J. A. Coakley Jr. Aerosol optical depth and direct radiative forcing for INDOEX derived from AVHRR:Observations, January-March 1996-2000. J. Geophys. Res.,2002,107(D19),8010, doi:10.1029/2000JD000183.
    Takamura T, T. Nakajima, I. Okada, et al. Aerosol cloud-radiation study using the SKYNET data. The first ADEC Workshop, Tokyo, Japan http://www.aeoliandust. com.,2002.
    Torres, O., P. K. Bhartia, A. Sinyuk, et al. Total Ozone Mapping Spectrometer measurements of aerosol absorption from space:Comparison to SAFARI 2000 ground-based observations. J. Geophys. Res.,2005,110, D10S18, doi:10.1029/2004JD004611.
    Wang X., A. Boselli, L. D'Avino, et al., Volcanic dust characterization by EARLINET during Etna's eruptions in 2001-2002. Atmos. Environ.,2008,42(5):893-905.
    Wang, Y, J. Xin, Z. Li, et al. Seasonal variations in aerosol optical properties over China. J. Geophys. Res.,2011,116:D18209, doi:10.1029/2010JD015376.
    Wang, T. and Q. Min, Retrieving optical depths of optically thin and mixed-phase clouds from MFRSR measurements. J. Geophys. Res.,2008,113(D19):D19203.
    Wang, Z. Z., R. L. Chi, B. Liu, et al. Depolarization Properties of cirrus clouds from polarization lidar measurements over Hefei in spring. Chinese Optical Letters,2008, 21(2):84-89.
    Wang, S. H., N. H. Lin, M. D. Chou, et al. Profiling transboundary aerosols over Taiwan and assessing their radiative effects. J. Geophys. Res.,2010,115, D00K31, doi:10.1029/2009 JD013798.
    Wang, Z. and K. Sassen. Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors. J. Appl. Meteor.,2001,40(10):1665-1682.
    Wang, Z., and K. Sassen. Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I:Algorithm Description and Comparison with In Situ Data. J. Appl. Meteor.,2002,41,218-229.
    Welton, E. J., J. R. Campbell, J. D. Spinhirne, et al. Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems, in Lidar Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, T. Itabe, N. Sugimoto, (eds.), Proc. SPIE,4153, 151-158,2001.
    Welton, E. J., and J. R. Campbell. Micro-pulse Lidar Signals:Uncertainty Analysis. J. Atmos. Oceanic Technol.,2002,19,2089-2094.
    Welton, E. J., K. J. Voss, P. K. Quinn, et al. Measurements of aerosol vertical profiles and otical properties during INDOEX 1999 using micropulse lidars. J. Geophys. Res.,2002, 107,8019, doi:10.1029/2000JD000038.
    Winker, D. M., and M. A. Vaughan. Vertical distribution of clouds over Hampton, Virginia, observed by lidar under the ECLIPS and FIRE ETO programs. Atmos. Res.,1994,34, 117-133.
    Won J. G., S. C. Yoon, S. W. Kim, et al. Estimation of direct radiative forcing of Asian dust aerosols with Sun/sky radiometer and lidar measurements at Gosan, Korea. J. Meteorol. Soc.Jpn.,2004,82,115-130.
    Wu, Y. H., S. X. Hu, F. D. QI, et al. Raman Lidar Measurements of Aerosol and Cloud Optical Properties in the Troposphe. Chinese Journal of lasers,2002, B11(1):73-78.
    Wu, D., Z. Wang, B. Wang, et al. CALIPSO validation using ground-based lidar in Hefei (31.9° N,117.2° E), China. Applied Physics B:Lasers and Optics,2010,1-11.
    Wu, Y., S. Chaw, B. Gross, et al. Low and optically thin cloud measurements using a Raman-Mie lidar. Applied Optics,2009,48(6):1218-1227.
    Xia, X., H. Chen, Z. Li, et al. Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China. J. Geophys. Res.,2007a,112(D22): D22S02.
    Xia, X., Z. Li, H. Chen, et al. Aerosol optical properties and radiative effects in the Yangtze Delta region of China. J. Geophys. Res.,2007b,112(D22):D22S12.
    Xu M., C. P. Chang, C. Fu, et al. Steady decline of East Asian monsoon winds,1969-2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res.,2006,111, D24111,doi:10.1029/2006JD007337.
    Yumimoto K., K. Eguchi, I. Uno, et al. Summer time Trans-Pacific Transport of Asian Dust. Geophys. Res. Lett.,2010,37, L18815, doi:10.1029/2010GL043995.
    Zhang R., G. Li, J. Fan, et al. Intensification of Pacific storm track linked to Asian pollution. Proc. Natl. Acad. Sci. U. S. A.,2007,104,5295-5299.
    Zhang, J., S. A. Christopher, L. A. Remer, et al. Shortwave aerosol radiative forcing over cloud-free oceans from Terra:2. Seasonal and global distributions. J. Geophys. Res., 2005,110, D10S24, doi:10.1029/2004JD005009.
    Campbell, J. R., D. L. Hlavka, E. J. Welton, et al. Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites:Instrument and data processing. J. Atmos. Oceanic Technol.,2002,19:431-442.
    Flynn, C. J., A. Mendoza, Y. Zheng, et al. Novel polarization-sensitive micropulse lidar measurement technique. Optic. Express,2007,15 (6):2785-2790.
    Gaffard, C., J. Nash, and E. Walker. High time resolution boundary layer description using combined remote sensing instruments. Ann. Geophys.,2008,26:2597-2612.
    Harrison, L., and J. Michalsky. Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl. Opt.,1994,33,5126-5132.
    Huebert, B. J., T. Bates, P. B. Russell, et al. An overview of ACE-Asia:Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res.,2003,108(D23):8633, doi:10.1029/2003JD003550.
    Lee, K. H., Z. Li, M. C. Cribb, et al. Aerosol optical depth measurements in eastern China and a new calibration method. J. Geophys. Res.,2010,115, D00K11.
    Li, Z., H. Chen, M. Cribb, et al. Preface to special section on East Asian Studies of Tropospheric Aerosols:an International Regional Experiment (EAST-AIRE). J. Geophys. Res.,2007,112, D22S00. doi:10.1029/2007JD008853.
    Nakajima, T., M. Sekiguchi, T. Takemura, et al. Significance of direct and indirect radiative forcings of aerosols in the East China Sea region. J. Geophys. Res.,2003,108(D23): 8658.
    Nakajima, T. Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in East Asia. J. Geophys. Res., 2007,112, D24S91, doi:10.1029/2007JD009009.
    Satheesh, S. K., S. Deepshikha, and J. Srinivasan. Impact of dust aerosols on Earthatmosphere clear-sky albedo and its short wave radiative forcing over African and Arabian regions. Int. J. Remote Sens.,2006,27 (8):1691-1706.
    Spinhirne, J. D. Micro pulse lidar, IEEE Trans. Geosci. Remote Sens.,1993,31,48-55.
    Welton, E. J., K. J. Voss, P. K. Quinn, et al. Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars. J. Geophys. Res., 2002,107(D19):8019.
    Alexandrov, M. D., A. Marshak, B. Cairns, et al. Automated cloud screening algorithm for MFRSR data. Geophys. Res. Lett.,2004,31:L04118.
    Barker, H. W., and A. Marshak. Inferring optical depth of broken clouds above green vegetation using surface solar radiometric measurements. J. Atmos. Sci.,2001,58: 2989-3006.
    Box, M. A., S. A. W. Gerstl, and C. Simmer. Application of the adjoint formulation to the calculation of atmospheric radiative effects. Beitr. Phys. Atmos.,1988,61:303-311.
    Campbell, J. R., D. L. Hlavka, J. D. Spinhirne, et al. Operational cloud boundary detection and analysis from micropulse lidar data. Proc. Eighth ARM Science Team Meeting, Tucson, AZ, U.S. Department of Energy,1998,119-122.
    Campbell, J. R., K. Sassen, and E. J. Welton. Elevated Cloud and Aerosol Layer Retrievals from Micropulse Lidar Signal Profiles. J. Atmos. Oceanic. Technol.,2008,25:685-700.
    Chiang, C. W., S. K. Das, and J. B. Nee. Lidar depolarization measurements for aerosol source and property studies over Chungli (24.58°N,121.1°E). Atmos. Res.,2008, 90(2-4):203-210.
    Chiu, J. C., C. H. Huang, A. Marshak, et al. Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations. J. Geophys. Res.,2010,115, D14202.
    Clothiaux, E. E., G. G. Mace, T. P. Ackerman, et al. An automated algorithm for detection of hydrometer returns in micropulse lidar data. J. Atmos. Oceanic Technol.,1998,15, 1035-1042.
    Collis R. T. H. and P. B. Russell. Lidar measurement of particles and gases by elastic backscattering and differential absorption, in Laser Monitoring of the Atmosphere. Hinkley E. D., ed. Spring-verlag, New York,1976,71-102.
    Comstock, J. M. and K. Sassen. Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements. J. Atmos. Oceanic Technol.,2001,18(10),1658-1673.
    Comstock, J. M., T. P. Ackerman, and G. G. Mace. Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island:Cloud statistics and radiative impacts. J. Geophys. Res.,2002,107(D23):4714.
    Das, S. K., C. W. Chiang, and J. B. Nee. Characteristics of cirrus clouds and its radiative properties based on lidar observation over Chung-Li, Taiwan. Atmos. Res.,2009,93(4): 723-735.
    Dong, X., P. Minnis, T. P. Ackerman, et al. A 25-month database of stratus cloud properties generated from ground-based measurements at the ARM SGP site. J. Geophys. Res., 2000,105,4529-4538.
    Fernald, F. G. Analysis of atmospheric lidar observations:some comments. Appl. Optics, 1984,23,652-653.
    Fernald, F. G., B. M. Herman, and J. A. Reagan. Determination of aerosol height distributions by lidar. J. Appl. Meteorol.,1972,11,482-489.
    Flynn, C. J., A. Mendoza, Y. Zheng, et al. Novel polarization-sensitive micropulse lidar measurement technique. Opt. Express,2007,15(6):2785-2790.
    Forster, P., et al. Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007:The Physical Science Basis, Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al. pp.129-234, Cambridge Univ. Press, Cambridge, U. K.
    Klett J. D. Stable analytical inversion solution for processing lidar retures. Appl. Opt.,1981, 20(2):211-220.
    Klett J. D. Lidar inversion with variable backscatter/extinction radio. Appl. Opt.,1985,24(11): 1638-1643.
    Lee, K. H., Z. Li, M. Cribb, et al. Aerosol optical depth measurements in eastern China and a new calibration method. J. Geophys. Res.,2010,115, D00K11.
    Liljegren, J. C., E. E. Clothiaux, G. G. Mace, et al. A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res.,2001,106,14,485-14,500.
    Liljegren J. C. and B. M. Lesht. Preliminary Results with the Twelve-Channel Microwave Radiometer Profiler at the North Slope of Alaska Climate Research Facility Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico,2004.
    Marshak, A., Y. Knyazikhin, W. J. Wiscombe, et al. Cloud, vegetation interaction:Use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett.,2000,27(12):1695-1698.
    Marshak, A., Y. Knyazikhin, K. D. Evans, et al. The "RED versus NIR" plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci.,2004,61, 1911-1925.
    Platt, C. M. R., and Coauthors. The Experimental Cloud Lidar Pilot Study (ELIPS) for cloud-radiation research. Bull. Amer. Meteor. Soc.,1994,75,1635-1645
    Pal, S. R., W. Steinbrecht, and A. I. Carswell. Automated method for lidar determination of cloud base height and vertical extent. Appl. Opt.,1992,31,1488-1494.
    Sassen, K., and B. S. Cho. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor.,1992,31,1275-1285.
    Schaaf, C. B., F. Gao, A. H. Strahler et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ.,2002,83(1-2):135-148.
    Stamnes, K., S. C. Tsay, W. J. Wiscombe, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt.,1998,27,2502-2512.
    Wang, Z. and K. Sassen. Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors. J. of Appl. Meteo.,2001,40(10):1665-1682.
    Welton, E. J. and J. R. Campbell. Micropulse Lidar Signals:Uncertainty Analysis. J. Atmos. Oceanic. Technol.,2002,19(12):2089-2094.
    Welton, E. J., K. J. Voss, H. R. Gordon, et al. Ground-based lidar measurements of aerosols during ACE-2:instrument description, results, and comparisons with other ground-based and airborne measurements. Tellus B,2000,52(2):636-651.
    Winker, D. M., and M. A. Vaughan. Vertical distribution of clouds over Hampton, Virginia, observed by lidar under the ECLIPS and FIRE ETO programs. Atmos. Res.,1994,34, 117-133.
    Young, S. A. Analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt.,1995, 34,7019-7031.
    黄建平,何敏,阎虹如,等.利用地基微波辐射计反演兰州地区液态云水路径和可降水量的初步研究.大气科学,2010,34(3):548-558.
    薛新莲,戚福弟,范爱嫒,等.合肥地区卷云的激光雷达探测.量子电子学报,2006,4,527-532.
    Ansmann, A., U. Wandinger, M. Riebesell, et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic backscatter lidar. Appl. Opt,1992,31,7113-7131.
    Bissonnette, L. R., G. Roy, and G. Tremblay. Lidar-Based Characterization of the Geometry and Structure of Water Clouds. J. Atmos. Oceanic Technol.,2007,24(8):1364-1376.
    Campbell, J. R., and K. Sassen. Polar stratospheric clouds at the South Pole from 5 years of continuous lidar data:Macrophysical, optical, and thermodynamic properties. J. Geophys. Res.,2008,113(D20):D20204.
    Campbell, J. R., and M. Shiobara. Glaciation of a mixed-phase boundary layer cloud at a coastal arctic site as depicted in continuous lidar measurements. Polar Science,2008, 2(2):121-127.
    Chang, F. L., and Z. Li. A new method for detection of cirrus overlapping water clouds and determination of their optical properties. J. Atmos. Sci.,2005a,62,3993-4009.
    Chang, F. L., and Z. Li. A comparison of the global surveys of high, mid, and low clouds from satellites and general circulation models, in Proceedings of the Fifteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Daytona Beach, Florida,14-18 March 2005, U.S. Dep. of Energy, Washington, D. C.,2005b.
    Chen, W. N., C. W. Chiang, and J. B. Nee. Lidar Ratio and Depolarization Ratio for Cirrus Clouds. Appl. Opt,2002,41:6470-6476.
    Comstock, J. M. and K. Sassen. Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements. J. Atmos. Oceanic Technol.,2001,18(10):1658-1673.
    Comstock, J. M., T. P. Ackerman, and G. G. Mace. Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island:Cloud statistics and radiative impacts. J. Geophys. Res.,2002,107(D23):4714.
    Das, S. K., C. W. Chiang, and J. B. Nee. Characteristics of cirrus clouds and its radiative properties based on lidar observation over Chung-Li, Taiwan. Atmos. Res.,2009,93(4): 723-735.
    Das, S. K., J. B. Nee, and C. W. Chiang. A LiDAR study of the effective size of cirrus ice crystals over Chung-Li, Taiwan. Journal of Atmospheric and Solar-Terrestrial Physics, 2010,72(9-10):781-788.
    Davis, S. M., L. M. Avallone, B. H. Kahn, et al. Comparison of airborne in situ measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cirrus cloud optical and microphysical properties during the Midlatitude Cirrus Experiment (MidCiX). J. Geophys. Res.,2009,114(D2):D02203.
    Dessler, A. E. and P. Yang. The distribution of tropical thin cirrus clouds inferred from terra MODIS data. J. Clim.,2003,8,1241-1247.
    Dong, X., P. Minnis, and B. Xi. A climatology of mid-latitude continental clouds from ARM SGP site:Part I. Low-level cloud macrophysical, microphysical and radiative properties. J. Clim.,2005,18,1391-1410.
    Dong, X., B. Xi, and P. Minnis. A climatology of midlatitude continental clouds from the ARM SGP Central Facility:Part II:Cloud fraction and surface radiative forcing. J. Clim., 2006,19,1765-1783.
    Dong, X., B. Xi, K. Crosby, et al. A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res.,2010,115, D17212.
    Dowling, D. R., and L. F. Radke. A Summary of the Physical Properties of Cirrus Clouds. J. Appl. Meteor.,1990,29(9):970-978.
    Dupont, J. C., M. Haeffelin, Y. Morile, et al. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations. J. Geophys. Res.,2010,115, D00H24.
    Dupont, J. C, M. Haeffelin, Y. Morille, et al. Cloud properties derived from two lidars over theARMSGP site. Geophys. Res. Lett.,2011,38, L08814, doi:10.1029/2010GL046274.
    Giannakaki, E., D. S. Balis, V. Amiridis, et al. Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station. Atmos. Chem. Phys.,2007,7, 5519-5530.
    Goldfarb, L., P. Keckhut, M. L. Chanin, et al. Cirrus climatological results from lidar measurements at OHP (44°N,6°N). Geophys. Res. Lett.,2001,28(9):1687-1690.
    Immler, F., and O. Schrems. LIDAR measurements of cirrus clouds in the northern and southern midlatitudes during INCA (55°N,53°N):A comparative study. Geophys. Res. Lett.,2002,16, doi:10.1029/2002GL015077.
    IPCC. Climate change 2001 the scientific basis. In:Solomon, S., Qin, D., Manning, M., et al. (Eds.), Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007.
    Keckhut, P., A. Hauchecorne, S. Bekki, et al. Indications of thin cirrus clouds in the stratosphere at mid-latitudes. Atmos. Chem. Phys.,2005,5(12):3407-3414.
    Lakkis, S. G,. M. Lavorato, and P. O. Canziani. Monitoring cirrus clouds with lidar in the Southern Hemisphere:A local study over Buenos Aires.1. Tropopause heights. Atmos. Res.,2009,92,18-26.
    Mace, G. G., Q. Zhang, M. Vaughan, et al. A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res.,2009,114, D00A26, doi:10.1029/2007JD009755.
    Mahesh, A., J. R. Campbell, and J. D. Spinhirne. Multi-year measurements of cloud base heights at South Pole by lidar. Geophys. Res. Lett.,2005,32, L09812.
    Min, M., P. Wang, J. R. Campbell, et al. Midlatitude cirrus cloud radiative forcing over China. J. Geophys. Res.,2010,115(D20):D20210.
    Nakajima, T. Y, and T. Nakajma. Wide area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci.,1995, 52,4043-4059.
    Nazaryan, H., M. P. McCormick, and W. P. Menzel. Global characterization of cirrus clouds using CALIPSO data. J. Geophys. Res.,2008,113, D16211.
    Noel, V., D. M. Winker, T. J. Garrett, et al. Extinction coefficients retrieved in deep tropical ice clouds fromlidar observations using CALIPSO like algorithm compared to in-situ measurements from cloud integrating nephelometer during CRYSTAL-FACE. Atmos. Chem. Phys.,2007,7,1415-1422.
    Pace, G, M. Cacciani, A. di Sarra, et al. Lidar observations of equatorial cirrus clouds at Mahe Seychelles. J. Geophys. Res.,2003,108(D8),4236, doi:10.1029/2002JD002710.
    Plana-Fattori, A., G. Brogniez, P. Chervet, et al. Comparison of High-Cloud Characteristics as Estimated by Selected Spaceborne Observations and Ground-Based Lidar Datasets. J. Appl. Meteor, and Clim.,2009,48(6):1142-1160.
    Platnick, S., M. D. King, S. A. Ackerman, et al. The MODIS cloud products:algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sensing,2003,41(2):459-473.
    Reichardt, J. Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar. Phys. Chem. Earth, Part B,1999,24,255-260.
    Sassen, K. Dusty ice clouds over Alaska. Nature,2005,434,456.
    Sassen, K. and J. M. Comstock. A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III:Radiative Properties. J. Atmos. Sci.,2001, 58(15):2113-2127.
    Sassen, K., and Cho. B. S. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor.,1992,31,1275-1285.
    Sassen, K., and J. R. Campbell. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part I:Macrophysical and Synoptic Properties. J. Atmos. Sci.,2001,58,481-496.
    Sassen, K., M. K. Griffin, and G. C. Dodd. Optical scattering and microphysical properties of subvisual cirrus cloud, and climatic implications. J. Appl. Meteor.,1989,28,91-98.
    Sassen, K., Z. E. Wang, and D. Liu. Global distribution of cirrus clouds from Cloud-Sat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res.,2008,113, D00A12.
    Seifert, P., A. Ansmann, D. Muller, et al. Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon. J. Geophys. Res.,2007,112(D17): D17205.
    Shupe, M. D., V. P. Walden, E. Eloranta, et al. Clouds at Arctic Atmospheric Observatories, Part Ⅰ:Occurrence and Macrophysical Properties. J. Appl. Meteor. Clim.,2010,50, 626-644.
    Sivakumar, V, Y. Bhavanikumar, P. B. Rao, et al. Lidar observed characteristics of the tropical cirrus clouds. Radio Sci.,2003,38(6),1094, doi:10.1029/2002RS002719.
    Stephens, G. L. Cloud feedbacks in the climate system:A critical review. J. Clim.,2005,18, 237-273.
    Stephens, G L., D. G. Vane, R. J. Boain, et al. The CloudSat Mission and the A-Train:A new dimension of spaced-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc.,2002,83,1771-1790.
    Stubenrauch, C. J., A. Chedin, G. Radel, et al. Cloud properties and their seasonal and diurnal variability from TOVS Path-B. J. Clim.,2006,19,5531-5553.
    Sunilkumar, S. V., K. Parameswaran, and B. V. Thampi. Interdependence of tropical cirrus properties and their variability. Ann. Geophys.,2008,26(3):413-429.
    Vukicevic, T., O. Coddington, and P. Pilewskie. Characterizing the retrieval of cloud properties from optical remote sensing. J. Geophys. Res.,2010,115, D20211, doi:10.1029/2009JD012830.
    Wang, Z. Z., R. L. Chi, B. Liu, et al. Depolarization properties of cirrus clouds from polarization lidar measurements over Hefei in Spring. Chinese Optics Letters,2008,6(4): 235-237.
    Winker D. M., J. R. Pelon, and M. P. McCormick. The CALIPSO mission:spaceborne lidar for observation of aerosols and clouds. Proc. SPIE,2003,4893, doi:10.1117/12.466539.
    Wu Y. H., S. K. Chaw, B. Gross, et al. Low and optically thin cloud measurements using a Raman-Mie lidar. Appl. Opt.,2009,48(6):1218-1227.
    Xi, B., X. Dong, P. Minnis, et al. A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOE ARM SPG site. J. Geophys. Res.,2010,115, D12124, doi:10.1029/2009JD012800.
    Zhang, J., H. Chen, Z. Li, et al. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res.,2010,115, D00K30.
    Zhang, M. H., W. Y. Lin, S. A. Klein., et al. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 2005,110, D15S02, doi:10.1029/2004JD005021.
    黄建平,何敏,阎虹如,等.利用地基微波辐射计反演兰州地区液态云水路径和可降水量的初步研究.大气科学,2010,23(3):548-558.
    Beaulne, A., H. W. Barker, and J. P. Blanchet. Estimating Cloud Optical Depth from Surface Radiometric Observations:Sensitivity to Instrument Noise and Aerosol Contamination. J. Atmos. Sci.,2005,62(11):4095-4104.
    Bender, F., H. Rodhe, R. Charlson, et al.22 views of the global albedo-comparison between 20 GCMs and two satellites. Tellus,2006,58A,320-330.
    Barker, H. W., and A. Marshak. Inferring optical depth of broken clouds above green vegetation using surface solar radiometric measurements. J. Atmos. Sci.,2001,58, 2989-3006.
    Cess, R. D., G. L. Potter, J. P. Blanchet, et al. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res.,1990, 95(D10):16601-16615.
    Chang, F. L., and Z. Li. A new method for detection of cirrus overlapping water clouds and determination of their optical properties. J. Atmos. Sci.,2005a,62,3993-4009.
    Chang, F. L., and Z. Li. A comparison of the global surveys of high, mid, and low clouds from satellites and general circulation models, in Proceedings of the Fifteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Daytona Beach, Florida,14-18 March 2005, U.S. Dep. of Energy, Washington, D. C,2005b.
    Chiu, J. C., C. H. Huang, A. Marshak, et al. Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations. J. Geophys. Res.,2010,115, D14202, doi:10.1029/2009JD013121.
    Chiu, J. C., A. Marshak, Y. Knyazikhin, et al. Remote sensing of cloud properties using ground-based measurements of zenith radiance. J. Geophys. Res.,2006,111, D16201, doi:10.1029/2005JD006843.
    Dong, X., P. Minnis, T. P. Ackerman, et al. A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site. J. Geophys. Res.,2000,105(D4),4529-4537.
    Dong, X., P. Minnis, B. Xi. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility:Part I:Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties. J. Climate,2005,18,1391-1410.
    Dong, X., P. Minnis, B. Xi, et al. Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site. J. Geophys. Res.,2008,113, D03204, doi:10.1029/2007JD008438.
    Forster, P., et al. Changes in Atmospheric constituents and in radiative forcing, in Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U.K.,2007.
    Horvath, A., and R. Davies. Comparison of microwave and optical cloud water path estimates from TMI, MODIS, and MISR. J. Geophys. Res.,2007,112, D01202.
    Houghton, J. T., Y. Ding, D. J. Griggs, et al. Climate Change 2001:The Scientific Basis. Cambridge University Press,2001,881.
    Li, Z., A. P. Trishchenko, H. W. Barker, et al. Analyses of Atmospheric Radiation Measurement (ARM) program's Enhanced Shortwave Experiment (ARESE) multiple data sets for studying cloud absorption. J. Geophys. Res.,1999,104,19127-19134.
    Turner, D. D., A. M. Vogelmann, R. T. Austin, et al. Thin Liquid Water Clouds:Their Importance and Our Challenge. Bull. Amer. Meteor. Soc.,2007,88,177-190.
    Yirks, J. E., D. L. Hlavka, and W. D. Hart. Statistics of cloud optical properties from airborne lidar measurements. J. Atmos. Oceanic Technol.,2011,28,869-883.
    Zhang, M. H., W. Y. Lin, S. A. Klein., et al. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 2005,110, D15S02, doi:10.1029/2004JD005021.
    Ackerman, A. S., O. B. Toon, D. E. Stevens, et al. Reduction of tropical cloudiness by soot. Science,2000,288,1042-1047.
    Cavalieri, O., F. Cairo, F. Fierli, et al. Variability of aerosol vertical distribution in the Sahel. Atmos. Chem. Phys. Discuss.,2010,10(7):17609-17655.
    Cheng, Y. F., A. Wiedensohler, H. Eichler, et al. Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China:An observation based numerical study. Atmos. Environ., 2008,42(25):6373-6397.
    Chew, B. N., J. R. Campbell, J. S. Reid, et al. Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ.,2011,45(37):6724-6731.
    Chou, M. D., P. H. Lin, P. L. Ma, et al. Effects of aerosols on the surface solar radiation in a tropical urban area. J. Geophys. Res.,2006,111, D15207, doi:10.1029/2005JD006910.
    Clarke A., and V. Kapustin. Hemispheric aerosol vertical profiles:Anthropogenic impacts on optical depth and cloud nuclei. Science,2010,329,1488-1492.
    Draxler, R. R., and G. D. Rolph. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD,2010.
    Dutton, E. G., J. J. Michalsky, T. Stoffel, et al. Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J. Atmos. Oceanic Technol.,2001,18(3):297-314.
    Dubovik, O., A. Smirnov, B. N. Holben, et al. Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky radiance measurements. J. Geophys. Res.,2000,105:9791-9806.
    Eck, T. F., B. N. Holben, J. S. Reid, et al. Wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols. J. Geophys. Res.,1999,104, 31,333-31,350.
    Engling G., and A. Gelencser. Atmospheric brown clouds:From local air pollution to climate change. Elements,2010,6,223-228.
    Forster, P., et al. Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007:The physical science basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U.K.,2007.
    Freudenthaler, V., M. Esselbom, M. Wiegner, et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B,2009,61(1):165-179.
    Gu, L., D. Baldocchi, S. B. Verma, et al. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res.,2002,107(D6),4050.
    Guan, H., B. Schmid, A. Bucholtz, et al. Sensitivity of shortwave radiative flux density, forcing, and heating rate to the aerosol vertical profile. J. Geophys. Res.,2010,115, D06209, doi:10.1029/2009JD012907.
    He, Q., C. Li, J. T. Mao, et al. Analysis of aerosol vertical distribution and variability in Hong Kong. J. Geophys. Res.,2008,113(D 14), D14211, doi:10.1029/2008JD009778.
    Holben, B. N., Y. J. Kaufman, T. F. Eck, et al. AERONET-a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ.,1998,66,1-16.
    Huang, J., N. C. Hsu, S. C. Tsay, et al. Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign. J. Geophys. Res.,2011,116, D08214, doi:10.1029/2010JD014910.
    Jeong, M. J., Z. Li, E. Andrews, et al. Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res.,2007,112, D10202, doi:10.1029/2006JD007176.
    Johnson, B. T., B. Heese, S. A. McFarlane, et al. Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX. J. Geophys. Res.,2008,113, D00C12, doi:10.1029/2008JD009848.
    Kalnay, E., M. Kanamitsu, R. Kistler, et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc.,1996,77,437-470.
    Kaufman Y. J., I. Koren, L. A. Remer, et al. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci.,2005,102, 11207-11212
    Kim, S. W., S. C. Yoon, J. Y. Kim, et al. Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos. Environ.,2007,41(8): 1634-1651.
    Leon, J. F., Y. Derimian, I. Chiapello, et al. Aerosol vertical distribution and optical properties over M'Bour (16.96W; 14.39N), Senegal from 2006 to 2008. Atmos. Chem. Phys.,2009,9(23):9249-9261.
    Li, Z., F. Niu, J. Fan, et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geoscience,2011,4,888-894.
    Li, Z., H. Chen, M. Cribb, et al. Preface to special section on East Asian Studies of Tropospheric Aerosols:An International Regional Experiment (EAST-AIRE). J. Geophys. Res.,2007,112, D22S00.
    Li, Z., K. H. Lee, Y. Wang, et al. First observation-based estimates of cloud-free aerosol radiative forcing across China. J. Geophys. Res.,2010,115, D00K18.
    Liu, D., Z. Wang, Z. Y. Liu, et al. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res.,2008,113(D16):D16214.
    Liu, J., Y. Zheng, Z. Li, et al. Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors. Atmos. Environ., 2011,45(35):6469-6480.
    Liu, Z., D. Winker, A. Omar, et al. Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements. JQSRT,2010,112(2):204-213.
    Markowicz, K. M., P. J. Flatau, M. V. Ramana, et al. Absorbing Mediterranean aerosols lead to a large reduction in the solar radiation at the surface. Geophys. Res. Lett.,2002, 29(20):1968, doi:10.1029/2002GL015767.
    McFarlane, S. A., E. I. Kassianov, J. Barnard, et al. Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement mobile facility deployment in Niamey, Niger. J. Geophys. Res.,2009,114, D00E06, doi:10.1029/2008JD010491.
    McFarquhar, G. M., and H. L. Wang. Effects of aerosols on trade wind cumuli over the Indian Ocean:Model simulations. Q.J.R.Meteorol. Soc.,2006,132,821-843.
    Michalsky, J., E. Dutton, D. Nelson, et al. Optimal measurement of surface shortwave irradiance using current instrumentation. J. Atmos. Oceanic Technol.,1999,16,55-69.
    Mishra, M. K., K. Rajeev, B. V. Thampi, et al. Micro pulse lidar observations of mineral dust layer in the lower troposphere over the southwest coast of Peninsular India during the Asian summer monsoon season. Journal of Atmospheric and Solar-terrestrial Physics, 2010,72(17),1251-1259.
    Mahowald, N. M., and J. L. Dufresne. Sensitivity of TOMS aerosol index to boundary layer height:Implications for detection of mineral aerosol sources. Geophys. Res. Lett.,2004, 31, L03103, doi:10.1029/2003GL018865.
    Nee, J. B., C. W. Chiang, H. L. Hu, et al. Lidar measurements of Asian dust storms and dust cloud interactions. J. Geophys. Res.,2007,112, D15202, doi:10.1029/2007JD008476.
    Ohmura, A., E. G. Dutton, B. Forgan, et al. Baseline Surface Radiation Network (BSRN/ WCRP):New precision radiometry for climate research. Bull. Am. Meteorol. Soc.,1998, 79,2115-2136.
    Omar, A. H., D. M. Winker, C. Kittaka, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic. Technol.,2009,26(10): 1994-2014.
    Pan, L., H. Che, F. H. Geng, et al. Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos. Environ.,2010,44(21-22):2587-2596.
    Pathak, B., G. Kalita, K. Bhuyan, et al. Aerosol temporal characteristics and its impact on shortwave radiative forcing at a location in the northeast of India. J. Geophys. Res.,2010, 115,D19204,doi:10.1029/2009JD013462.
    Rajeev, K., K. Parameswaran, B. V. Thampi, et al. Altitude distribution of aerosols over Southeast Arabian Sea coast during pre-monsoon season:elevated layers, long-range transport and atmospheric radiative heating. Atmos. Environ.,2010,44,2597-2604.
    Ramanathan, V., P. J. Crutzen, J. Lelieveld, et al. Indian Ocean Experiment:An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 2001a,106,28,371-28,398.
    Ramanathan, V., P. J. Crutzen, J. T. Kiehl, et al. Aerosols, climate, and the hydrological cycle. Science,2001b,294 (5549):2119-2124.
    Ramanathan, V., M. V. Ramana, G. Roberts, et al. Warming trends in Asia amplified by brown cloud solar absorption. Nature,2007,448,575-578, doi:10.1038/nature06019.
    Ricchiazzi, P., S. R. Yang, C. Gautier, et al. SBDART:a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere, Bull. Amer. Meteor. Soc., 1998,79(10):2101-2114.
    Rosenfeld, D., Y. Rudich, and R. Lahav. Desert dust suppressing precipitation:A possible desertification feedback loop. Proc. Natl. Acad. Sci.,2001,98,5975-5980.
    Rosenfeld D., U. Lohmann, G. B. Raga, et al. Flood or drought:How do aerosols affect precipitation?. Science,2008,321,1309-1313.
    Sakai, T., T. Shibata, S. A. Kwon, et al. Free tropospheric aerosol backscatter, depolarization ratio, and relative humidity measured with the Raman lidar at Nagoya in 1994-1997: Contributions of aerosols from the Asian continent and the Pacific Ocean. Atmos. Environ.,2000,34 (3):431-442.
    Stoffel, T. Solar Infrared Radiation Station handbook, ARM Tech. Rep. ARM-TR-035, Natl. Renewable Energy Lab., Golden, Colo,2005.
    Tsai, F., G. T. J. Chen, T. H. Liu, et al. Characterizing the transport pathways of Asian dust. J. Geophys. Res.,2008,113(D17):D17311, doi:10.1029/2007JD009674.
    Twomey S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 1977,34,1149-1152.
    Wang, S. H., N. H. Lin, M. D. Chou, et al. Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. J. Geophys. Res.,2007,112, D10222, doi:10.1029/2006JD007564.
    Wang, S. H., N. H. Lin, M. D. Chou, et al. Profiling transboundary aerosols over Taiwan and assessing their radiative effects. J. Geophys. Res.,2010,115, D00K31.
    Xia, X., Z. Li, B. Holben, et al. Aerosol optical properties and radiative effects in the Yangtze Delta region of China. J. Geophys. Res.,2007,112, D22S12.
    Xu, J., M. H. Bergin, X. Yu, et al. Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China. Atmos. Environ.,2002,36(2):161-173.
    Yu, H., Y. J. Kaufman, M. Chin, et al. A review of measurement-based assessments of aerosol direct radiative effect and forcing. Atmos. Chem. Phys.,2006,6,613-666.
    Yu, H., P. K. Quinn, G. Feingold, et al. Remote sensing and in-situ measurements of aerosol properties, burdens, and radiative forcing, in Atmospheric Aerosol Properties and Climate Impacts:Synthesis and Assessment Product 2.3:Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, edited by M. Chi, R. A. Kahn, and S. E. Schwartz, pp.21-54, U.S. Clim. Change Sci. Program, Washington, D. C.,2009.
    Yu, X., B. Zhu, and M. Zhang. Seasonal variability of aerosol optical properties over Beijing. Atmos. Environ.,2009,43(26):4095-4101.
    Zhou, J., G. Yu, C. Jin, et al. Lidar observations of Asian dust over Hefei, China, in spring 2000. J. Geophys. Res.,2002,107(D15),4252, doi:10.1029/2001JD000802.
    Alpert, P., Y. J. Kaufman, Y. Shay-El, et al. Quantification of dust-forced heating of the lower troposphere. Nature,1998,395,367-370.
    Anderson, T. L., S. J. Masonis, D. S. Covert, et al. Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia. J. Geophys. Res.,2003, 108(D23),doi:10.1029/2002JD003247.
    Bush, B. C., and F. P. J. Valero. Spectral aerosol radiative forcing at the surface during the Indian Ocean experiment (INDOEX). J. Geophys. Res.,2002,107(D19),8003.
    Bush, B. C., and F. P. J. Valero. Surface aerosol radiative forcing at Gosan during the ACE-Asia campaign. J. Geophys. Res.,2003,108(D23), doi:10.1029/2002JD003233.
    Cavalieri, O., F. Cairo, F. Fierli, et al. Variability of aerosol vertical distribution in the Sahel. Atmos. Chem. Phys. Discuss.,2010,10(7),17609-17655.
    Chiang, C.W, S. K. Das, and J. B. Nee. Lidar depolarization measurements for aerosol source and property studies over Chungli (24.58°N,121.1°E). Atmos. Res.,2008a,90(2-4), 203-210.
    Chiang, C.W, S. K. Das, and J. B. Nee. An iterative calculation to derive extinction-to-backscatter ratio based on lidar measurements. Journal of Quantitative Spectroscopy and Radiative Transfer,2008b,109,1187-1195.
    Christensen, J. H. The Danish eulerian hemispheric model-A three-dimensional air pollution model used for the Arctic. Atmos. Environ.,1997,31,4169-4191.
    Forster, P., et al. Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007:The Physical Science Basis, Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al.. pp.129-234, Cambridge Univ. Press, Cambridge, U. K.,2007.
    Gadhavi, H. and A. Jayaraman. Airborne lidar study of the vertical distribution of aerosol over Hyderabad, an urban site in central India, and its implication for radiative forcing calculations. Ann.Geophys.,2006,24(10):2461-2470.
    Han, Y., X. Fang, T. L. Zhao, et al. Long range trans-Pacific transport and deposition of Asian dust aerosols. Journal of Environmental Sciences,2008,20(4),424-428.
    Huang, J., P. Minnis, B. Chen, et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res.,2008, 113, D23212, doi:10.1029/2008JD010620.
    Huang, Z., J. Huang, J. Bi, et al. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. J. Geophys. Res.,2010, 115, D00K15, doi:10.1029/2009JD013273.
    Kim, S. W., S. C. Yoon, J. Y. Kim, et al. Asian dust event observed in Seoul, Korea, during 29-31 May 2008:Analysis of transport and vertical distribution of dust particles from lidar and surface measurements. Science of the Total Environment,2010,408, 1707-1718.
    Lee, C. T., M. T. Chuang, C. C Chan, et al. Aerosol characteristics from the Taiwan aerosol supersite in the Asian yellow-dust periods of 2002. Atmos. Environ.,2006,40, 3409-3418.
    Levy, R. C., L. A. Remer, and O. Dubovic. Global aerosol optical models and application to MODIS aerosol retrieval over land. J. Geophys. Res.,2007,112, D13210.
    Li, Z., H. Chen, M. Cribb, et al. Preface to special section on East Asian Studies of Tropospheric Aerosols:An International Regional Experiment (EAST-AIRE). J. Geophys. Res.,2007,112, D22S00, doi:10.1029/2007JD008853.
    Liu, T. H., F. Tsai, S. C. Hsu, et al. Southeastward transport of Asian dust:Source, transport and its contributions to Taiwan. Atmos. Environ.,2009,43(2):458-467.
    Liu, Z., N. Sugimoto, and T. Murayam. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. Appl. Opt.,2002,41(15): 2760-2767.
    Matthias T., A. Ansmann, D. Muller, et al. Particle backscatter, extinction, and lidar ratio profiling with Raman lidar in south and north China. Appl. Opt.,2007,46,6302-6308.
    McFarquhar, G. M., and H. L.Wang. Effects of aerosols on trade wind cumuli over the Indian Ocean:Model simulations. Q. J. R. Meteorol. Soc.,2006,132,821-843.
    Meloni, D., A. di Satra, T. Dilorio, et al. Influence of the vertical profile of Saharan dust on the visible direct radiative forcing. Journal of Quantitative Spectroscopy and Radiative Transfer,2005,93(4):397-413.
    Muller D., A. Ansmann, I. Mattis, et al. Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res.,2007,112(D16), doi:10.1029/2006JD008292.
    Murayama, T., S. J. Masonis, J. Redemann, et al. An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia. J. Geophys. Res.,2003,108(D23), doi:10.1029/2003JD004153.
    Nee, J. B., C.W. Chiang, H. L. Hu, et al. Lidar measurements of Asian dust storms and dust cloud interactions. J. Geophys. Res.,2007,112(D15), doi:10.1029/2007JD008476.
    Noh, Y. M., Y. J. Kim, and D. Muller. Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn. Atmos. Environ.,2008,42(9): 2208-2224.
    Ogunjobi, K., and Y. Kim, Aerosol characteristics and surface radiative forcing components during a dust outbreak in Gwangju, Republic of Korea. Environmental Monitoring and Assessment,2008,137(1):111-126.
    Pandithurai, G., S. Dipu, K. K. Dani, et al. Aerosol radiative forcing during dust events over New Delhi, India. J. Geophys. Res.,2008,113(D13), doi:10.1029/2008JD009804.
    Park, C. B., J. H. Kim, and C. H. Lee. Measurement of Asian dust by using of multiwavelength lidar. SPIE,2001,4153,124-131.
    Ramanathan, V., M. V. Ramana, G. Roberts, et al. Warming trends in Asia amplified by brown cloud solar absorption. Nature,2007,448, doi:10.1038/nature06019.
    Raut, J. C., and P. Chazette. Radiative budget in the presence of multi-layered aerosol structures in the framework of AMMA SOP-0. Atmos. Chem. Phys.,2008,8(22): 6839-6864.
    Sakai, T., T. Shibata, Y. Iwasaka, et al. Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan. Atmos. Environ.,2002, 36(35):5479-5489.
    Satheesh, S. K., S. Deepshikha, and J. Srinivasan. Impact of dust aerosols on Earth-atmosphere clear-sky albedo and its short wave radiative forcing over African and Arabian regions. Int. J. Remote Sens.,2006,27(8):1691-1706.
    Shimizu, A., N. Sugimoto, I. Matsui, et al. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res., 2004,109, D19S17, doi:10.1029/2002JD003253.
    Smoydzin, L., A. Teller, H. Tost, et al. Impact of mineral dust on cloud formation in a Saharan outflow region. Atmos. Chem. Phys. Discuss.,2011,11,32363-32390.
    Sugimoto, N., I. Matsui, Z. Liu, et al. Observation of aerosols and clouds using a two-wavelength polarization lidar during the Nauru99 experiment. Sea and Sky,2000, 76,93-98.
    Torres, O., A. Tanskanen, B. Veihelmann, et al. Aerosols and surface UV products from OMI observations:An overview. J. Geophys. Res.,2007,112, D24S47.
    Winker, D. M., W. H. Hunt, and M. J.McGill. Initial performance assessment of CALIOP. Geophys. Res. Lett.,2007,34, L19803, doi:10.1029/2007GL030135.
    Won, J. G., S. C Yoon, S. W. Kim, et al. Estimation of direct radiative forcing of Asian dust aerosols with sun/sky radiometer and lidar measurements at Gosan, Korea. Journal of the Meteorological Society of Japan,2004,82,115-130.
    Yoon, S. C., J. G. Won, A. H. Omar, et al. Estimation of the radiative forcing by key aerosol types in worldwide locations using a column model and AERONET data. Atmos. Environ.,2005,39 (35):6620-6630.
    Zheng, Y., J. Liu, R. J. Wu, et al. Seasonal statistical characteristics of aerosol optical properties at a site near a dust region in China. J. Geophys. Res.,2008,113, D16205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700