中国海洋上空气溶胶监测及时空变化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为气候模拟中最不确定的因子,气溶胶在全球和区域气候变化中扮演着重要的角色。海洋上空气溶胶的沉降会对海洋水体产生重大的影响,海洋还是自然气溶胶、海盐气溶胶和水汽的主要来源。为了全面了解气溶胶粒子在生物地球化学循环和气候变化中的重要作用,需要在大范围内确定气溶胶的性质,而目前对于中国海域上空大气气溶胶的分布状况和辐射特性却由于数据资料的缺乏,而知之甚少。因此进行海洋气溶胶的联网监测,获得准确的海洋气溶胶的时空分布是我们急需解决的问题。
     本文进行了海洋气溶胶监测关键技术研究,包括监测仪器的反演算法、数据采集和后处理、仪器定标的研究,为海洋气溶胶业务监测网的建设和运行奠定了基础。根据太阳光度计测量气溶胶光学厚度的原理,编写了利用仪器测量电信号反演气溶胶光学厚度的程序,与仪器输出的结果相比,误差小于0.005;船基走航测量海洋气溶胶时,改变了太阳光度计的默认内置参数并对测量数据进行基于COV方法的后处理,有效的减小了船体晃动和薄云对结果的影响;在原有的地物光谱仪气溶胶光学厚度算法基础上进行了改进,消除了天空光观测时使用挡板带来的误差,反演结果的误差小于WMO要求的观测精度0.05.
     本文首次利用654组船基和约1万组岸岛基实测数据对中国海域气溶胶的时空分布和模态信息进行了全面的分析。渤海、北黄海、南黄海和南海四个海域相比,南海受陆地影响小且降水充沛,空气最为清洁,北黄海周边的辽宁和朝鲜工业污染较轻,空气清洁度次之;渤海受四周陆地工业污染的影响,空气最为污浊,只在渤海西侧北戴河至曹妃甸沿岸海域和渤海中部,大气比较清洁;南黄海海域受临近的山东、江苏和长三角工业污染和海雾的影响,空气也比较污浊。Angstrom指数α在莱州湾、辽东湾、渤海海峡、辽河口、威海北部、大连东部等沿岸海域随地域变化较大,而在外海变化相对较小;当空气比较清洁(β<0.2)时,气溶胶成分的变化成为AOD变化的主要原因,α与AOD一般呈正相关;而空气比较浑浊(β>0.2)时,AOD变化的影响因子也比较多,AOD与α没有明确的关系,只在某些断面α与AOD呈负相关。渤黄海海域冬季寒冷干燥,AOD为全年的极小值,春夏季受到沙尘暴和海雾的影响,AOD为全年的极大值。位于黄海的圆岛气溶胶监测站可以很好地反映这种趋势,而位于大连岸边的监测站,冬季受到供暖产生的烟雾气溶胶的影响,AOD为全年最大值,不能很好地反映渤黄海海域海洋气溶胶的变化情况。南方海域,AOD极大值出现在冬季,到了夏秋季,因为大量降水的冲刷和盛行东南风带来的海盐气溶胶,AOD为全年极小值。位于东海的三沙监测站和南海的大万山监测站都是这种情况。
     根据Angstrom指数和浑浊度系数性质的不同,将中国海洋气溶胶分为三个模态(主要适用于北方海域),清洁大气型气溶胶(背景气溶胶)、沙尘型气溶胶、混合模态型气溶胶。其中清洁大气性气溶胶占总数的55%,可作为中国海域的背景气溶胶;沙尘型气溶胶占12%,主要受陆地沙尘影响,分布在沿岸海域;混合模态型气溶胶占33%。
     本文利用长时间AOD序列分析了不同时间窗口下气溶胶的变化规律,为卫星数据真实性检验最佳时间窗口的选择和反演误差的分析提供了依据。气溶胶光学厚度较小时,它的变化也比较小;气溶胶光学厚度较大时,它的变化也比较大。随着时间窗口的增大,窗口下的气溶胶光学厚度序列的平均相对误差和平均绝对误差也逐渐增大。在同一个时间窗口,随着AOD的增大,平均绝对误差分布范围增大,均值增大,而平均相对误差变化不大。AOD变化小的站点,时间窗口可以选的大一些;而AOD变化较剧烈的站点,时间窗口就要相应减小。气溶胶光学厚度卫星遥感数据真实性检验在中国海域的时间窗口不应超过±0.5h。
     研究期间,作者承担了海洋观测技术规范关于气溶胶观测规范的编写工作,并撰写了5篇科研论文,其中3篇已发表,1篇待发表,1篇在审稿中。
As the most uncertain factor in the climate simulation, aerosol plays an importantrole in the global and regional climate change. The deposition of aerosols over seashas significant impact on the seawater which is also the main source of natural aerosol,salt aerosol and moisture. In order to comprehensively understand the role of theaerosol in the biogeochemical cycle and climate change, the aerosol characteristicshould be investigated. But now the characteristic and distribution of the aerosol overChina Sea are not clear because of the lack of monitoring data. Therefore, it is urgentto study the monitoring technique of the marine aerosols, and put the observed data ofaerosol over China Sea into network.
     The key techniques in marine aerosol monitoring which contains inversionalgorithm of the observation instrument, data acquisition and post-processing andcalibration, are investigated in this study. The observation methods of monitoringmarine aerosol by using instruments have been established. Computer program whichcalculates aerosol optical depth (AOD) from digital signals is developed based onAOD measuring principle of sun photometer; the errors of root-mean-square are lessthan0.05, compared with output results of sun photometer. When the sun photometeris used to measure AOD on ships, the default settings should be changed and the datashould be post-processed based on COV methods in order to decrease the influence ofthe poor platform stability. An improved method for measuring AOD using fieldspectrometer is proposed, which could remove the error produced by the baffle-boardused in the observation.
     In this paper,654groups of data obtained using Microtops sunphotometer onship and more than10,000groups of data obtained using CE318were taken toanalyze the temporal and spatial distributions and types of the marine aerosols overChina Sea. Air over the South China Sea is cleanest due to the small influence of landand abundant precipitation. The industrial pollution of Liaoning and North Koreawhich are nearby the North Yellow Sea is lighter, so air over the North Yellow Sea isrelatively clean too. Air over Bohai Sea is the most turbid due to nearby industrialpollution, and the clean air just distributes over Beidaihe to Caofeidian in the westerncoast and the center area of Bohai Sea. Air over the South Yellow sea is relativelyturbid due to the industrial pollution of Shandong, Jiangsu and the Yangtze RiverDelta nearby and frequent sea fog. The variation of Angstrom exponent is larger overthe Laizhou Bay, Liaodong Bay, Bohai Strait, Liaohe Estuary, northern area of Weihaicity, and eastern of Dalian city while it is smaller over the areas far from land. When βis smaller than0.2, air is relatively clean, and the variation of aerosol composition isthe main reason of the variation of AOD, so there is a positive correlation between α and AOD. When β is larger than0.2, air is relatively turbid and the aerosol particlesare from sandstorm or air pollution. There are several factors which can influence thevariation of AOD, so there is not a definite correlation between α and AOD, eventhere is a negative correlation between α and AOD in some sections. In Bohai Sea andYellow sea, AOD shows minimum value in the cold and dry winter while AOD showsmaximum value in spring and summer because of the influence of sandstorm and seafog. AOD monitored at Yuandao Station located in Yellow Sea could present this trendtoo. But AOD monitored in Dalian shows a maximum in winter because of theinfluence of fuel burning for winter heating. In the southern seas, AOD shows amaximum in winter and a minimum in summer because of the the washing out oflarge amounts of precipitation and salt aerosols brought by southeast monsoon. AODmonitored over Sansha Station and Dawanshan Station shows this trend.
     According to the difference of Angstrom exponent and turbidity coefficient, themarine aerosol (mainly in the northern seas) could be divided into three types: cleanair aerosol (background aerosol), dust aerosol, mixed-mode aerosol. The clean airaerosols account for55%of the total monitoring station which could be considered asthe background aerosol, dust aerosols account for12%and the mixed-mode aerosolsaccount for33%.
     The temporal variations in different time window are analyzed from a long timeAOD serial, which provides a basis for selecting the optimal time window in erroranalysis of inversion algorithm for satellite data validation. When AOD is small, itsvariation is small; and when AOD is large, its variation is large. As the time windowbecomes larger, both the average relative error and absolute error of the AOD serialincrease. Under the same time window, the average absolute error increases as theAOD increases, but the average relative error changes little. At the station with littleAOD change, a large window could be selected; and at the station with large AODchange, a small window should be selected. The optimal time window could not belarge than±0.5h in the satellite validation over China Sea.
引文
[1]Holben B.N.,Eck T.F.,Slutsker I.,et al. A federated instrument network and data archive foraerosol characterization[J].Remote Sensing of Environment,1998,66:l~16.
    [2]David, R. Brooks,F.M.Ⅲ.Mims,Development of an inexpensive handheld LED-based Sunphotometer for the GLOBE program[J]. J. Geophys. Res.,2001,106(D5):4733~4740.
    [3]辛金元,王跃思,李占清,王普才,王式功,温天雪,孙扬,中国大气气溶胶光学特性及其时空分布联网观测与研究(l)——太阳分光辐射观测网的建立和定标分析[J].环境科学,2006,27(9),1697~1702.
    [4]Kaufinan Y.J., Tanre D., Boueher O. A satellite view of aerosols in the climatesystem[J].Nature2002,419:215~223.
    [5].王莉莉,辛金元,王跃思,李占清,王普才,刘广仁,温天雪,CSHNET观测网评估MODIS气溶胶产品在中国区域的适用性[J],科学通报,52(4),2007,477~456。
    [6]邱金桓,陈洪滨,王普才,吕达仁,大气遥感研究展望[J].大气科学,2005,29(1),131~136.
    [7]Myhre G..,F. Stordal,K. Restad and I.S.A. Isakaen,Estimation of the direct radiative forcingdue to sulfate and soot aerosols[J]. Tellus,1998,50B,463~477.
    [8]Roeckner E.,L. Bengtsson,J. Feichter,J. Lelieveld and H. Rodhe,Transient climate changesimulation with a coupled atmosphereocean GCM including the tropospheric sulphur cycle[J].J.Climate,1999,12,3004~3032.
    [9]Taylor K.E. and J.E. Penner,Response of the climate system to atmospheric aerosols andgreenhouse gases[J]. Nature,1994,369,734~737.
    [10]Kinne S.,et al.,Monthly averages of aerosol Properties: A global comparison among models,satellite data,and AERONET ground data[J]. J. Geophys. Res.,2003,Vol:108,NO.D20,4634,doi:10.1029/200lJD001253.
    [11]Liu L.,et al.,Improving GCM Aerosol Climatology using Satellite and Ground~BasedMeasurements[M].Fifteenth ARM Science Team Meeting Proceedings,2005,l~14.
    [12]Penner J.E.,et al.,A comparison of model-and satellite-derived aerosol optical depth andreflectivity[J]. J. Atmos. Sci.,2002,59,441~460.
    [13]Ramanathan V.,Crutzen P.J.,et al. Indian ocean Experiment: An integrated analysis of theclimate forcing and effects of the great Indo-Asian haze[J]. Journal of GeophysicalResearch,2001,106:28371~28398
    [14]Huebert B.J.,Bates T.,Russell T.,et al. An overview of ACE-Asia: Strategies for quantifyingthe relationships between Asian aerosols and their climatic impacts[J]. Journal ofGeophysical Research,2003,108(D23):8633,doi:10.1029/2003JD003550.
    [15]王明星.大气化学概论,北京,气象出版社,1999.
    [16]Andreas, M. O., W. R. Barnard, The marine chemistry of dimethylsulfide[J]. MarineChemistry,1984,14,267~279.
    [17]Duce R.A.,1983. Biogeochemical cycles and the Air-Sea Exchange of Aerosols, In B. Bolinand R. B. Cook(eds.), The major biogeochemical Cycles and their interactions, Wiley, NewYork.
    [18]Charlson, R.J.,J.E. Lovelock, M.O. Andreae and S.G. Warren, Oceanic phytoplankton,atmospheric sulphur, cloud albedo and climate[J]. Nature,1987,255,423~430.
    [19]Heathershaw A.D., Bursting phenomena in the sea[J]. Nature,1974,394~395.
    [20]Fairall C.W., K.L. Davidson and G.E. Schacher, An analysis of the surface production ofsea-salt aerosols[J], Tellus,1983,35B,31~39.
    [21]Hoppel W.A., J.W. Fitzgerald, G.M. Frick, R.E. Larson and E.J. Mack, Aerosol sizedistribution and optical properties found in the marine boundary layer over the Atlanticocean[J]. J. Geophys. Res.,1990,95,3659~3686.
    [22]Prospero J.M.,1981. Eolian transport to the world ocean, The sea, Vol Ⅶ, The OceanicLithosphere, Ed. C. Emiliani, New York: Wiley,801~874.
    [23]Pye K.,1987. Eolian Dust and Dust deposit, London: Academic Press335.
    [24]Crutzen P.J.,1983. Atmospheric interaction-Homogeneous gas reactions of C,N, andScontaining compounds,67~144, In B. Bolin and R.B. Cook(eds.),The majorbiogeochemical Cycles and their interactions, Wiley, NewYork.
    [25]Taylor G.S., M.B. Baker and R.J. Charlson,1983. Heterogeneous Interactions of the C,N andS cycles in the atmosphere: the role of Aerosols and clouds, In: B. Bolin and R.B. Cook(eds.),The major biogeochemical Cycles and their interactions, New York: Wiley.
    [26]Remer,L.A.,Y. J. Kaufman,B. N. Holben.,et al.,Biomass buming aerosol size distributionand modeled optical properties [J]. J Geophys Res,1998,103:31879~31891.
    [27]Reid, J. S.,P. V. Hobbs,Physical and optical properties of young smoke from individualbiomass fires in Brazil[J]. J Geophys Res,1998,103:32013~32031.
    [28]D’Almeida,G. A.,On the variability of dessert aerosol radiative characteristics[J].J GeophysRes,1987,92:3017~3026.
    [29]Kavouras,1. G.,N. MihaloPoulos,E. Stephanou,Formation of atmospheric Particles fromorganic acids produced by forests[J].Nature,1998,395:683~686.
    [30]Artaxo,P.,H. Storms,F. Bruynseelset, et al.,Composition and sourced of aerosol from theAmazon Basin[J]. J Geophys Res,1988,93:1605~1615.
    [31]Russell,P. B.,J. M. Livingston,E. G. Dutton,et al.,Pinatubo and pre-Pinatubo optical depthspectra: Mauna Loa measurements,comparisons,inferred particle size distributions, radiativeeffects,and relationship to lidar data[J]. JGeophys Res,1993,98:22969~22985.
    [32]Hansen J.,M. Sato and R. Ruedy,Radiative forcings and climate response[J]. Joumal ofGeophysical Research,1997a,102,6831~6864.
    [33]Hansen J.,M. Sato,R. Ruedy et al.,Forcings and chaos in interannual to decadal climatechange[J]. Journal of Geophysical Research,1997b,102(D22),25679~25720.
    [34]Haywood J.M.,0. Boncher,Estimates of the direct and indirect radiative forcing due totropospheric aerosols: a review[J]. Revs. Geophys,2000,38:513~543.
    [35]Seinfeld J.H.,G.R. Carmichael,R. Arimoto,et al.,Regional climatic and atmosphericchemical effects of Asian dust and pollution[J]. Bulletin of American MeteorologicalSociety,2004,55,(3),367~350.
    [36]Shaw G.E.,Error analysis of multi-wavelengh sun photometry[J]. Pure Appl Geophys,1976,114:1~14.
    [37]Kiehl J.T. and B.P. Briegleb,The relative roles of sulfate aerosol and greenhouse gases inclimate forcing[J]. Scienee,1993,260,3141.
    [38]Kaufiuan Y,J.,D. Tanre,H.R. Gordon et al.,Passive remote sensing of tropospheric aerosoland atmospheric correction for the aerosol effect [J]. Joumal of Geophysical Research,1997,102,16815~16830.
    [39]Charlson R.J.,S.E. Sohwartz,J.M. Hales,R.D. Cess,J.A. Coakley,Jr.,J.E Hansen,andD.J. Hoffmann,Climate forcing by anthropogenic aerosols[J]. Scienc,1992,255,423~430.
    [40]Coakley J.A.Jr. and R.D. Cess, Response of the NCAR community climate model to theradiative forcing by the naturally occurning tropospheric aerosols[J]. J. Atmos. Sci.,1985,42,1677~1692.
    [41]Tanre D., J.F. Geleyn and J. Slingo,1984. First results of the introduction of an advancedaerosol-radiation interaction in ECMWF low resolution global model, In: Aerosols and theirclimatic effects, Eds. H.E. Gender and A. Deepak, Hampton, Virginis, Deepak Publishing,133~177.
    [42]Houghton J.T.,全球变暖,戴晓苏,石广玉等译,北京:气象出版社,1998.
    [43]李冰,刘小红,洪忠祥,积云对二氧化硫和硫酸盐气溶胶作用的研究[J],气候与环境研究,2000.5(1),20~24.
    [44]Twomey S.A. and J. Warner, Comparison of measurements of cloud droplets and cloudnuclei[J], J. Atmos, Sci.,1967,24,702~703.
    [45]Hobbs P.V. and J.D. Locatelli, Ice nucleus measurements at three sites in WesternWashington[J]. J. Atmos. Sci.,1970,27,90~100.
    [46]Wigley T.M.L., Possible climate change due to SO2derived cloud condensation nuclei[J].Nature,1989,339,355~357.
    [47]Hegg D.A., Heterogeneous production of cloud condensation nuclei in the marineatmosphere[J]. Geophys. Res. Lett.,1990,17,2165~2188.
    [48]Twomey S.A.,1977. An introductiong to the mathematics of inversion in remote sensing andindirect measurements, Developments in Geomathematics,3, Elsevier Scientific PublishingCompany, P.O. Box330, Amsterdam, The Netherlands,243.
    [49]Twomey S.A., M. Piepgrass and T.L. Wolfe, An assessment of the impact of pollution on theglobal albedo[J], Tellus,1984,36b,356~366.
    [50]Coakley J.A., Jr., R.L. Bernstein and P.A. Durkee, Effect of ship stack effluents on cloudreflectance[J]. Science,1987,237,953~1084.
    [51]Radke L.F., J.A. Coakley and M.D. King, Direct and remote sensing observations of the effectof ships on clouds[J]. Science,1989,246,1146~1149.
    [52]Kaufman Y.J. and T. Nakajima, Effect of Amazon Smoke on Cloud Microphysics andAlbedo-Analysis from Satellite Imagery[J]. J. Appl. Meteor.,1993,32,729~744.
    [53]王明星,气溶胶与气候[J],气候与环境研究,2000,5(1),58~66.
    [54]Liou K.N., K.P. Freeman and T. Sasamori, Cloud and aerosol effects on the solarheating rateof the atmosphere[J]. Tellus,1978,30,62~70.
    [55]Coakley J.R., D. Cess and F.B. Yurevich, The effect of tropospheric aerosol on the earth’sradiation budget: a parameterization for climate models[J]. J. Atmos. Sci.,1983,40,116~138.
    [56]Kaufman Y.J., R.S. Fraser and Mahoney, Fossil fuel and biomass burning effect onclimate-Heating or cooling[J], J. Clim.,1991,4,578~588.
    [57]Kaufman Y.J. and M.D. Chou, Model simulations of the competing climatic effects of SO2and CO2[J], J. of Climate,1993,6,1241~1252.
    [58]Langner J., H. Rodhe, P.J. Crutzen and P. Zimmermamn, Anthropogenic influence on thedistribution of tropospheric sulphate aerosol[J]. Nature,1993,359,712~715.
    [59]Kaufman Y.J. and D. Tanre, Variations in cloud supersaturation and the aerosol indirect effecton climate[J]. Nature,1994,369,45~48.
    [60]Penner J.E., R.E. Dickinson, C.A. O’Neill, Effects of aerosol from biomass burning on theglobal radiation budget[J]. Science,1992,256,1432~1434.
    [61]Li X., H. Maring, D. Savoie, K. Voss and J.M. Prospero, Dominance of minenaldust in aerosollight scattering in the North Atlantic trade winds[J]. Nature,1996,380,416~419.
    [62]Tegen I., A.A. Lacis and I. Fung, The influence on climate forcing of mineral aerosols fromdisturbed soils[J], Nature,1996,380,419~422.
    [63]Hansen,J. E. and A. A. Lacis,Sun and dust versus greenhouse gases: an assessment of theirrelative roles in global climate change[J].Nature,1990,346:713~719.
    [64]王喜红,石广玉,东亚地区人为气溶胶柱含量变化的模拟研究[J],气候与环境研究,2000,5(1),58~66.
    [65]张立盛,石广玉,全球人为硫酸盐和烟尘气溶胶资料及其光学厚度的分布特征[J],气候与环境研究,2000,5(1),67~74.
    [66] Houghton J.T.(eds.), Climate Change1994, Radiative forcing of climate change and anevaluation of the IPCC IS92emission sciences, Intergovernmental Panel on Climate Change,Cambridge University Press,1995.
    [67]Santer B.D., K.E. Taylor, T.M.L. Wigley, T.C. Johns, P.D. JonesD.J. Karoly, J.F.B. Mitchell,A.H. Oort, J.E. Penner, V. Ramaswamy, M.D. Schwarzkopf, F.J. Stouffer and S. Tett, Asearch for human influences on the thermal structure of the atmosphere[J]. Nature,1996,382,39~46.
    [68]Houghton J.T.(eds.), Climate Change1995, The Science of Climate Change, Contribution ofWGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press,1996.
    [69]Eck,T. F.,B. N. Holben,J. S. Reid,et al.,Wavelength dependence of the optical depth ofbiomass buming, urban, and desert dust aerosols[J]. J Geophys Res,1999,104(D24):31333~31350.
    [70]Dubovik,0.,B. N. HOlben,T. F. Eck,et al.,Variability of Absorption and optical Propertiesof Key Aerosol Types Observed in World wide Locations[J]. Joumal of the AtmosphericSciences,2002,59(3):590~608.
    [71]Kim,D.,B. Sohn,T. Nakajima,et al. Aerosol optical Properties over East Asia determinedfrom ground-based sky radiation measurements[J]. J Geophys Res,2004,109:D02209.
    [72]Hansen, J.,W. Rossow,B. Carlson,A. Lacis,L. Travis,A. Delgenio,1. Fung,B. Cairns,M. Mishchenko,and M. Sato,Low-coast long-term monitoring of global climate forcings andfeedbacks[J]. Climatic Changes,1995,31:247~271.
    [73]Remer, L. A.,S. Gasso,D. A. Hegg, et al. Urban/industrial aerosol: Ground-based sun/skyradiometer and airborne in situ measurements[J]. J Geophys Res,1997,102:16849~16859,
    [74]Ackerman,P.,0. B. Toon,Absorption of visible radiation in atmosphere containing mixturesof absorbing and nonabsorbing Particles[J]. AppI Opt,1981,20:3661~3668.
    [75]Jacobson, M. Z. Strong radiative heating due to the mixing state of black carbon inatmospheric aerosols[J]. Nature,2001,409:695~697.
    [76]Satheesh,S. K.,K. K. Moorthy,Radiative effects of natural aerosols: A review[J].Atmospheric Environment,2005,39(11):2059~2110.
    [77]Ppoe A.C.,et al. Particulate air pollution as a predictor of mortality in a prospective study forUS adults[J]. American Journal of Resp. and Crit, Care Medicine,1995,151,669~674.
    [78]Samet J.M, Dominici F., Curriero F.C., Fine particulate air pollution and mortality in20UScities,1987-1994[J]. N. engl. J. Med.,2000,343,1742~1749.
    [79]Pope C.A. Rveiew: epidemiological basis for particulate air pollution healh standards[J].Aerosol Sci. Technol.,2000,32,4~14.
    [80]任阵海,万本太,虞统等.不同尺度大气系统对污染边界层的影响及其水平流场输送[J].环境科学研究,2004,17(l),7~13.
    [81]IPCC. Third Assessment Report,Climate Change2001: The Scientific Basis. New York:Cambridge University Press,2001.
    [82]Bates T.S. Preface to special section: First Aerosol Characterization Experiment (ACE-l)Part2[J]. Journal of Geophysical Research,1999,104,P.ZI,645.
    [83]Wood, R.D.W. Jolmson,S.R. Osborne. Boundary Layer,aerosol and chemical evolutionduring the third Lagrangian experiment of ACE-2[J]. Tellus,2000,52B:401~422.
    [84]Rajeev K., V. Ramanathan. Regional Aerosol Distribution and its Longrange Transport overthe Indian oeean[J]. Journal of Geophysical Research,2000,105(DZ):2029~2043.
    [85]Alfaro S.C., et al. Chemical and optical characterization of aerosols measured in spring2002at the ACE-Asia supersite,Zhenbeitai, China[J]. Journal of Geophysical Research,2003,108(D23),8641,doi:10.1029/2002JD003214.
    [86]Rates F.,Vandingenen R.,Vignati E.,et al. Formation and cycling of aerosols in the globaltroposphere[J]. Atmospheric Environment,2000,34:4215~240.
    [87]Barth M.C.,Rasch P.J.,Kiehl J.T.,et al. Sulfur chemistry in the national center foratmospheric research community climate model: Description,evaluation,features andsensitivity to aqueous chemistry[J]. Journal of Geophysical Research,2000,105:1387~1415.
    [88]Rasch P.J.,Barth M.C.,Kiehl J.T.,et al. A description of the global Sulfur cycle and itscontrolling Processes in the national center for atmospheric research community climatemodel,version3[J]. Journal of Geophysical Research,2000,105:1367~1385.
    [89]Nakajma T.,M. Sekiguchi,T. Takemura,et al., Significance of direct and indirect radiativeforcings of aerosols in the East China Sea region[J]. J. Geophys. Res.,2003,108(D23):8658~8674.
    [90]张小曳,中国大气气溶胶及其气候效应的研究[J],地球科学进展,2007,22(l):12~16.
    [91]WMO. Strategy for the Implemeniation of the Global Atmosphere Watch Programme(2001~2007),WMO No.142.World Meteorological Organization,Geneva,2001:43~45.
    [92]WMO. Aerosol measurement procedures guidelines and recommendations,WMO No.153.World Meteorological Organization,Geneva,2003:24~37.
    [93]Holben B.N.,Tanre D.,Smirnov A.,et al. An emerging ground-based aerosol climatology:aerosol optical depth from AERONET[J]. Journal of Geophysical Research,2001,106:12067~12098.
    [94]辛金元,王跃思,李占清等.中国大气气溶胶光学特性及其时空分布联网观测与研究(l)-太阳分光辐射观测网的建立和仪器定标分析[J].环境科学,2006,27(9):1123~1134.
    [95]李成才,毛节泰,刘启汉,等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J].科学通报,2003,45(19):2194~2200.
    [96]张军华,斯召俊,毛节泰等.GMS卫星遥感中国地区气溶胶光学厚度[J].大气科学,2003,27(l):23~35
    [97]Massie S.T.,Torres O.,Smith S.J., Total Ozone Mapping Spectrometer(TOMS) observationsof increases in Asia aerosol in winter from1979to2000[J]. J. Geophys. Res.,2004,109(D18211):doi:10.1029/2004J’DO04620
    [98]施晓晖,徐祥德,张胜军,丁国安.EOF模型分析北京周边气溶胶影响域气候变化显著性特征〔J].中国科学D辑,2005,35(增刊I):206~218
    [99]李放,吕达仁.北京地区气溶胶光学厚度中长期变化特征[J].大气科学,1996,20(4):385~394.
    [100] Li Fang,Lu Daren. Features of aerosol optical depth with visibility grade over Beijing[J].Atlmos. Environ.,1997,31(20):3413~3419.
    [101]毛节泰,李成才,张军华,刘晓阳,刘启汉. MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比[J].应用气象学报,2002,13(51):127~135
    [77]李晓静,刘玉洁,邱红等.利用MODIS资料反演北京及其周边地区气溶胶光学厚度的方法研究[J].气象学报,2003,61(5):580~591
    [102]李成才,毛节泰,AlexisKai,H.等.利用MODIS光学厚度遥感产品研究北京及周边地区的大气污染[J].大气科学,2003,(05):869~880+951~953
    [103]徐祥德,施晓晖,张胜军等.北京及周边城市群落气溶胶影响域及其相关气候效应[J].科学通报,2005,(22):2522~2530.
    [104]赵秀娟,陈长和,袁铁兰,等.兰州冬季大气气溶胶光学厚度及其与能见度的关系[J],高原气象,2005,24(4):617~622.
    [105]黄艇,陈长和,陈勇航等.利用MODIS卫星资料对比反演兰州地区气溶胶光学厚度[J].高原气象,2006,25(5):556~592
    [106]李成才,刘启汉,毛节泰等.利用MODIS卫星和激光雷达遥感资料研究香港地区的~次大气气溶胶污染[J].应用气象学报,2004,15(6):641~650
    [107]李成才,毛节泰,刘启汉,等.利用MODIS资料遥感香港地区高分辨率气溶胶光学厚度[J].大气科学,2005,29(3):335~342
    [108]李成才,毛节泰,刘启汉.利用MODIS资料遥感香港地区高分辨率气溶胶光学厚度[J].大气学,2005,29(3):335~342.
    [109]段靖,毛节泰.长江三角洲大气气溶胶光学厚度分布和变化趋势研究[J].环境科学学报,2007,27(4):537~543
    [110]宋磊,吕达仁.上海地区大气气溶胶光学特性的初步研究明[J].气候与环境研究,2006,11(2):203~208
    [111]刘毅,周明煌.中国近海大气气溶胶的时间和地理分布特征[J].海洋学报,1999,2l(l):32~40
    [112]Chou M.D.,Chan P.K.,Wang M.H.. Aerosol radiative forcing derived from SeaWiFSretrieved aerosol optical properties[J]. Journal of the Atmospheric Sciences,2002,59:748~757
    [113]郝增周,潘德炉,白雁.SeaWiFS遥感资料分析中国海域气溶胶光学厚度的季节变化和分布特征[J].海洋学研究,2007,25(1):80~87.
    [114]郝增周,潘德炉,孙照渤,等.利用SeaWiFs资料反演我国海域气溶胶粒子密度分布[J].海洋学报,2006,28(6):32~38.
    [115]李正强,赵凤生,赵崴,高飞,唐军武.黄海海域气溶胶光学厚度测量研究.量子电子学报,2003,20(5):635~640.
    [116]谭浩波,吴兑,毕雪岩.南海北部气溶胶光学厚度观测研究.热带海洋学报,2006,25(5):21~25.
    [117]赵崴,唐军武,高飞.黄海、东海上空春季气溶胶光学特性观测分析.海洋学报,2005,27(2):46~53.
    [118]周良明,郭佩芳,刘玉光,2005.渤海海域上空大气衰减光学厚度的研究,高技术通讯,15(6):102~105
    [119]刘亚豪,刘玉光,顾艳镇,2008.渤海及北黄海气溶胶分布特征和大气校正研究,海洋湖沼通报,3:40~62
    [120] BIGGAR S F,GELLMAN D I, SLATER P N. Improved evaluation of optical depthcomponents from Langley plot date [J]. Remote Sens Envir,1990,32:91~101.
    [121]世界气象组织.气象仪器和观测方法指南(第五版)。北京:气象出版社,1992。
    [122]左大康,等。地球表层辐射研究。北京:科学出版社,1991.
    [123]王炳忠,胡波,刘广仁.关于光合光量子传感器的校准问题。太阳能学报,2008,29(1):1~5.
    [124]WMO.Recent progress in sunphotometry:Determination of the aerosol opticaldepth,1986,WMO/TD No.143.
    [125]Smirnov, A., B. N. Holben, I. Slutsker, et al., Maritime Aerosol Network as a component ofAerosol Robotic Network[J]. J. Geophys. Res.,2009,114, D06204,doi:10.1029/2008JD011257.
    [126]王炳忠。太阳能中天文参数的计算[J]太阳能,1999,2:8~10
    [127]Allen, C. W.: Astrophysical Quantities[M]London: Athlone Press,1963,P114
    [128] Kohmyr D.,1980: Operations handbook-ozone observations with a Dobson spectrometer,WMO document, June1980.
    [129]Angstrom,A.,The parameters of atmospheric turbidity[J]. Tellus,1964,16:64~75.
    [130]章澄昌,周文贤,大气气溶胶教程[M].1995,气象出版社.
    [131]Tanre,D.,Y.J. Kaufman,B.N. Holben,et al.,Climatology of dust aerosol size distributionand optical properties derived from remotely sensed data in the solar spectrum [J]. J.Geophys. Res.,2001,106:18205~18217.
    [132].Remer,L.A. and Y.J. Kaufman,Interannual variation of ambient aerosol characteristics onthe east coast of the United States[J]. J. Geophys. Res.,1999,104(D2)2223~2232.
    [133]Portern J.N., Miller M., Pietas C., et al. Ship based sun photometer measurements usingmicrotops sun photometer[J]. J. Ocean Atmos Tech,2001,18:652~662.
    [134]Kirk D.K., Christophe P., Giulietta S.F., Sun-Pointing-Error Correction for Sea Deploymentof the Microtops Handheld Sun Photometer[J]. American Meteorological Society,2003,20:767~771.
    [135]Brooks,D.R.,F.M,Mims,Develop of an inexpensive handheld LED-based Sun photometerfor the GLOBE program. J Geophys,Res,2001,106(D5):4733~4740.
    [136] Slusser J., and J. Gibson,2000:Langley method of calibrating UV filter radiometers. J.Geophys. Res.,105(D4), p4841~4849.
    [137]元雪勇,田庆久。利用地物光谱仪测算大气气溶胶光学厚度方法[J]遥感信息,2004,4:16~18.
    [138]王喜世,闵祥军,吴荣,王先华等。大气光谱光学厚度测量方法研究[J]遥感技术与应用,1997,12(2):8~16.
    [139] Kimes D.S.,Kirehner J A,New comb W W. Applied Optics。1983(22):8~10.
    [140]刘大召,田礼乔,杨锦坤,陈楚群,2008。南海北部海域气溶胶光学厚度研究,热带海洋学报,24(2):205~208。
    [141]罗云峰,李维亮,周秀骥,2001。20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析,气象学报,59(1):77~87。
    [142]孙景群,1983。湿气溶胶的光散射特性,高原气象。2(3):49~54。
    [143]杨军,李子华,黄世鸿,1999。相对湿度对大气气溶胶粒子短波辐射特性的影响,大气科学,23(2):239~247。
    [144]张仁健,王明星,戴淑玲,2000。北京地区气溶胶粒度谱分布初步研究,气候与环境研究,5(1):85~89。
    [145]Shinozuka Y., Antony D. Clarke, Steven G. Howell etal,2007. Aircraft profiles of aerosolmicrophysics and optical properties over North America: Aerosol optical depth and itsassociation with PM2.5and water uptake,Journal of GeophysicalResearch.D,Atmosphere.112(D12):S20.
    [146]李子华,涂晓萍,1996。考虑湿度影响的城市气溶胶夜晚温度效应,大气科学,20(3):359~366。
    [147]时宗波,贺克斌,陈雁菊,杨复沫,张洁,刘燕,马永亮,2008。雾过程对北京市大气颗粒物理化特征的影响,环境科学,29(3):551~556。
    [148]董海鹰,刘毅,管兆勇,2007。MODIS遥感中国近海气溶胶光学厚度的检验分析,南京气象学院学报,30(3):328~337。
    [149]邓学良,2008。卫星遥感中国海域气溶胶光学特性及其辐射强迫研究,南京信息工程大学博士学位论文。
    [150]Radhi M., M. A. Box, G. P. Box and B. W. Forgan,2006.Seasonal Cycles of Aerosol OpticalProperties at Wagga Wagga and Tennant Creek, Australia, Clean Air and EnvironmentalQuality,40(3):40~44.
    [151]王炳忠,莫月琴,杨云.现代气象辐射测量技术.北京:气象出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700