结构—地基动力相互作用计算模型的改进及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型基础设施的建设是适应经济快速发展的重要保障,其中以清洁能源开发为主的高坝及核电站项目正在启动或实施,鉴于结构日趋大型复杂化及西部和东部沿海强震区的特殊性,其抗震安全研究具有重大的现实意义。本文结合中德合作研究项目(GZ566),针对服务年限较长的大型工程结构的抗震安全数值分析进行了深入的研究。
     1.关注于提高无限地基时域数值分析的精度与效率,从解析和数值两方面系统地研究了阻尼溶剂抽取法(Damping Solvent Extraction Method,简称DSEM)时域数值模型求解关键因素的影响,并基于模拟无限域动力特性的机理进行了实质性的探讨。进而,从数值实现中的误差源出发,提出了一种施加较大附加人工阻尼再分步依次移频抽取的阻尼溶剂逐步抽取法,该方法可以最大限度地消除反射波波动能量及抽取人工高阻尼的影响,从而降低了关键因素的相互制约性,使其能较好适应地基有限区域表面几何结构复杂多变的情况。同时,为克服原位移求解模式中存在的结构-地基交界面显-隐式算法积分步长协调性的问题,提出了基于加速度求解的DSEM隐式算法,可方便结合子结构法进行结构侧的动力响应分析。另外,对该无限地基时域模型进行了典型算例验证并推荐了参数取值。
     2.可操作性强是推进结构-无限地基相互作用时域模型在大型工程中应用的必要条件。以通用有限元软件ANAYS开发平台为主体,基于DSSEM无限地基动力计算模型,运用UPFs的二次开发特点,在地基部分创建了人工高阻尼单元来模拟虚加介质阻尼的影响,地基外边界则创建了专门模拟人工边界的三维紧支粘弹性人工边界单元,建立Fortran外部接口进行交界面相互作用力的求解,并结合APDL以及GUI功能实现了基于逐步抽取DSSEM无限地基时域计算模型在ANSYS平台的嵌入,进而利用典型数值算例验证了所开发模型的可靠性和良好的适用性。在此基础上,研究了地基材料非均匀性对相互作用力求解所产生的影响,计算结果表明该模型适用于复杂非均质地基条件下的动力响应分析。
     3.以发展一套完整的基于结构-地基动力相互作用的分析技术为目的,首先在结构-地基交界面推导了一种用以考虑所施加人工高阻尼对结构影响的空间耦联单元,该单元形式是对已有有限单元的继承与拓展,同时,为保证相互作用系统良好的收敛性和精度,提出了增量形式的动力非线性迭代算法,从而基于ANSYS平台建立了适用于大型复杂结构地震非线性问题解决的结构-无限地基动力相互作用计算模型。其次,通过引入了上部结构非线性力学模型、大体积混凝土结构的细观损伤演化等技术,进一步扩充和完善了分析平台的功能模块。最后,通过大岗山拱坝-无限地基系统的地震非线性响应分析,验证了所提出时域模型具有通用性强、可操作性高、以及良好的精确及效率等优势特点,具有较高的工程实用价值;并由Koyna重力坝在强震作用下的破损过程研究验证了细观损伤分析功能的有效性。
     4.在实际工程中被广泛应用是建立结构-地基动力相互作用模型的终极目标。应用本文所开发动力相互作用分析平台,笔者进行了多个实际工程的计算分析与相关研究。其中,以某核电站CPR1000堆型反应堆厂房作为研究对象进行了楼层反应谱分析,对于评价核电厂地基适应性具有一定的指导与参考意义;以高速列车在铁路桥梁上的走行安全性为出发点,建立了合理高效的高速列车-轨道-桥梁-地基时变系统模型并进行了地震激励下的响应分析,为解决复杂的工程实际问题提供了方便有效的途径;并结合某拟建精密设备基础隔振工程实际,通过引入三维紧支粘弹性边界单元考虑了基础-地基-基础的动力相互作用,建立了隔振措施优化分析模型,并根据工程实际情况,分别对不同隔振措施及影响因素进行了综合对比分析,在满足隔振要求的前提下,对降低工程投资、加快工程进度均起到了较好的作用。
It is an important guarantee for the rapid development of economy to construct National Infrastructure Engineering. To explore the clean energy, several high dams and nuclear power plants are being built in seismic zones of western China, as well as eastern coastal area of China. Obviously, the seismic safety is crucial to such structures. With the support from China-Germany Joint Research Project GZ566, in-depth research has been conducted regarding the safety evaluation of large-scale complicated structures.
     1. To improve the accuracy and efficiency of time-domain model of unbounded soil, the influence of the key factors on the Damping Solvent Extraction Method (DSEM) is systematically investigated from analytical analysis and numerical simulation, and a deep discussion is completed on the simulation mechanism of dynamic characteristics of unbounded domain. And then, Damping Solvent Stepwise Extraction Method (DSSEM) is proposed by applying the relatively larger artificial damping in the bounded soil firstly and then employing a stepwise extraction process of damping, that is, the introduced artificial damping are divided into smaller parts to assure the convergence and extracted step by step, which can simultaneously decrease two sources of error in the implementation of DSEM. This method provides a more efficient and accurate way to calculate the interaction forces of the unbounded soil due to the fluctuation energy of reflected waves and the undesirable effect of artificial damping are completely removed as much as possible. Furthermore, the proposed method is applicable to practical engineering with irregular soil domain. Meanwhile, based on the solution of acceleration, an implicit DSEM integral algorithm firstly is proposed to solve the problem of explicit and implicit integral algorithm with different time steps on the interface between structure and soil region and combine with dynamic analysis of structures conveniently. Moreover, verification and validation studies are performed by using typical examples. And optimal parameters of this model are recommended for future use.
     2. Operability is the necessary condition of generalizing the model of structure and soil interaction to engineering application. A time-domain model based on User Programmable Features (UPFs) for implementing the Damping Solvent Stepwise Extraction (DSSE) method within commercial finite element software ANSYS is presented. In this model, a damped soil element is developed to consider the effect of artificial damping which is introduced in the soil; also, a3D compact viscous-spring boundary element is established to further reduce the amplitudes; and a practical external-interface is developed with ANSYS to evaluate the interaction forces at the structure-foundation interface. In addition, the DSSEM is implanted into the platform of ANSYS by means of the APDL and GUI. And then, the reliability and validity of this new model is verified by the typical numerical examples. Furthermore, the presented model is used for studying the influence of heterogeneity of unbounded soil on interaction forces, and the numerical result shows it is able to solve the dynamic problems which encountered in the inhomogeneous unbounded soil.
     3. This study's aim is to develop an integrated dynamic analysis technique based on soil-structure interaction. Firstly, an Interface-Coupling element is established at the interface between structure and soil to consider the effect of artificial damping on structure. Meanwhile, in order to assure the convergence and accuracy of system of soil-structure, a dynamic nonlinear iteration technique is proposed in the form of increment. And then, based on the platform of ANSYS, a numerical model of soil-structure is built to solve the nonlinear dynamic problems of complex structures. Moreover, this numerical model is expanded by introducing the nonlinear model of structure and micro damage law of large scale concrete. Finally, from the dynamic nonlinear analysis of the system of Dagangshan arch dam, it is shown that the accuracy and efficiency of numerical model are pretty good. Also, applicability of EDE method is justified by damage process of Koyna gravity dam under strong earthquake.
     4. To be used in the practical engineering is the ultimate aim of Structure-Soil interaction (SSI) model. Based on the proposed SSI model, some practical engineering problems were studied. Firstly, analysis of floor response spectra is completed for a CPR1000reactor plant, and it is helpful to evaluate the compatibility of soil for nuclear power plant under earthquake. Then, considering the safety of train running on bridge, a time-variant model of high-speed vehicle-rail-bridge-foundation system is developed for the earthquake response analysis, and it provides convenient and efficient way to solve the complicated problems of engineering. In addition, considered the proposed vibration isolation project for the base of sophisticated equipment, a3D compact viscous-spring boundary element is constructed to simulate the effect of structure-soil-structure dynamic interaction; also, vibration isolation optimization model is presented. According to the practice, varied vibration isolation measures and influencing factors were compared and comprehensively analyzed. From the analysis, an optimal vibration isolation measure is proposed to meet the requirement, and the investment of engineering is decreased and the progress is speed up due to this optimal measure.
引文
[1]张志强.我国基础设施建设现状与发展重点[J].中国投资与建设,1998,(5):7-9.
    [2]蓝兰.西部大开发“十二五”基础设施建设进展报告[J].交通世界(建养.机械),2012,(8):22-30.
    [3]何静.基础设施建设迅猛发展助推经济新跨越[N].西藏日报(汉),2012,9,6(1).
    [4]郑友敬.超大型工程建设项目评价——理论方法研究[M].北京:社会科学文献出版社,1994:30-31.
    [5]林皋,栾茂田,陈怀海.土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报,1993,26(4):1-13.
    [6]兰日清.大型结构三维地震反应分析并行计算方法研究[D].哈尔滨:中国地震局工程力学研究所,2012.
    [7]戚承志,钱七虎.核电站抗震研究综述[J].地震工程与工程振动,2000,20(3):76-86.
    [8]钟红.高拱坝地震损伤开裂的大型数值模拟[D].大连:大连理工大学,2008.
    [9]阳建鸣,刘春雨.日本上越新干线列车脱轨事故探究[J].世界铁路,2006,(8):42-45.
    [10]熊飞,王顺德,鲁强.日本核电站在地震中的破坏及应对核泄漏的方法措施[J].生命与灾害,2011,(4):26-27.
    [11]John P. Wolf. Soil structure interaction analysis in time domain [M]. Englewood Cliffs, NJ:PrentieeHall,1988:1-10.
    [12]John P. Wolf, MASATO MOTOSAKA. Recursive evaluation of interaction forces of unbounded soil in the time domain [J]. Earthquake Engineering and Structure Dynamic.1989,18(3):345-363.
    [13]梁青槐.土-结动力相互作用的CLONING有限单元法及其在地下结构分析中的应用[D].大连:大连理工大学,1995.
    [14]陈健云.土-结构动力相互作用及随机多点分析[D].大连:大连理工大学,1997
    [15]Bycroft G. N. Forced vibrations of a rigid circular plate on a semi-infinite and on an elastic stratum [J]. Mathematical and Physical Sciences,1956,248:327-368.
    [16]杜建国,林皋,谢清粮.大坝-地基动力相互作用研究中的几个问题[J].水利与建筑工程学报,2008,6(3):1-4.
    [17]J. Lysmer, Frank Edwin Richart. Dynamic response of footings to vertical loadings [J]. Journal of the Soil Mechanics and Foundations Division,1966,92(1):65-91.
    [18]Juan E. Luco. Dynamic response of circular footing [J]. Journal of the Soil Mechanics and Foundations Division,1971,97(5):1381-1395.
    [19]John P. Wolf, Dario R. Somaini. Approximate dynamic model of embedded of foundation in time domain [J]. Earthquake Engineering and Structural Dynamics,1986,14(5): 683-703.
    [20]栾茂田,林皋.地基动力阻抗的双自由度集总参数模型[J].大连理工大学学报,1996,36(4):477-481.
    [21]Richart F. E., Whitman R. V. Comparison of footing vibration tests with theory [J]. Journal of the Soil Mechanics and Foundations Division,1967,93(6):143-168.
    [22]K.C.Chang, G. C. Yao, G.C.Lee. Dynamic characteristics of a full-sized five-story steel structure and a 2/5 scale model, NCEER-91-0011[R]. New York:U.S. State University of New York at Buffalo,1991.
    [23]Reissner E. Stationare. Axial symmetrische durch eine schuttelnde masseerregte schwingungen eines homogenen elastischen halbraumes [J]. Ingenieur-Archiev,1936, 7(6):381-396.
    [24]Sung T. Y. Vibration in semi-infinite solids due to periodic loading [J]. ASTM-STP, No.156, Symposium on Dynamic Testing of Soils,1953:35-64.
    [25]Quinlan, P.M. The elastic theory of soil dynamic [J]. ASTM-STP, Symposium on Dynamic Testing of Soils,1953:3-34.
    [26]Arnold, R. N, Byckroft, G.N., Warburton, G. B. Forced vibrations of a body on an infinite elastic solid [J]. Journal of Applied Mechanics,1955,22(3):391-401.
    [27]Parmelee R. A. Building-foundation interaction effects [J]. Journal of the Engineering Mechanics Division,1967,93(2):131-152.
    [28]Bycroft, G.N. Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum [J].Philosophical Transactions of the Royal Society of London,1956,248(948):327-368.
    [29]张鸿儒.土-结构动力相互作用理论与应用.二十一实际土木工程科学的发展趋势[M].北京:科学出版社,1997:159-169.
    [30]John Lysmer. Analytical procedures in soil dynamics [J]. Earthquake Engineering and Soil Dynamics,1978,3:1267-1317.
    [31]Luco J E. Linear soil-structure interaction:A review, earthquake ground motion and its effect on structures [J]. ASME,1982,53(1):41-57.
    [32]Veletsos A. S. et al. Design approaches for soil-structures interaction [R]. State of the art report, Proc 9TH WCEE,1988, Vol.8:431-452.
    [33]Wolf J.P. Classification of analysis methods for dynamic soil-structure interaction [J].Proceedings of the second international conference on recent advances in geotechnical earthquake engineering and soil dynamics,1991,2:1821-1832.
    [34]林皋.土-结构动力相互作用[R].第九届世界地震工程会议动态报告.中国大连,1989.
    [35]张楚汉.结构-地基动力相互作用问题.结构与介质相互作用理论及其应用[M].南京:河海大学出版社.1993:243-266.
    [36]熊建国.土-结构动力相互作用的新进展[J].世界地震工程,1992,8(4):17-25.
    [37]Siddharth G. Shah, Solanki C. H., Desai J.A. Soil structure interaction analysis methods-state of art-review [J]. International journal of civil and structural engineering,2011,2(1):176-204.
    [38]梁青槐.土-结构动力相互作用数值分析方法的评述[J].北方交通大学学报,1997,21(6):690-694.
    [39]李辉,赖明,白绍良.土-结构动力相互作用研究综述(Ⅰ)[J].重庆建筑大学学报,1999,21(8):112-116.
    [40]孙树民.土-结构动力相互作用研究进展[J].中国海洋平台,2001,16(5-6):31-37
    [41]方志,陆浩亮,王龙.土-结构动力相互作用研究综述[J].世界地震工程,2006,22(1):57-63.
    [42]杜建国,林皋,张洪梅.结构-地基相互作用研究的回顾与展望[J].工业建筑,2009,39(增):791-796.
    [43]Clough R. W. The finite element method in plane stress analysis [C].2nd ASME conference on electronic computation, Pittsburgh,1960.
    [44]R.W.克劳夫,张光斗,陈厚群,Y.伽那特.拱坝的动力相互作用[R].中国科学院水利电力部水利水电科学研究院,1985.8.
    [45]桂国庆.考虑重力坝-地基动力相互作用时关于地基边界范围的研究[J].江西工业大学学报,1993,15(1):42-46.
    [46]潘坚文,张楚汉,徐艳杰.强震输入方式与地基模型对重力坝反应的影响[J].岩土工程学报,2010,32(1):82-88。
    [47]李静.混凝土坝非线性地震响应分析的有关问题研究[D].大连:大连理工大学,2007.
    [48]Li Jing, Chen Jianyun. Study on the application of mass-less base model for the dynamic interaction analysis [J]. World Earthquake Engineering,2007,23(2): 58-62.
    [49]Chen Jianyun, Li Jing, Li Jianbo. Study on application of two approximate base models to the soil-structural dynamic interaction analysis [J]. Rock and Soil Mechanics,2006,27(3):373-377.
    [50]何发祥,王忠,刘浩吾.采用无质量地基模型时动力平衡方程的缩减[J].四川大学学报(工程科学版),2002,32(4):7-10。
    [51]廖振鹏.近场波动的数值模拟[J].力学进展,1997,27(2):193-212.
    [52]贺向丽,李同春.无限域中的动力人工边界[J].水利水电科技进展,2005,25(3):64-67.
    [53]Zhang C, Wolf J. P. Dynamic Soil-Structure Interaction:Current Research in China and Switzerland [M]. International Academic Publishers, Beijing,1997.
    [54]Kausel E. Local transmitting boundaries [J]. Journal of Engineering Mechanics, 1988,114(6):1011-1027.
    [55]Givoli D, Harari I. Special issue on new computational methods for wave propagation [J]. Wave Motion,2004,39(4):279-280.
    [56]Astley R. J., Gerdes K., Givoli D., Harari I. Special issue on finite elements for wave propagation [J]. The Journal of Computational Acoustics,2000,8(1):1-255.
    [57]Hagstrom T. Radiation boundary conditions for the numerical simulation of waves [J]. Acta Numerica,1999,8:47-106.
    [58]Givoli D. Numerical Methods for Problems in Infinite Domains [M]. Elsevier, Amsterdam,1992.
    [59]Tsynkov S. V. Numerical solution of problems on unbounded domains:a review [J]. Applied Numerical Mathematics,1998,27:465-532.
    [60]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社,2002:141-156.
    [61]赵密.近场波动有限元模拟的应力型时域人工边界条件及其应用[D].北京:北京工业大学,2009.
    [62]LYSMER J, KULEMEYER R L. Finite dynamic model for infinite media [J]. Journal of Engineering Mechanics, ASCE,1969,95(4):859-877.
    [63]中华人民共和国建设部.GB 50267-97核电厂抗震设计规范[S].北京:1998.
    [64]Liu Jingbo, Lu Yandong. A direct method for analysis of dynamic soil-structure interaction [J]. China Civil Engineering Journal,1998,31(3):55-64.
    [65]Smith W. A non-reflecting plane boundary for wave propagation problems [J]. Journal of Computational Physics,1974,15(4):492-503.
    [66]Kunar R. R., Marti J. A non-reflecting boundary for explicit calculations [J]. Computational Methods for Infinite Domain Media-Structure Interaction, ASME, AMD46,1981:183-204.
    [67]Cundall P. A. et al. Solution of infinite dynamic problems by finite modeling in the time domain [C]. Proceeding 2nd International Conference on Applied Mathematique Modeling, Madrid,1978,09.
    [68]Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations [J]. Bulletin of the Seismological Society of America,1977,67(6): 1529-1540.
    [69]Clayton R, Engquist B. Absorbing boundary conditions for wave equation migration [J]. Geophysics,1980,45(5):895-904.
    [70]房营光.岩土介质与结构动力相互作用理论及其应用[M].北京:科学出版社,2005:1-6.
    [71]宋二祥.无限地丛数值模拟的传输边界[J].工程力学,1997(增):613-619.
    [72]K. D. Mahrer, F. J. Mauk. An empirical study of instability and improvement of absorbing boundary condi tions for the elast ic wave equat ion [J]. Geophysics,1987, 51:1499-1501.
    [73]张剑锋.有限元波动模拟中傍轴近似透射边界[J].大连理工大学学报,1995,35(5):741-744.
    [74]Liao Z P, Wong H L. A transmitting boundary for the numerical simulation of elastic wave propagation [J]. International Journal of Soil Dynamics and Earthquake Engineering,1984,3(4):174-183.
    [75]廖振鹏,黄孔亮,杨柏坡,袁一凡.暂态波透射边界[J].中国科学(A辑),1984,6:556-564.
    [76]廖振鹏.法向透射边界条件[J].中国科学(E),1996,26(2):185-192.
    [77]Liao Zhengpeng. Extrapolation non-reflecting boundary conditions [J]. Wave Motion, 1996,24:117-138.
    [78]廖振鹏,李小军.推广的多次透射边界条件[J].力学学报,1995,27(1):69-78.
    [79]LIAO Zhenpeng, YANG Guang. Multi-directional transmitting boundaries for steady-state SH waves. Earthquake Engineering and Structural Dynamics,1995, 24(3):361-371.
    [80]廖振鹏.局部透射边界的精度[J].地震工程与工程振动,1993,13(3):1-6.
    [81]关慧敏,廖振鹏.局部透射边界和叠加边界的精度分析和比较[J].力学学报,1994,26(3):303-311.
    [82]刘晶波.波动的有限元模拟及复杂场地条件对地震动的影响[D].哈尔滨:中国地震局工程力学研究所,1989.
    [83]李小军.非线性场地地震反应分析方法的研究[D].哈尔滨:中国地震局工程力学研究所,1993.
    [84]Guan Huimin, Liao Zhenpeng. A method for the stability analysis of local artificial boundaries [J]. MECHANICA SINICA,1996,28(3):376-380.
    [85]周正华.多次透射公式的一种稳定实现措施[J].地震工程与工程振动,2001,21(1):9-14.
    [86]Zhou Zhenghua Liao Zhenpeng. A measure for eliminating drift instability of the multi-transmitting formula [J]. Mechanica Sinica,2001,33(4):550-554.
    [87]周正华,周扣华.有阻尼振动方程常用显式积分格式稳定性分析[J].地震工程与工程振动,2001,21(3):22-28.
    [88]胡志强.考虑坝-基相互作用的有横缝拱坝地震响应分析[D].大连:大连理工大学,2003.
    [89]涂劲.混凝土大坝抗震数值分析理论与工程应用[M].北京:中国水利水电出版社,知识产权出版社,2007:100-161.
    [90]Tu Jin, Li Deyu, Chen Houqun. Study on the seismic safety of an integral arch dam system using non-linear analysis method[C]. First European Conference on Earthquake Engineering and Seismology, Geneva,2006.
    [91]Du Xiuli, Zhang Yanhong, Zhang Boyan. Nonlinear seismic response analysis of arch dam-foundation systems- part I dam-foundation rock interaction [J]. Bulletin of Earthquake Engineering,2007,5(1):105-119.
    [92]Du Xiuli, Zhang Yanhong, Zhang Boyan. Nonlinear seismic response analysis of arch dam-foundation systems- part I dam-foundation rock interaction [J]. Bulletin of Earthquake Engineering,2007,5(1):105-119.
    [93]Du Xiuli, Tu Jin. Nonlinear seismic response analysis of arch dam-foundation systems-part Ⅱ opening and closing contact joints [J]. Bulletin of Earthquake Engineering,2007,5(1):121-133.
    [94]DEEKS A. J., RANDOLPH M F. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics, ASCE,1994,120(1):25-42.
    [95]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [96]刘晶波,王振宇,杜修力.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [97]刘晶波,李彬.三维粘弹性静-动力统一人工边界[J].中国科学E辑,2005,35(9):966-980.
    [98]Liu Jingbo, Gu Yin, Du Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements [J]. Chinese Journal of Geotechnical Engineering, 2006,28(9):1070-1075.
    [99]谷音,刘晶波,杜义欣.三维一致粘弹性人工边界及等效粘弹性边界单元[J].工程力学,2007,24(12):31-37.
    [100]L. Kellezi. Local Transmitting Boundaries for Transient Elastic Analysis [J]. Soil Dynamics and Earthquake Engineering,2000,9(7):533-547.
    [101]Zhang Chuhan, Pan Jianwen, Wang Jinting. Influence of seismic input mechanisms and radiation damping on arch dam response [J].Soil Dynamics and Earthquake Engineering,2009,29(9):1282-1293.
    [102]Chen Houqun et al. Parallel computation of seismic analysis of high arch dam [J]. Earthquake engineering and engineering vibration,2008,7(1):1-11.
    [103]Zhang Chuhan, Wang Guanglun, Zhao Chongbin. Seismic wave propagation effects on arch dam response[C]. Proceedings of 9th World conference on earthquake Engineering, Tokyo Kyoto:1988(VI),367-72.
    [104]王振宇,刘晶波.大型动力机器基础防微振计算理论与实测研究[J].岩土工程学报,2002,24(3):363-366.
    [105]刘晶波,土振宇.考虑土-结构相互作用大型动力机器丛础三维有限元分析[.门.工程力学,2002,19(3):34-38.
    [106]谢伟平,常亮,杜勇.中南剧场隔振措施分析[J].岩土工程学报.2007,29(11):1720-1725.
    [107]王晓,严中保,杜涵文.上海自由电子激光工程隔振沟减振数值分析[J].振动与冲击.2012,31(15):190-194.
    [108]Spyrakos C. C., Beskos D. E. Dynamic response of flexible strip foundation by boundary and finite elements [J]. Soil Dynamics and Earthquake Engineering 1986, 5(2):84-96.
    [109]Karabalis DL, Beskos DE. Dynamic response of three-dimensional flexible foundations by time domain BEM and FEM [J]. Soil Dynamics and Earthquake Engineering 1985,24(2):91-101.
    [110]von Estorff 0, Prabucki M. J. Dynamic response in the time domain by coupled boundary and finite elements [J]. Computational Mechanics 1990,6:35-46.
    [111]von Estorff 0. Dynamic response of elastic blocks by time domain BEM and FEM [J]. Computers and Structures 1991,38(3):289-300.
    [112]Von Estorff 0, Antes H. On FEM-BEM coupling for fluid structure interaction analyses in the time domain [J]. International Journal for Numerical Methods in Engineering 1991,31:1151-1168.
    [113]Touhei T, Ohmachi T. A FE-BE method for dynamic analysis of dam-foundation-reservoir systems in the time domain [J]. Earthquake Engineering and Structural Dynamics 1993,22:195-209.
    [114]Zhang CH, Jin F, Pekau OA. Time domain procedure of FE-BE-IBE coupling for seismic interaction of arch dams and canyons. Earthquake Engineering and Structural Dynamics 1995,24:1651-1666.
    [115]M Yazdchi, N Khalili, S Valliappan. Dynamic soil-structure interaction analysis via coupled finite-element-boundary-element method [J]. Soil Dynamics and Earthquake Engineering 1999,18(7):499-517.
    [116]Von Estorff, M. Firuziaan. Coupled BEM/FEM approach for nonlinear soil-structure interaction [J]. Engineering Analysis with Boundary Elements,2000,24:715-725.
    [117]D.C. Rizos, Z. Wang. Coupled BEM-FEM solutions for direct time domain soil-structure interaction analysis [J]. Engineering Analysis with Boundary Elements 2002,26:877-888.
    [118]Christopher Bode, Reinhold Hirschauer, Stavros A Savidis. Soil-structure interaction in the time domain using half-space Green's functions [J]. Soil Dynamics and Earthquake Engineering,2002,22(4):283-295.
    [119]Song C M, Wolf J P. The scaled boundary finite element method—alias consistent infinitesimal finite element cell method — for elastodynamics [J]. Computer Methods in Applied Mechanics and Engineering,1997,147(3-4):329-355.
    [120]Dasgupta G. A finite element formulation for unbounded homogeneous continua [J]. Journal of Applied Mechanics Transactions of the ASME,1982,49(1):136-140.
    [121]Wolf J P, Weber B. On calculating the dynamic-stiffness matrix of the unbounded soil by cloning [A]. In:Dunger R, Pande G N, Studer J A, eds. International Symposium on Numerical Methods in Geomechanics [C]. Rotterdam:A. A. Balkema,1982, 486-494.
    [122]Wolf J P, Song C M. Dynamic stiffness matrix of unbounded medium by finite element multi-cell cloning [J]. Earthquake Engineering & Structural Dynamics,1994, 23(3):233-250.
    [123]Song C M, Wolf J P. Unit-impulse response matrix of unbounded medium by finite element based forecasting [J]. International Journal for Numerical Methods in Engineering,1995,38(7):1073-1086.
    [124]Wolf J P, Song C M. Dynamic stiffness matrix in time domain of unbounded medium by infinitesimal finite element cell method [J]. Earthquake Engineering and Structural Dynamics,1994,23(11):1181-1198.
    [125]Wolf J P, Song C M. Consistent infinitesimal finite-element cell method:Three dimensional vector wave equation [J]. International Journal for Numerical Methods in Engineering,1996,39(13):2189-2208.
    [126]Zhang Xiong, J. L. Wegner, J. B. Haddow. Three-dimensional dynamic soil-structure interaction analysis in the time domain [J]. Earthquake Engineering and Structural Dynamics,1999,28(12):1501-1524.
    [127]J. L. Wegner, Zhang Xiong. Free-vibration analysis of a three-dimensional soil-structure system [J]. Earthquake Engineering and Structural Dynamics.2001,30 (1):43-57.
    [128]阎俊义,金峰,张楚汉.丛于线性系统理论的FE-SBFE时域辅合方法,清华大学学报(复原然科学版),2003,43(11):1554-1566.
    [129]Yan J Y, Jin F, Xu Y J. A seismic free field input model for FE-SBFE coupling in time domain [J]. Earthquake Engineering and Engineering Vibration,2003, 2(1):51-57.
    [130]Yan J Y, Zhang C H, Jin F. A coupling procedure of FE and SBFE for soil-structure interaction in the time domain [J]. International Journal for Numerical Methods in Engineering,2004,59:1453-1471.
    [131]Yan J Y, Jin F, Zhang C H. A finite element _ scaled boundary finite element coupling for soil-structure interactions [C]. WCCM/APCOM, Beiging, China,2004.
    [132]阎俊义.结构-地基相互作用的FE-SBFE时域耦合方法及工程应用[D].北京:清华大学,2004.
    [133]杜建国.基于SBFEM的大坝-库水-地基动力相互作用分析[D].大连:大连理工大学,2007.
    [134]Du jianguo, Lin Gao. Hydrodynamic Pressure on Dams Based on SBFEM [J], Geotechnical special Publication No.151:Advances in Earth structures, ASCE,2006,262-269.
    [135]杜建国,林皋.基于比例边界有限元法的结构-地基动力相互作用时域算法的改进[J].水利学报,2007,38(1):8-14.
    [136]Marco Schauer, Sabine Langer. Large scale simulation of wave propagation in soils interacting with structures using FEM and SBFEM [J]. Journal of Computational Acoustics,2011,19(1):75-93.
    [137]SONG C, WOLF J P. Dynamic stiffness of unbounded medium based on damping solvent extraction [J]. Earthquake Engineering Structure Dynamic,1994,23(2):169-181.
    [138]John P. Wolf, Chongmin Song. Finite-element modeling of unbounded media [M]. ChiChester:John Wiley & Sons Ltd.,1996:217-257.
    [139]Basu U, Chopra AK. Numerical evaluation of the damping-solvent extraction method in the frequency domain [J]. Earthquake Engineering and Structural Dynamics,2002, 31 (6):1231-50.
    [140]Basu U, Chopra AK. Authors'Reply to Discussion by Chongmin Song and John P. Wolf of'Numerical evaluation of the damping-solvent extraction method in the frequency domain'Earthquake Engng. Struct. Dyn.2002; 31(6):1231-1250 [J]. Earthquake Engineering and Structural Dynamics,2003,32:1481-1482.
    [141]Chongmin Song, John P. Wolf. Numerical evaluation of the damping-solvent extraction method in the frequency domain by Ushnish Basu and Anil K. Chopra, Earthquake Engng Struct. Dyn.2002;31 (6):1231-1250 [J]. Earthquake Engineering and Structural Dynamics,2003,32:1475-1479.
    [142]丁海平,廖振鹏.动力刚度计算方法-“盐溶”法-的改进[J].地震工程与工程振动,2001,21(2):13-18.
    [143]Kausel E. Complex Frequencies in Elastodynamics, with Application to the Damping Solvent Extraction Method [J]. Journal of engineering mechanics,2010,136 (5):641-52.
    [144]Hajiabadi MR, Lotfi V. An effective approach for utilizing damping solvent extraction method in frequency domain [J]. Soil Dynamics and Earthquake Engineering,2012,38:46-57.
    [145]陈健云,胡志强.超大型地下洞室群的随机地震响应分析[J].水力学报,2002,1:71-75.
    [146]Chen JY, Li J, Zhou J. Seismic analysis of large 3-D underground caverns based on high performance recursive method [J]. International Journal of Solids and Structures,2004,41:3081-94.
    [147]Chen Jianyun, Hu Zhiqiang, Lin Gao.3-D seismic response study on large scale underground group caverns [J]. Chinese Jounal of Geotechnical Engineering,2001, 23(4):494-498.
    [148]陈健云,胡志强,林皋.大型地下结构三维地震响应特点研究[J].大连理工大学学报,2003,43(3):344-348.
    [149]李建波,陈健云,林皋.求解非均匀无限地基相互作用力的有限元时域阻尼抽取法[J].岩土工程学报.2004,26(3):263-267.
    [150]陈永辉,王新泉,周星德.含分数阶的无限地基交互作用时域阻尼抽取法[J].岩石力学与工程学报,2009,28(增2):3666-3672.
    [151]Li Jianbo, Chen Jianyun, Lin Gao. Numerical model of the damping-solvent extraction method in the time domain and its application to the solution of wave scattering problems [C]. The 5th Asia-Pacific Conference on shock impact loads on structures. Singapore.2003,11:221-232.
    [152]陈健云,林皋,李建波.无限介质中波动散射问题时域求解的算法研究[J].岩石力学与工程学报.2004,23(19):3330-3336.
    [153]李建波,林皋,陈健云.无限地基-结构动力相互作用分析的分区逐步时域算法研究[J].工程力学,2005,22(3):88-96.
    [154]Chen Jianyun, Li Jing, Jianbo Li. A refined sub-regional reciprocal method in time domain and its application in dynamic interaction analysis [C].13th World Conference on Earthquake Engineering, Canada,2004.
    [155]J. B. Li, J. Yang, G. Lin. A stepwise damping-solvent extraction method for large-scale dynamic soil-structure interaction analysis in time domain [J]. International journal for numerical and analytical methods in geomechanics,2008, 32:415-436.
    [15]钟红,林皋,李红军.拱坝-无限地丛系统非线性地震超载分析[.J].大连理工大学学报,2011,51(1):96-102.
    [157]Hong Zhong, Gao Lin, Jianbo Li, Jianyun Chen. An efficient time-domain damping solvent extraction algorithm and its application to arch dam-foundation interaction analysis [J]. Communications in numerical methods in engineering, 2008,24:727-748.
    [158]钟红,林皋,李建波.空间结构-地丛动力相互作用数值分析时域算法研究[J].大连理工大学学报,2007,47(1):78-84.
    [159]陈永辉,王新泉,周星德.应用无限地基方法研究打桩振动对海堤的影响[.J].水利学报,2011,42(2):226-231.
    [160]周星德,刘谦敏等.考虑结构-地基交互作用的重力坝深层抗滑动力稳定性研究[J].红水河,2011,30(2):25-28.
    [161]马秀平.动力相互作用的阻尼溶剂抽取算法研究[D].大连:大连理工大学,2006.
    [162]崔俊芝.计算机辅助工程(CAE)的现状和未来[R].中国科学院院上报告,2003,12.
    [163]李美芳.CAE技术及其发展趋势[J].制造业信息、化,2005,4:82-83.
    [164]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007:1-2.
    [165]张吉.高层建筑有限元计算软件主要环节改进研究[D].北京:中国建筑科学研究院,2011.
    [166]周小勇.基于二次开发的PC桥梁三维仿真分析关键技术研究[D].武汉:华中·科技大学2008.
    [167]张延.多源散射粘弹性人工边界研究[D].北京:北京交通大学,2008.
    [168]孙文召.多孔隧洞的相互作用研究[D].大连:大连理工大学,2012.
    [169]李彬,刘晶波.粘弹性人工边界在Marc中的实现[c].第14届全国结构工程学术会议,中国烟台,2005.
    [170]张冬茵,金星,丁海平,孔戈.ANSYS/LS-DYNA在地震工程中的应用[J].地震工程与工程振动,2005,25(4):170-173.
    [171]唐敢,陈少林,王法武,丁海平.空间结构-地基动力相互作用的三维时域数值分析方法[J].工程力学,2009,26(8):143-149.
    [172]陈少林,唐敢,刘启方,丁海平.三维土-结构动力相互作用的一种时域直接分析方法[J].地震工程与工程振动,2010,30(2):24-31.
    [173]Kaplan M F. Crack propagation and the fracture of concrete [J]. American Concrete Institute Journal Proceedings,1961,58(11):591-610.
    [174]D. Ngo, A. C. Scordelis. Finite element analysis of reinforced concrete beam [J]. Journal of the American Concrete Institute,1967,64(3):152-163.
    [175]A Hillerborg, M Modeer, P Peterson. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research,1976,6(6):773-781.
    [176]A. Needleman. A continuum model for void nucleation by inclusion debonding [J]. Journal of Applied Mechanics,1987,54(3):525-531.
    [177]Petter E. Skrikerud, Hugo Bachmann. Discrete crack modeling for dynamically loaded, unreinforced concrete structure [J]. Earthquake Engineering and Structural Dynamics,1986,14(2):297-315.
    [178]Mohamed L. Ayari, Victor E. Saouma. A fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks [J]. Engineering Fracture Mechanics,1990,35(1-3):587-598.
    [179]Rashid T R. Analysis of pre-stressed concrete pressure vessels [J]. Nuclear Engineering and Design,1968,7(4):334-344.
    [180]Zdenek P. Bazant, B. H. Oh. Crack band theory for fracture of concrete [J]. Materials and Structures,1983,16(93):155-177.
    [181]Luis M. Vargas-Loli, Gregory L. Fenves. Effects of concrete cracking on the earthquake response of gravity dams [J]. Earthquake Engineering and Structural Dynamics,1989,18(4):575-592.
    [182]Bahaa El-Aidi, John F. Hall. Non-linear earthquake response of concrete gravity dams, part 1:modeling. [J]. Earthquake engineering and structural dynamics,1989, 18:837-851.
    [183]Bahaa El-Aidi, John F. Hall. Non-linear earthquake response of concrete gravity dams, part 1:behavior. [J]. Earthquake Engineering and Structural Dynamics,1989, 18:852-865.
    [184]S. S. Bhattacharjee, P. Leger. Seismic cracking and energy dissipation in concrete gravity dams [J]. Earthquake Engineering and Structural Dynamics,1993,22(11): 991-1007.
    [185]Wang Guanglun, Pekau O A, Zhang Chuhan, Wang Shaomin. Seismic fracture analysis of concrete gravity dams based on non-linear fracture mechanics [J]. Earthquake Fracture Mechanics,2000,65(1):67-87.
    [186]Mirzabozorg H, Ghaemian M. Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach [J]. Earthquake Engineering and Structural Dynamics,2005,34(3):247-269.
    [187]Vahid Lotfi, Radin Espandar. Seismic analysis of concrete arch dams by combined discrete crack and non-orthogonal smeared crack technique [J]. Engineering Structures,2004,26(1):27-37.
    [188]周元德.混凝土非线性断裂模型与高拱坝开裂分析研究[D].清华大学,2004.
    [189]Kachanov L M. Time of rupture process under creep conditions [J]. Izv. Akad. Nauk. SSR,1958,8:26-31.
    [190]Rabotnov Y N. Creep problems in structural members [M]. Amsterdam:North-Holland Publishing Company,1969.
    [191]Dougi J W, Lau J C, Burt N J. Toward a theoretical model for progressive failure and softening in rock, concrete and similar materials [J]. Journal of Engineering Mechanics, ASCE-EMD,1976:335-355.
    [192]Lemaitre J. Application of damage concepts to predict creep-fatigue failures [J]. Journal of Engineering Materials and Technology, ASME,1979,101(1):202-209.
    [193]F. Sidoroff. Description of Anisotropic Damage Application to Elasticity [J]. International Union of Theoretical and Applied Mechanics,1981,237-244
    [194]Marzars J. Mechanical damage and fracture of concrete structure[C]. In Proceeding of Internationa] Concrete Fracture, France,1981.
    [195]余寿文,冯西桥.损伤力学[M].北京:消华大学出版社,1997:1-2.
    [196]Lee J, Fenves G L. A plastic-damage concrete model for earthquake analysis of dams [J]. Earthquake Engineering and Structural Dynamics,1998,27(9):937-956.
    [197]Yazdchi M, Khalili N, Valliappan S. Non-linear seismic behavior of concrete gravity dams using coupled finite element-boundary element technique [J]. International Journal for Numerical Methods in Engineering,1998,44(1):101-130.
    [198]Yusuf Calayir, Muhammet Karat on. A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems [J]. Soil Dynamics and Earthquake Engineering,2005,25(11):857-869.
    [199]邱战洪,张我华,任廷鸿.地震荷载作用下大坝系统的非线性动力损伤分析[J].水利学报,2005,36(5):629-636.
    [200]陈健云,李静,林皋.基于率性损伤模型的混凝土重力坝地震响应分析[J].哈尔滨工业大 学学报,2005,37(6):786-789.
    [201]杜荣强等.混凝土重力坝动力弹塑性损伤安全分析[J].水利学报,2006,36(9):1056-62.
    [202]沈怀至,张楚汉,寇立夯.基于功能的混凝土重力坝地震破坏评价模型[J].清华大学学报(自然科学版),2007,47(12):2114-2118.
    [203]Chiaia B, Vervuurt A, Van Mier J G M. Lattice model evaluation of progressive failure in disordered particle composites [J]. Engineering Fracture Mechanics, 1997,57(2-3):301-318.
    [204]Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading:Part I:Model development and validation [J]. ACI Materials Journal, 1999,96(2):196-203.
    [205]Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading:Part II-Model predictions for shear and compressive loading [J]. ACI Materials Journal,1999,96(3):354-358.
    [206]黎保琨,彭一江.碾压混凝土试件细观损伤断裂的强度与尺寸效应[J].华北水利水电学院学报,2001,22(3):50-53.
    [207]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,10:27-35.
    [208]Bazant Z P, Tabbara M R. Random particle models for fracture of aggregate or fiber composites[J]. Journal of Engineering Mechanics, ASCE,1990,116(8):1686-1705.
    [209]唐春安,朱万成.混凝土损伤与断裂-数值试验[M].北京:科学出版社,2003.
    [210]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):189-192.
    [211]李建波.结构-地基动力相互作用的时域数值分析方法研究[D].大连:大连理工大学,2005.
    [212]Yang J, Li JB, Lin G. A simple approach to integration of acceleration data for dynamic soil-structure interaction analysis [J]. Soil dynamics and earthquake engineering,2006,26(8):725-734.
    [213][美]R.克拉夫,彭津,王光远等译校.结构动力学2版[M],北京:高等教育出版社,2007,97-99.
    [214]Wong HL, Luco JE. Dynamic response of rigid foundations of arbitrary shape [J]. Earthquake Engineering and Structural Dynamics,1976,4:579-87.
    [215]ANSYS Incorporated. UIDL Programmer's Guide-ANSYS Release 11.0[EB],2007.
    [216]张建业,杨甫勤,钱继锋.基于APDL和UIDL的ANSYS二次开发技术及其应用[J].中国制造业信息化,2006,23:79-81.
    [217]关云飞,高峰,赵维炳ANSYS软件中修正剑桥模型的二次开发[J].岩土力学,2010,31(3):976-980.
    [218]P. Terriault, F. Viens, Brailovski. Non-isothermal finite element modeling of a shape memory alloy actuator using ANSYS [J]. Computational materials science, 2006,36:397-410.
    [219]ANSYS Incorporated. Programmer's Manual for ANSYS-ANSYS Release 11.0[EB],2007.
    [220]Bathe K J. Finite Element Procedures [M]. Englewood Cliffs:Prentice-Hall,1996.
    [221]Zienkiewicz 0 C. The Finite Element Method [M]. London:McGraw-Hill Company,1977.
    [222]Pekeris C L. Proceedings of the national academy of sciences [C]. USA, No.41, 1955.
    [223]Wieland M, Brenner R P, Sommer P. Earthquake resiliency of large concrete dams: Damage, repair and strengthening concepts. In:International Commission on Large Dams [C], Proceedings of 21st Congress of ICLD, Montreal,2003
    [224]陈宗梁译编.混凝土坝地震震害和加固的实例.上海:下海大坝科技咨询公司,2003.
    [225]沈崇刚等.新丰江水库地震及其对大坝的影响[J].中国科学,1974,17(2):184-205.
    [226]Metropolis W, Ulam S. Monte Carlo method [J]. Journal of the American Statistical Association,1949,44:335-341.
    [227]Chorpa A K, Chakrabarti P. The earthquake experience at Koyna Dam and stress in concrete gravity dams [J]. Earthquake Engineering and Structural Dynamics,1972, 1:151-164.
    [228]Hall F J. The dynamic and earthquake behavior of concrete dams:review of experimental behavior and observational evidence [J]. Soil Dynamics Earthquake Engineering,1988,7(2):58-121.
    [229]Skrikerud P E, Bachmann H. Discrete crack modeling for dynamically loaded, unreinforced concrete structures[J]. Earthquake Engineering and Structural Dynamics,1986,14(2):297-315.
    [230]Ayari M L, Saouma V E. Fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks [J]. Engineering Fracture Mechanics,1990, 35(1-3):587-598.
    [231]侯艳丽.砼坝-地基破坏的离散元方法与断裂力学的耦合模型研究[D].北京:清华大学,2005.
    [232]Bhattacharjee S S, Leger P. Seismic cracking and energy dissipation in concrete gravity dams[J]. Earthquake Engineering and Structural Dynamics,1993,22(11): 991-1007.
    [233]Yusuf C, Muhammet K. Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction [J]. Computer and Structures,2005,83(19-20):1595-1606.
    [234]Pekau 0 A, Feng L M, Zhang C H. Seismic fracture of Koyna dam:case studytj]. Earthquake Engineering and Structural Dynamics,1995,24(1):15-33.
    [235]Hong Zhong, GaoLin, Xiaoyan Li. Seismic failure modeling of concrete dams considering heterogeneity of concrete [J]. Soil Dynamics and Earthquake Engineering,2011,31(12):1678-1689.
    [236]林皋,李建波,钟红,胡志强.考虑地震动不确定性的核电厂楼层反应谱分析[J].大连理工大学学报,2012,52(3):387-392.
    [237]ASCE STANDARD 4-98, Seismic Analysis of Safety-Related Nuclear Structures and Commentary [S]. Society of Civil Engineers,1998.
    [238]RCC-G. Adaptation for the Model M310 (1000MWe-PWE) of the RCC-G 900 MWe-PWE-Edition [S].1986
    [239]Wen-yu Jean, Tsung-wu Lin and Joseph Penzien. System Parameters of Soil Foundations for Time Domain Dynamic Analysis [J]. Earthquake Engineering and Structural Dynamics,1990,19(4):541-553.
    [240]Liu Jingbo, Du Yixin, DuXiuli, Wang Zhenyu, Wu Jun.3D viscous-spring artificial boundary in time domain [J]. Earthquake Engineering and Engineering Vibration, 2006,5(1):93-102.
    [241]熊建珍,高芒芒,俞韩斌.天兴洲长江大桥斜拉桥在地震作用下的车-桥耦合振动分析[J].中国铁道科学,2006,27(5):54-59.
    [242]谭长健,祝兵.地震作用下高速列车与桥梁耦合振动分析[J].振动与冲击,2009,28(1):4-9
    [243]Han Yan, Xia He, Guo Weiwei. Dynamic response of cable-stayed bridge to running trains and earthquakes [J]. Engineering Mechanics,2006,23(1):93-98.
    [244]张楠,夏禾.地震对多跨简支梁桥上列车运行安全的影响[J].世界地震工程,2001,17(4):93-99.
    [245]张楠,夏禾,De Roeck Guido.多点激励作用下车-桥-地震耦合系统分析[J].哈尔滨工程大学学报,2011,32(1):26-32.
    [246]F. B. Ladislav, J. D. Yau. Suspended bridges subjected to moving loads and support motions due to earthquake [J]. Journal of Sound and Vibration,2009,319 (1/2): 218-227.
    [247]王少林,翟婉明.地震作用下高速列车-线路-桥梁系统动力响应[J].西南交通大学学报,2011,46(1):56-67.
    [248]Y. B.Yang, Y. S. Wu. Dynamic stability of trains moving over bridges shaken by earthquakes [J]. Journal of Sound and Vibration,2002,258(1):65-94.
    [249]梁玉红.用ANSYS实现车桥耦合空间振动分析[D].石家庄:石家庄铁道学院,2005.
    [250]杨建荣,李建中,范立础.基于ANSYS的车桥耦合振动分析[J].计算机辅助工程,2007,16(4):23-26.
    [251]Y. B.Yang, J. D. Yau, Y. S. Wu. Vehicle-bridge interaction dynamic [M]. Singapore: World scientific publishing,2004.
    [252]Biggs, J. M. Introduction to structural dynamics [M]. McGraw-Hill, New York,1964.
    [253]Wu, Y. S. Dynamic interaction of train-rail-bridge system under normal and seismic conditions [D]. Taiwan:National Taiwan University,2000.
    [254]D. Tjepkema, J. vanDijk, Soemers. Sensor fusion for active vibration isolation in precision equipment [J]. Journal of Sound and Vibration,2012,331 (4):73,5-749.
    [255]李国平,魏燕定,陈子辰.精密设备系统主动隔振的基础理论与技术[J].兵工学报,2004,25(4):462-466.
    [256]高广运,何俊锋,李宁等.饱和地基上列车运行引起的地面振动隔振分析[J].岩土力学.2011,32(7):2191-2198.
    [257]谢伟平,常亮,杜勇.中南剧场隔振措施分析[J].岩土工程学报.2007,29(11):1720-1725.
    [258]王晓,严中保,杜涵文.上海自由电子激光工程隔振沟减振数值分析[J].振动与冲击.2012,31(15):190-194.
    [259]廖振鹏.工程波动理论导引[M].北京:科学出版社,1996.
    [260]中华人民共和国住房和城乡建设部.GB 50463-2008隔振设计规范[S].北京:中国计划出版社,2009.
    [261]谭凡教,陈洪泳.受冲击荷载作用土体变形的有限元研究[J].岩土力学.2004,25(12):2013-2016.
    [262]时刚,高广运.饱和地基半解析边界元法及在双排桩被动隔振中的应用[J].岩土力学.2010,31(增2):59-64.
    [263]时刚,高广运.饱和地丛中单排桩远场被动隔振研究[.J].振动工程学报.2010,23(5):546-553.
    [264]陈宗梁译编.混凝土坝地震震害和加固的实例[M].上海:上海大坝科技咨询公司,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700