胎猪胰岛间充质干细胞分离鉴定及向胰岛素分泌细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(Diabetes mellitus, DM)及其并发症严重危害着人类的健康。传统的药物治疗和胰岛素注射治疗不能从根本上治疗糖尿病。胰岛移植能够有效的控制血糖变化,避免并发症的发生,然而却受到供体细胞不足的限制。猪的胰岛素结构和功能与人十分相似,并且物种资源丰富,因此可作为有效的异种胰岛细胞供体来源。越来越多的证据表明胰腺组织中存在着具有多向分化潜能的干细胞,这些细胞在特定条件下更容易分化成功能性的胰岛素分泌细胞。本研究旨在从2月龄以上胎猪胰腺组织中分离出胰岛间充质干细胞(Islet mesenchynal stem cells, IMSCs),通过体外诱导将其分化为胰岛素分泌细胞,并将其移植到糖尿病模型裸鼠体内进行糖尿病的治疗,探讨胎猪IMSCs作为异种供体细胞来源的可行性。
     1.胎猪胰岛间充质干细胞的分离培养及生物学特性鉴定
     由于来源于胰岛组织,胰岛间充质干细胞(IMSCs)在向胰岛素分泌细胞分化方面具有更大的潜力。与成体组织相比,胎儿体内可能含有更多的干细胞。本研究采取先悬浮后贴壁的培养方法,从2月龄以上胎猪胰腺组织中分离出胰岛细胞团,并由胰岛细胞团分离出IMSCs,通过细胞生长曲线、流式细胞表面抗原分析、免疫组化染色、RT-PCR检测、核型分析、成瘤性检测以及体外诱导分化等方法,对该细胞的生物学特性进行了鉴定。结果表明,胰腺组织消化后,采用先悬浮后贴壁的培养方法可有效分离得到胎猪IMSCs。通过检测发现,胎猪IMSCs体外培养过程中,胰岛内分泌细胞标记(胰岛素和胰高血糖素)和上皮细胞标记(CK7)的表达逐渐消失,而间充质干细胞标记(波形蛋白)的表达迅速增强,初步证实胎猪IMSCs可能来源于去分化的p细胞。第14代和第37代胎猪IMSCs的群体倍增时间分别为27.05±1.05 h和28.35±1.02 h,表明该细胞在体外多次传代后增殖能力未发生明显的改变。细胞流式表面抗原分析、免疫组化和RT-PCR检测结果表明,胎猪IMSCs除了表达胰腺干细胞标记胰腺十二指肠同源盒因子1 (Pdx1)和神经元素3(Ngn3)外,还表达Oct4、Sox2、Nanog等胚胎干细胞的一些多能性标记,其表面抗原表达特征与骨髓间充质干细胞十分相似。并且该细胞具有定向分化为神经和心肌细胞的能力,分化后细胞形态发生相应的变化,并表达神经和心肌细胞的一些相关标记。显示该细胞具有多向分化的潜能。46代胎猪IMSCs的核型和致瘤性分析结果表明,体外多次传代后细胞仍具有正常的二倍体核型,移植体内未见致瘤。上述结果表明,胎猪IMSCs具有很强的体外增殖能力和干细胞表达特征,体外具有向其他类型细胞分化的能力,可为组织工程和再生医学研究提供充足的细胞资源。
     2.体外定向诱导胎猪IMSCs向胰岛素分泌细胞分化及其移植治疗裸鼠糖尿病
     (1)体外向胰岛素分泌细胞分化:与L-DMEM培养基相比,以RPMI1640和H-DMEM作为基础诱导培养基,可显著提高诱导后细胞的胰岛素和C-肽分泌量(P<0.01),然而H-DMEM诱导组诱导后的细胞不具有葡萄糖反应性,不能够根据葡萄糖浓度的变化调节胰岛素和C-肽的释放量,因此不具有实用性。本研究最终确定以RPMI1640作为基础诱导培养基。通过对比发现,添加活化素A (Activin-A)可显著促进胎猪MSCs分泌胰岛素和C-肽(P<0.05或P<0.01)。本研究以无血清RPMI1640为基础诱导液,设计出一个两步法诱导方案。第一步,采用贴壁培养诱导,并添加10 mmol/L尼克酰胺和100 ng/mL Activin-A的方法诱导细胞1周;第二步,通过添加10 nmol/L exendin-4和4 nmol/Lβ-细胞素(BTC),并采用悬浮培养的方法继续诱导1周。结果显示,通过悬浮诱导胎猪IMSCs迅速聚集形成胰岛样细胞团,该细胞团双硫腙(DTZ)染色呈阳性。免疫荧光及RT-PCR结果显示,该细胞团表达胰岛p细胞特征性标记胰岛素(Insulin)和葡萄糖转运子2 (Glut-2)。并且诱导过程中内分泌前体细胞标记Ngn3表达减弱。25 mmol/L葡萄糖刺激2h后,第一步诱导后(诱导1周组)细胞的胰岛素和C-肽分泌量分别为34.92±6.54μIU/mL/106细胞和0.23±0.06 ng/mL/106细胞,第二步诱导后(诱导2周组)细胞的胰岛素和C-肽分泌量分别为287.65±42.24μIU/mL/106细胞和0.37±0.11 ng/mL/106细胞,均显著高于未诱导对照组(胰岛素分泌量2.16±0.37μIU/mL/106细胞,C-肽分泌量为0.11±0.03 ng/mL/106细胞)(P<0.05或P<0.01);并且诱导后细胞仍具有很高的葡萄糖反应性。上述结果表明胎猪IMSCs具有向胰岛素分泌细胞分化的潜能。
     (2)细胞移植治疗小鼠糖尿病:通过小剂量多次注射STZ的方法成功建立了糖尿病裸鼠模型,制模率达到了100%(17/17)。使用CM-DiL荧光染料对移植细胞进行标记,细胞标记率可达90%以上。将第二步诱导后的胎猪IMSCs移植到糖尿病裸鼠左侧睾丸内,观察血糖和体重变化。分别摘取移植1周和移植1个月时诱导移植组裸鼠的左侧睾丸组织进行切片免疫荧光染色,观察细胞体内存活状况。同时设立PBS注射对照组、未诱导细胞移植对照组和未制模正常小鼠对照组。体重检测结果表明,所有模型小鼠的体重均逐渐下降,包括诱导细胞移植组,而正常对照组裸鼠的体重却逐渐增加,表明诱导细胞移植后未改善糖尿病小鼠体重下降的状况。移植后,PBS注射组和未诱导细胞移植组裸鼠血糖水平一直维持在较高水平(>16.7 mmol/L),诱导细胞移植组裸鼠的血糖水平移植后迅速开始下降,第6d时接近正常水平,随后其血糖水平逐渐升高,19 d左右上升到移植前水平,随后一直维持在较高水平(>16.7 mmol/L),正常对照组裸鼠的血糖水平一直维持在正常范围内(<8mmol/L)。上述结果表明诱导细胞移植后短期内可缓解糖尿病小鼠的高血糖状况。睾丸组织切片染色分析发现,移植1周时诱导组移植侧睾丸组织内存在大量的CM-DiL和胰岛素共表达细胞,而移植1个月后该细胞数量大量减少,提示移植细胞在糖尿病裸鼠体内未能够长期存活。
     3.猪β细胞特异性启动子系统构建与检测细胞向胰岛素分泌细胞分化的研究
     通过使用猪胰岛素启动子和绿色荧光蛋白报告基因构建出一种p细胞特异性检测系统。转染后,观察到胎猪原代胰岛细胞表达绿色荧光,而胎猪IMSCs则不表达绿色荧光,表明该系统具有表达特异性。转染后的胎猪IMSCs经体外诱导分化,表达绿色荧光,并且这些细胞共表达胰岛素。RT-PCR和(?)Vestern blotting检测结果显示,诱导后胰岛素表达增强的同时,绿色荧光蛋白表达也显著增强。表明该系统可用于检测猪胰腺干细胞体外诱导分化过程中生成的胰岛素分泌细胞,具有筛选体外诱导分化体系和分离纯化胰岛素分泌细胞的能力。因此,具有重要的应用价值。
Diabetes mellitus is a devastating disease that has been heavily threatening the health of human beings. Traditional treatment with medicine or insulin injection often does not provide sufficient control of blood glucose and prevent complications of this disease. Islet transplantation offer potential therapeutic options for diabetic patients because this therapy can restore not only the insulin-secreting unit, but also the precise fine tuning of insulin release in response to multiple signals within and outside the islets. However, this therapy has been hampered by the shortage of donor islets. The usage of porcine islet cells is currently viewed as the most promising alternative, as there is a plentiful supply of porcine islet cells; moreover, porcine and human insulins are highly conserved, and porcine normal physiological glucose levels are similar to those in humans. Many studies showed that there are multipotential stem cells exist in pancreas. Under specific conditions, these cells can easily differentiate into functional insulin-producing cells. This study aims to isolate islet mesenchymal stem cells (IMSCs) from porcine fetus older than the age of 2 months, in vitro induce these cells to differentiate into insulin-producing cells, and transplant them into STZ-induced nude mice model for treatment of diabetes to explore the prospects of IMSCs as heterogeneous donor cells.
     1 Study on isolation and biological properties of fetal porcine pancreatic islet mesenchymal stem cells
     Derived from islets, especially fetal islets, IMSCs has greater potential to differentiate into insulin-producing cells. This study was to isolate IMSCs from porcine fetal pancreas older than the age of 2 months by a suspend-to-adhere culture method. Isolated cells were identified by cell growth curve, cell surface antigen analysis, immunohistochemical staining, RT-PCR, karyotype and tumorigenicity analysis, and of in vitro differentiation potential analysis. Results show that, porcine fetal IMSCs can effectively isolate by suspend-to-adhere culture method。Results by detection the genes expression of different passages porcine fetal IMSCs showed that the expression of markers of islet endocrine cells(such as insulin and glucogan)and epithelial cells(such as CK7) of porcine fetal IMSCs was declined gradually, but the expression of mesenchymal cell marker vimentin was enhanced. These results preliminary demonstrated that the porcine fetal IMSCs may derived fromβcells that undergone dedifferentiation process. The population doubling time of porcine fetal IMSCs of passage 14 and 37 were 27.05±1.05 h and 28.35±1.02 h respectively, which showed that the proliferative capacity of porcine fetal IMSCs was not changed after passages. Cell antigen analysis showed that porcine fetal IMSCs express not only the markers of pancreatic stem cells, but also the multipotent markers of embryonic stem cells, and the expression of cell surface antigens of porcine fetal IMSCs was similar to that of bone marrow mesenchymal stem cells. In vitro differentiation potential analysis showed that porcine fetal IMSCs possessed the ability of differentiation into neurocytes and cardiomyocytes. The passage 46 porcine fetal IMSCs showed normal karyotype and formed no tumor in the nude mice. These results indicated that porcine fetal IMSCs has strong proliferation and differentiation capacity in vitro, the characteristics of stem cells, and can provide ample cell resources for tissue engineering and regenerative medicine.
     2. Differentiation of porcine fetal IMSCs into insulin producing cells in vitro and treatment of diabetes
     (1) Differentiation of porcine fetal IMSCs into insulin producing cells in vitro: Compared with L-DMEM medium, RPMI 1640 and H-DMEM medium can significantly enhance the secretion of insulin and C-peptide of porcine fetal IMSCs(P<0.01). However, the cells after induction with H-DMEM medium can't regulate the secretion of insulin and C-peptide according to the changes of glucose level, so the RPMI1640 medium was finally chosen as basic inductive medium. Compared with the control group, adding Activin-A could significantly enhance the secretion of insulin and C-peptide of porcine fetal IMSCs (P<0.05 or P<0.01). A two-step induction protocol was devised for the differentiation of porcine fetal IMSCs into insulin-producing cells, in which the serum-free RPMI 1640 medium was used as the basic inductive medium. In the first step, the porcine fetal IMSCs were treated with Activin-A and nicotinamide for 1 week on stick petri dishes. Then the cells were collected by trypsin digestion and seeded onto non-stick petri dishes for another 1 week induction. In this step, exendin-4 and betacellulin were added. In the second step, porcine fetal IMSCs quickly gathered and formed islet-like cell clusters (ICCs), and these ICCs were stained into crimson with DTZ. After 2 weeks induction, ICCs expressed the specific markers of isletβcells (Insulin and Glut2), and the expression of Ngn3, a marker of pancreatic endocrine cells, decreased detected by RT-PCR and immunofluorescent staining. Under stimulation of 25 mmol/L glucose for 2 h, the insulin and C-peptide secretion of porcine fetal IMSCs after 1 week induction were 34.92±6.54μIU/mL/106 cells and 0.23±0.06 ng/mL/106 cells respectively, and that of porcine fetal IMSCs after 2 weeks induction were 287.65±42.24 μIU/mL/106 cells and 0.37±0.11 ng/mL/106 cells respectively, which significantly higher than the uninduced porcine fetal IMSCs(secretion of insulin and C-peptide of this group were 2.16±0.37μIU/mL/106 cells and 0.11±0.03 ng/mL/106 cells respectively) (P<0.05 or P<0.01). These results indicated that porcine fetal IMSCs have the ability to differentiate into insulin producing cells.
     (2) Transplantation of induced cells for treatment of diabetes:The diabetic nude mice model was successfully established by intraperitoneal STZ injection, and the rate of molding was 100%(17/17). The transplanted cells were labeled with CM-DiL, a fluorescent dye, and the labeling rate of the cells exceeded 90%. After labeling with CM-DiL, the induced porcine fetal IMSCs were transplanted into the left testes of diabetic mice. The body weight and blood glucose level of mice were detected regularly. The left testes of diabetic mice transplanted with induced cells were removed after one week and one month respectively to observe the survival situation of transplanted cells by slice fluorescent staining. The normal mice and diabetic mice injected with PBS or uninduced cells were used as control. The body weight of diabetic mice, including the mice transplanted with induced cells, decreased. However, that of normal mice increased gradually. These results indicated that the body weight of diabetic nude mice was not increased after cell transplantation. After transplantation, the blood glucose levels of diabetic mice injected with PBS or uninduced cells maintained at a high level (>16.7 mmol/L), but that of diabetic mice transplanted with induced cells quickly declined, and it approach to normal level on the sixth day, then it increased gradually and maintained at a high level(>16.7 mmol/L). The glucose level of normal mice maintained at a low level (<8mmol/L). These results indicated that porcine fetal IMSCs has the ability to ameliorate the hyperglycemia of diabetic nude mice。Analysis of slice fluorescent staining showed that there are large amounts of cells, which coexpressed Insulin and CM-DiL, existed in testes after one week transplantation of induced cells. However, the number of these cells declined after one month. These indicated that the transplanted cells could not survive a long time in vivo.
     3. Construction of a porcineβcell specific promoter system and their detection of insulin producing cells derived from porcine fetal islet-derived mesenchymal stem cells
     A porcineβcell specific detection system was established by using the porcine insulin promoter (IP) and pEGFP-1 vector. After transfection, primary fetal porcine islet cells expressed the green fluorescent protein (GFP), while porcine fetal IMSCs did not; this indicated that the expression of GFP has specificity. After induction, the porcine fetal IMSCs transfected with IP-pEGFP vector expressed GFP, and it coexpressed with insulin. RT-PCR and Western blotting analysis showed that after induction, the expression of insulin and GFP increased simultaneously, which indicated that this system can be used for identification of insulin-producing cells derived from porcine stem cells, and has important application value on selection of induction protocols and sorting the insulin-producing cells from induced cells.
引文
蔡寒青,葛焕琦,门秀丽,许世清,娄晋宁.2008.胰腺干细胞体外诱导分化为胰岛素分泌细胞及对Ⅰ型糖尿病模型鼠的治疗作用.中国组织工程研究与临床康复,12:5768-5772
    查彦红,谷卫.2007.糖尿病动物模型的研究进展.浙江医学,29:1342-1345
    陈建国,梅松,付颖,胡欣,王茵.2004.四氧嘧啶致小鼠高血糖模型的研究.卫生毒理学杂志,18:98-100
    范鸣.2009.猪胰岛素分泌细胞微囊DiabeCell进入Ⅰ/Ⅱa期临床试验.药学进展,33:191
    冯若鹏,张慧茹,窦忠英.2007.胎猪胰岛源胰腺干细胞分离培养与诱导分化试验.中国农业科学,40:582-587
    黄松.2002.糖尿病动物模型研究现状及进展.广西医学,24:46
    江南.2010.新文化报.我国糖尿病患者近亿数量骤增 六成患者不知情http://enews.xwhb.com/html/2010-11/05/content_216682.htm:11.15
    金彩霞,李文林,李元杰,徐方,胡以平.2010.胰岛素启动子在肝干细胞分化研究中的应用.癌变畸变突变,3:171-174
    金旭红,杨柳.2007.骨髓间充质干细胞标记及活体示踪技术研究进展.中华创伤杂志,2007,23:311-313
    李聪然,游雪甫,蒋建东.2005.糖尿病动物模型及研究进展.中国比较医学杂志,15:59-63
    刘涛,范骥,王春友.2003.转录因子Pdx-1在猪胰干细胞体外诱导分化过程中的表达及意义.胰腺病学,3:11-13
    刘霆,张桂珍,卜丽莎.2001.STZ小剂量多次注射诱导大鼠胰岛素依赖性糖尿病动物模型探讨.白求恩医科大学学报,27:578
    陆德云,熊中华,赵连三.2006.成体干细胞生物安全性相关的几个问题.四川医学:20-22
    马玉桂,周兰月,张东红.1999.改良的微囊化新生猪胰岛细胞移植治疗糖尿病的护理.中华护理杂志,34:664-665
    乔海,赵婷,王赞,杨春荣,效梅,窦忠英.2007.胎儿胰岛样细胞团源上皮样细胞分离、纯化和鉴定.生物工程学报,23:246-251
    史春梦,麦跃,程天民,粟永萍,徐辉,郑怀恩,王军平,黄跃生,蒋建新.2004.真皮来源成体多能干细胞体外自发恶性转化现象及机制研究.第三军医大学学报:71-73
    司晓晨,尚文斌,卞慧敏.2003.链脲佐菌素加高脂膳食诱导2型糖尿病大鼠模型.安徽中医临床杂志,15:383
    王赞,赵婷,乔海,杨春荣,张翊华,王华岩,窦忠英.2007.胎猪胰腺干细胞的分离鉴定.农业生物技术学报,15:622-627
    王赞.2008.猪胰腺干细胞分离鉴定.[博士学位论文]:杨凌:西北农林科技大学
    吴杭格,刘艳梅,赵小丽,宋海龙,兰海楠,阎峰,王珊珊,郑鑫.2008.新生猪胰腺干细胞培养方法的建立.中国兽医科学,38:990-996
    吴木潮,程桦,徐明形,陈黎红,黎锋,薛声能.2006.多种生长因子分阶段诱导小鼠胚胎干细胞分化为胰岛素分泌细胞.中华内分泌代谢杂志,22:268-272
    徐伟,陶勇,朱亮,白海,陈宏权.2009.早期胎猪的生长发育及其与胎龄的相关性分析.黑龙江动物繁殖,17:1-2
    杨巍,罗春元,于春雷,王莉,许丽芳,李一.2006.不同剂量STZ诱导小鼠糖尿病模型的发病机制.吉林大学学报(医学版),32:432-435
    张慧茹.2005.仔猪胰腺干细胞分离鉴定.[博士学位论文]:杨凌:西北农林科技大学
    张翊华.2007.骨髓间充质干细胞及向胰岛细胞分化治疗糖尿病.[博士学位论文]:杨凌:西北农林科技大学
    章乐虹,陈德,胡以则.2003.腹腔镜微囊化猪胰岛小网膜腔内异种移植的临床研究.中华器官移植杂志,24:121
    中国糖尿病协会.2010.中国糖尿病患者现状.http://www.cdae.info/Readl.Asp?PPNewsID=35: 2010.12.28
    Artner, I., Hang, Y., Guo, M., Gu, G., Stein, R.2008. MafA is a dedicated activator of the insulin gene in vivo. JEndocrinol,198:271-279
    Assady, S., Maor, G, Amit, M., Itskovitz-Eldor, J., Skorecki, K.L., Tzukerman, M.2001. Insulin production by human embryonic stem cells. Diabetes,50:1691-1697
    Atouf, F., Park, C.H., Pechhold, K., Ta, M., Choi, Y, Lumelsky, N.L.2007. No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro. Diabetes,56:699-702
    Aviv, V., Meivar-Levy, I., Rachmut, I.H., Rubinek, T., Mor, E., Ferber, S.2009. Exendin-4 promotes liver cell proliferation and enhances the PDX-1-induced liver to pancreas transdifferentiation process. J Biol Chem,284:33509-33520
    Baeyens, L., De Breuck, S., Lardon, J., Mfopou, J.K., Rooman, I., Bouwens, L.2005. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia,48:49-57
    Bai, L., Meredith, G., Tuch, B.E.2005. Glucagon-like peptide-1 enhances production of insulin in insulin-producing cells derived from mouse embryonic stem cells. J Endocrinol,186:343-352
    Ballian, N., Brunicardi, F.C.2007. Islet vasculature as a regulator of endocrine pancreas function. World J Surg,31:705-714
    Barbacci, E., Reber, M., Ott, M.O., Breillat, C., Huetz, F., Cereghini, S.1999. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development,126:4795-4805
    Basta, G., Racanicchi, L., Mancuso, F., Guido, L., Macchiarulo, G., Luca, G., Calabrese, G., Brunetti, P., Calafiore, R.2004. Neonatal pig pancreatic duct-derived insulin-producing cells:preliminary in vitro studies. Transplant Proc,36:609-611
    Ber, I., Shternhall, K., Perl, S., Ohanuna, Z., Goldberg, I., Barshack, I., Benvenisti-Zarum, L., Meivar-Levy, I., Ferber, S.2003. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem,278:31950-31957
    Berger, A.2000. Transplanted pancreatic stem cells can reverse diabetes in mice. BMJ,320:736A
    Bernardo, A.S., Cho, C.H., Mason, S., Docherty, H.M., Pedersen, R.A., Vallier, L., Docherty, K.2009. Biphasic induction of Pdxl in mouse and human embryonic stem cells can mimic development of pancreatic beta-cells. Stem Cells,27:341-351
    Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St-Onge, L., Wobus, A.M.2003. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA,100:998-1003
    Bonner-Weir, S., Inada, A., Yatoh, S., Li, W.C., Aye, T., Toschi, E., Sharma, A.2008. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans,36:353-356
    Bonner-Weir, S., Taneja, M., Weir, G.C., Tatarkiewicz, K., Song, K.H., Sharma, A., O'Neil, J.J.2000. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA,97: 7999-8004
    Bonner-Weir, S., Toschi, E., Inada, A., Reitz, P., Fonseca, S.Y., Aye, T., Sharma, A.2004. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes,5 Suppl 2:16-22
    Borowiak, M., Maehr, R., Chen, S., Chen, A.E., Tang, W., Fox, J.L., Schreiber, S.L., Melton, D.A.2009. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell,4:348-358
    Boyd, A.S., Wu, D.C., Higashi, Y., Wood, K.J.2008. A comparison of protocols used to generate insulin-producing cell clusters from mouse embryonic stem cells. Stem Cells,26:1128-1137
    Brennan, J., Lu, C.C., Norris, D.P., Rodriguez, T.A., Beddington, R.S., Robertson, E.J.2001. Nodal signalling in the epiblast patterns the early mouse embryo. Nature,411:965-969
    Burlison, J.S., Long, Q., Fujitani, Y., Wright, C.V., Magnuson, M.A.2008. Pdx-1 and Ptfla concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol,316:74-86
    Cabrera, O., Berman, D.M., Kenyon, N.S., Ricordi, C., Berggren, P.O., Caicedo, A.2006. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA,103:2334-2339
    Chase, L.G., Ulloa-Montoya, F., Kidder, B.L., Verfaillie, C.M.2007. Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes,56: 3-7
    Chatenoud, L., Bluestone, J.A.2007. CD3-specific antibodies:a portal to the treatment of autoimmunity. Nat Rev Immunol,7:622-632
    Chen, C., Zhang, Y., Sheng, X., Huang, C., Zang, Y.Q.2008. Differentiation of embryonic stem cells towards pancreatic progenitor cells and their transplantation into streptozotocin-induced diabetic mice. Cell Biol Int,32:456-461
    Chen, W., Begum, S., Opare-Addo, L., Garyu, J., Gibson, T.F., Bothwell, A.L., Papaioannou, V.E., Herold, K.C.2009. Promotion of beta-cell differentiation in pancreatic precursor cells by adult islet cells. Endocrinology,150:570-579
    Chen, Y, Pan, F.C., Brandes, N., Afelik, S., Solter, M., Pieler, T.2004. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol,271:144-160
    Cho, Y.M., Lim, J.M., Yoo, D.H., Kim, J.H., Chung, S.S., Park, S.G., Kim, T.H., Oh, S.K., Choi, Y.M., Moon, S.Y., Park, K.S., Lee, H.K.2008. Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in human embryonic stem cells. Biochem Biophys Res Commun,366:129-134
    Collombat, P., Hecksher-Sorensen, J., Broccoli, V., Krull, J., Ponte, I., Mundiger, T., Smith, J., Gruss, P., Serup, P., Mansouri, A.2005. The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha-and beta-cell lineages in the mouse endocrine pancreas. Development,132:2969-2980
    Collombat, P., Mansouri, A., Hecksher-Sorensen, J., Serup, P., Krull, J., Gradwohl, G, Gruss, P.2003. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev,17:2591-2603
    Conrad, S., Renninger, M., Hennenlotter, J., Wiesner, T., Just, L., Bonin, M., Aicher, W., Buhring, H.J., Mattheus, U., Mack, A., Wagner, H.J., Minger, S., Matzkies, M., Reppel, M., Hescheler, J., Sievert, K.D., Stenzl, A., Skutella, T.2008. Generation of pluripotent stem cells from adult human testis. Nature,456:344-349
    D'Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., Baetge, E.E.2005. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol,23:1534-1541
    D'Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G., Moorman, M.A., Kroon, E., Carpenter, M.K., Baetge, E.E.2006. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol,24:1392-1401
    Davani, B., Ariely, S., Ikonomou, L., Oron, Y., Gershengorn, M.C.2009. Human islet-derived precursor cells can cycle between epithelial clusters and mesenchymal phenotypes. J Cell Mol Med,13: 2570-2581
    Davani, B., Ikonomou, L., Raaka, B.M., Geras-Raaka, E., Morton, R.A., Marcus-Samuels, B., Gershengorn, M.C.2007. Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells,25:3215-3222
    De Bari, C, Dell'Accio, F., Tylzanowski, P., Luyten, F.P.2001. Multipotent mesenchymal_stem cells from adult human synovial membrane. Arthritis Rheum,44:1928-1942
    De Coppi, P., Bartsch, G., Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S., Atala, A.2007. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol,25:100-106
    Demeterco, C., Beattie, G.M., Dib, S.A., Lopez, A.D., Hayek, A.2000. A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth. JClin Endocrinol Metab,85:3892-3897
    Dessimoz, J., Opoka, R., Kordich, J.J., Grapin-Botton, A., Wells, J.M.2006. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev,123:42-55
    Dichmann, D.S., Yassin, H., Serup, P.2006. Analysis of pancreatic endocrine development in GDF11-deficient mice. Dev Dyn,235:3016-3025
    Doyle, M.J., Sussel, L.2007. Nkx2.2 regulates beta-cell function in the mature islet. Diabetes,56: 1999-2007
    Eberhardt, M., Salmon, P., von Mach, M.A., Hengstler, J.G, Brulport, M., Linscheid, P., Seboek, D., Oberholzer, J., Barbero, A., Martin, I., Muller, B., Trono, D., Zulewski, H.2006. Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun,345:1167-1176
    Edlund, H.2002. Pancreatic organogenesis--developmental mechanisms and implications for therapy. Nat Rev Genet,3:524-532
    Elsner, M., Guldbakke, B., Tiedge, M., Munday, R., Lenzen, S.2000. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia,43:1528-1533
    Federiuk, I.F., Casey, H.M., Quinn, M.J., Wood, M.D., Ward, W.K.2004. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan:route of administration, pitfalls, and insulin treatment. Comp Med,54:252-257
    Francis, J., Chakrabarti, S.K., Garmey, J.C., Mirmira, R.G.2005. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase Ⅱ elongation during activation of insulin transcription. J Biol Chem,280: 36244-36253
    Fujikawa, T., Oh, S.H., Pi, L., Hatch, H.M., Shupe, T., Petersen, B.E.2005. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol,166:1781-1791
    Fukazawa, T., Matsuoka, J., Naomoto, Y., Nakai, T., Durbin, M.L., Kojima, I., Lakey, J.R., Tanaka, N.2006. Development of a novel beta-cell specific promoter system for the identification of insulin-producing cells in in vitro cell cultures. Exp Cell Res,312:3404-3412
    Gallo, R., Gambelli, F., Gava, B., Sasdelli, F., Tellone, V., Masini, M., Marchetti, P., Dotta, F., Sorrentino, V. 2007. Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death Differ,14:1860-1871
    Gannon, M., Ables, E.T., Crawford, L., Lowe, D., Offield, M.F., Magnuson, M.A., Wright, C.V.2008. pdx-1 function is specifically required in embryonic beta cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol,314:406-417
    Gao, R., Ustinov, J., Pulkkinen, M.A., Lundin, K., Korsgren, O., Otonkoski, T.2003. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes,52:2007-2015
    Gershengorn, M.C., Hardikar, A.A., Wei, C., Geras-Raaka, E., Marcus-Samuels, B., Raaka, B.M.2004. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science,306: 2261-2264
    Goicoa, S., Alvarez, S., Ricordi, C., Inverardi, L., Dominguez-Bendala, J.2006. Sodium butyrate activates genes of early pancreatic development in embryonic stem cells. Cloning Stem Cells,8:140-149
    Gonez, L.J., Knight, K.R.2010. Cell therapy for diabetes:stem cells, progenitors or beta-cell replication? Mol Cell Endocrinol,323:55-61
    Grzech, M., Dahlhoff, M., Herbach, N., Habermann, F.A., Renner-Muller, I., Wanke, R., Flaswinkel, H., Wolf, E., Schneider, M.R.2010. Specific transgene expression in mouse pancreatic beta-cells under the control of the porcine insulin promoter. Mol Cell Endocrinol,315:219-224
    Gu, G., Brown, J.R., Melton, D.A.2003. Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mech Dev,120:35-43
    Gu, G., Dubauskaite, J., Melton, D.A.2002. Direct evidence for the pancreatic lineage:NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development,129:2447-2457
    Han, X., Tuch, B.E.2001. Cloning and characterization of porcine insulin gene. Comp Biochem Physiol B Biochem Mol Biol,129:87-95
    Hansen, L., Hartmann, B., Mineo, H., Holst, J.J.2004. Glucagon-like peptide-1 secretion is influenced by perfusate glucose concentration and by a feedback mechanism involving somatostatin in isolated perfused porcine ileum. Regul Pept,118:11-18
    Hansson, M., Tonning, A., Frandsen, U., Petri, A., Rajagopal, J., Englund, M.C., Heller, R.S., Hakansson, J., Fleckner, J., Skold, H.N., Melton, D., Semb, H., Serup, P.2004. Artifactual insulin release from differentiated embryonic stem cells. Diabetes,53:2603-2609
    Heller, R.S., Jenny, M., Collombat, P., Mansouri, A., Tomasetto, C., Madsen, O.D., Mellitzer, G., Gradwohl, G., Serup, P.2005. Genetic determinants of pancreatic epsilon-cell development. Dev Biol,286: 217-224
    Henseleit, K.D., Nelson, S.B., Kuhlbrodt, K., Hennings, J.C., Ericson, J., Sander, M.2005. NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development,132:3139-3149
    Hisanaga, E., Park, K.Y., Yamada, S., Hashimoto, H., Takeuchi, T., Mori, M., Seno, M., Umezawa, K., Takei, I., Kojima, I.2008. A simple method to induce differentiation of murine bone marrow mesenchymal cells to insulin-producing cells using conophylline and betacellulin-delta4. Endocr J,55: 535-543
    Hori, Y., Gu, X., Xie, X., Kim, S.K.2005. Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med,2:el03
    Hori, Y., Rulifson, I.C., Tsai, B.C., Heit, J.J., Cahoy, J.D., Kim, S.K.2002. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A,99: 16105-16110
    Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., Melton, D.A.2008. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol,26:795-797
    Humphrey, R.K., Smith, M.S., Kwok, J., Si, Z., Tuch, B.E., Simpson, A.M.2001. In vitro dedifferentiation of fetal porcine pancreatic tissue prior to transplantation as islet-like cell clusters. Cells Tissues Organs, 168:158-169
    Jacquemin, P., Yoshitomi, H., Kashima, Y., Rousseau, G.G., Lemaigre, F.P., Zaret, K.S.2006. An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol, 290:189-199
    Jaing, T.H., Sun, C.F., Lee, W.I., Wen, Y.C., Yang, C.P., Hung, I.J.2008. Successful unmanipulated peripheral blood progenitor cell transplantation from an HLA haploidentical 2-locus-mismatched mother in a thalassemic patient with primary graft failure after transplantation of bone marrow and cord blood from unrelated donors. Pediatr Transplant,12:232-234
    Jenny, M., Uhl, C., Roche, C., Duluc, I., Guillermin, V., Guillemot, F., Jensen, J., Kedinger, M., Gradwohl, G.2002. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J,21:6338-6347
    Jeon, J., Correa-Medina, M., Ricordi, C., Edlund, H., Diez, J.A.2009. Endocrine cell clustering during human pancreas development. JHistochem Cytochem,57:811-824
    Jiang, F.X., Cram, D.S., DeAizpurua, H.J., Harrison, L.C.1999. Laminin-1 promotes differentiation of fetal mouse pancreatic beta-cells. Diabetes,48:722-730
    Jiang, J., Au, M., Lu, K., Eshpeter, A., Korbutt, G., Fisk, G, Majumdar, A.S.2007a. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells,25:1940-1953
    Jiang, W., Shi, Y., Zhao, D., Chen, S., Yong, J., Zhang, J., Qing, T., Sun, X., Zhang, P., Ding, M., Li, D., Deng, H.2007b. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res,17:333-344
    Jiang, Y, Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A., Verfaillie, C.M.2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418:41-49
    Joglekar, M.V., Joglekar, V.M., Joglekar, S.V., Hardikar, A.A.2009. Human fetal pancreatic insulin-producing cells proliferate in vitro. JEndocrinol,201:27-36
    Johansson, K.A., Dursun, U., Jordan, N., Gu, G, Beermann, F., Gradwohl, G, Grapin-Botton, A.2007. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell,12:457-465
    Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., Woltjen, K.2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature,458:771-775
    Kaneto, H., Miyatsuka, T., Fujitani, Y., Noguchi, H., Song, K.H., Yoon, K.H., Matsuoka, T.A.2007. Role of PDX-1 and MafA as a potential therapeutic target for diabetes. Diabetes Res Clin Pract,77 Suppl 1: S127-137
    Kaneto, H., Nakatani, Y., Miyatsuka, T., Matsuoka, T.A., Matsuhisa, M., Hori, M., Yamasaki, Y.2005. PDX-1/Vp16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes,54:1009-1022
    Kawahira, H., Scheel, D.W., Smith, S.B., German, M.S., Hebrok, M.2005. Hedgehog signaling regulates expansion of pancreatic epithelial cells. Dev Biol,280:111-121
    Kawakami, M., Hirayama, A., Tsuchiya, K., Ohgawara, H., Nakamura, M., Umezawa, K.2010. Promotion of beta-cell differentiation by the alkaloid conophylline in porcine pancreatic endocrine cells. Biomed Pharmacother,64:226-231
    Kelly, O.G., Pinson, K.I., Skarnes, W.C.2004. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development,131:2803-2815
    Khoo, M.L., McQuade, L.R., Smith, M.S., Lees, J.G., Sidhu, K.S., Tuch, B.E.2005. Growth and differentiation of embryoid bodies derived from human embryonic stem cells:effect of glucose and basic fibroblast growth factor. Biol Reprod,73:1147-1156
    Kim, S.K., Hebrok, M., Li, E., Oh, S.P., Schrewe, H., Harmon, E.B., Lee, J.S., Melton, D.A.2000. Activin receptor patterning of foregut organogenesis. Genes Dev,14:1866-1871
    Kitamura, R., Ogata, T, Tanaka, Y., Motoyoshi, K., Seno, M., Takei, I., Umezawa, K., Kojima, I.2007. Conophylline and betacellulin-delta4:an effective combination of differentiation factors for pancreatic beta cells. Endocr J,54:255-264
    Kopinke, D., Murtaugh, L.C.2010. Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev Biol,10:38
    Kroon, E., Martinson, L.A., Kadoya, K., Bang, A.G., Kelly, O.G., Eliazer, S., Young, H., Richardson, M., Smart, N.G., Cunningham, J., Agulnick, A.D., D'Amour, K.A., Carpenter, M.K., Baetge, E.E.2008. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol,26:443-452
    Kubo, A., Shinozaki, K., Shannon, J.M., Kouskoff, V., Kennedy, M., Woo, S., Fehling, H.J., Keller, G.2004. Development of definitive endoderm from embryonic stem cells in culture. Development,131: 1651-1662
    Lakshmipathy, U., Verfaillie, C.2005. Stem cell plasticity. Blood Rev,19:29-38
    Lau, J., Kawahira, H., Hebrok, M.2006. Hedgehog signaling in pancreas development and disease. Cell Mol Life Sci,63:642-652
    Lechner, A., Nolan, A.L., Blacken, R.A., Habener, J.F.2005. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue. Biochem Biophys Res Commun,327: 581-588
    Lendahl, U., Zimmerman, L.B., McKay, R.D.1990. CNS stem cells express a new class of intermediate filament protein. Cell,60:585-595
    Lenzen, S.2008. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia,51: 216-226
    Lester, L.B., Kuo, H.C., Andrews, L., Nauert, B., Wolf, D.P.2004. Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes. Reprod Biol Endocrinol,2:42
    Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J., Langer, R.2002. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA,99:4391-4396
    Li, L., Mignone, J., Yang, M., Matic, M., Penman, S., Enikolopov, G., Hoffman, R.M.2003. Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA,100:9958-9961
    Liu, H., Guz, Y., Kedees, M.H., Winkler, J., Teitelman, G.2010. Precursor cells in mouse islets generate new beta-cells in vivo during aging and after islet injury. Endocrinology,151:520-528
    Londrigan, S.L., Brady, J.L., Sutherland, R.M., Hawthorne, W.J., Thomas, H.E., Jhala, G, Cowan, P.J., Kay, T.W., O'Connell, P.J., Lew, A.M.2007. Evaluation of promoters for driving efficient transgene expression in neonatal porcine islets. Xenotransplantation,14:119-125
    Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., McKay, R.2001. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science,292:1389-1394
    Luther, M.J., Davies, E., Muller, D., Harrison, M., Bone, A.J., Persaud, S.J., Jones, P.M.2005. Cell-to-cell contact influences proliferative marker expression and apoptosis in MIN6 cells grown in islet-like structures. Am JPhysiol Endocrinol Metab,288:E502-509
    Mandel, T.E., Kovarik, J., Koulmanda, M.1995. A comparison of organ cultured fetal pancreas allo-, iso-, and xenografts (pig) in non-immunosuppressed non-obese diabetic mice. Am J Pathol,147:834-844
    Mashima, H., Shibata, H., Mine, T., Kojima, I.1996. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology,137:3969-3976
    Matsuoka, T.A., Kaneto, H., Stein, R., Miyatsuka, T., Kawamori, D., Henderson, E., Kojima, I., Matsuhisa, M., Hori, M., Yamasaki, Y.2007. MafA regulates expression of genes important to islet beta-cell function. Mol Endocrinol,21:2764-2774
    Matteucci, E., Giampietro, O.2008. Proposal open for discussion:defining agreed diagnostic procedures in experimental diabetes research. JEthnopharmacol,115:163-172
    McCall, M.D., Toso, C., Baetge, E.E., Shapiro, A.M.2010. Are stem cells a cure for diabetes? Clin Sci (Lond),118:87-97
    McDonald, E., Krishnamurthy, M., Goodyer, C.G., Wang, R.2009. The emerging role of SOX transcription factors in pancreatic endocrine cell development and function. Stem Cells Dev,18:1379-1388
    McLean, A.B., D'Amour, K.A., Jones, K.L., Krishnamoorthy, M., Kulik, M.J., Reynolds, D.M., Sheppard, A.M., Liu, H., Xu, Y, Baetge, E.E., Dalton, S.2007. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells,25:29-38
    Meindl, S., Schmidt, U., Vaculik, C., Elbe-Burger, A.2006. Characterization, isolation, and differentiation of murine skin cells expressing hematopoietic stem cell markers. JLeukoc Biol,80:816-826
    Meissner, A., Wernig, M., Jaenisch, R.2007. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol,25:1177-1181
    Miralles, F., Lamotte, L., Couton, D., Joshi, R.L.2006. Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors. Int J Dev Biol,50:17-26
    Miyazaki, S., Yamato, E., Miyazaki, J.2004. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes,53:1030-1037
    Moller, D.E.1994. Transgenic approaches to the pathogenesis of NIDDM. Diabetes,43:1394-1401
    Molotkov, A., Molotkova, N., Duester, G.2005. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn,232:950-957
    Moriscot, C., de Fraipont, F., Richard, M.J., Marchand, M., Savatier, P., Bosco, D., Favrot, M., Benhamou, P.Y.2005. Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells,23:594-603
    Morton, R.A., Geras-Raaka, E., Wilson, L.M., Raaka, B.M., Gershengorn, M.C.2007. Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol Cell Endocrinol,270:87-93
    Mutskov, V., Raaka, B.M., Felsenfeld, G., Gershengorn, M.C.2007. The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells,25:3223-3233
    Nagaya, M., Katsuta, H., Kaneto, H., Bonner-Weir, S., Weir, G.C.2009. Adult mouse intrahepatic biliary epithelial cells induced in vitro to become insulin-producing cells. J Endocrinol,201:37-47
    Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R.E., Yoshida, S.2010. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science,328:62-67
    Nakanishi, M., Hamazaki, T.S., Komazaki, S., Okochi, H., Asashima, M.2007. Pancreatic tissue formation from murine embryonic stem cells in vitro. Differentiation,75:1-11
    Narushima, M., Kobayashi, N., Okitsu, T., Tanaka, Y, Li, S.A., Chen, Y, Miki, A., Tanaka, K., Nakaji, S., Takei, K., Gutierrez, A.S., Rivas-Carrillo, J.D., Navarro-Alvarez, N., Jun, H.S., Westerman, K.A., Noguchi, H., Lakey, J.R., Leboulch, P., Tanaka, N., Yoon, J.W.2005. A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol,23:1274-1282
    Noguchi, H., Matsumoto, S., Okitsu, T., Iwanaga, Y., Yonekawa, Y, Nagata, H., Matsushita, M., Wei, F.Y., Matsui, H., Minami, K., Seino, S., Masui, Y, Futaki, S., Tanaka, K.2005. PDX-1 protein is internalized by lipid raft-dependent macropinocytosis. Cell Transplant,14:637-645
    Odagiri, H., Wang, J., German, M.S.1996. Function of the human insulin promoter in primary cultured islet cells. JBiol Chem,271:1909-1915
    Ogata, T., Li, L., Yamada, S., Yamamoto, Y, Tanaka, Y, Takei, I., Umezawa, K., Kojima, I.2004. Promotion of beta-cell differentiation by conophylline in fetal and neonatal rat pancreas. Diabetes,53: 2596-2602
    Ogihara, T., Watada, H., Kanno, R., Ikeda, F., Nomiyama, T., Tanaka, Y, Nakao, A., German, M.S., Kojima, I., Kawamori, R.2003. p38 MAPK is involved in activin A-and hepatocyte growth factor-mediated expression of pro-endocrine gene neurogenin 3 in AR42J-B13 cells. JBiol Chem,278:21693-21700
    Oliver-Krasinski, J.M., Stoffers, D.A.2008. On the origin of the beta cell. Genes Dev,22:1998-2021
    Omer, A., Duvivier-Kali, V.F., Trivedi, N., Wilmot, K., Bonner-Weir, S., Weir, G.C.2003. Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice. Diabetes,52:69-75
    Ostrom, M., Loffler, K.A., Edfalk, S., Selander, L., Dahl, U., Ricordi, C., Jeon, J., Correa-Medina, M., Diez, J., Edlund, H.2008. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS One,3:e2841
    Ouziel-Yahalom, L., Zalzman, M., Anker-Kitai, L., Knoller, S., Bar, Y., Glandt, M., Herold, K., Efrat, S. 2006. Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Res Commun,341:291-298
    Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., Daley, G.Q. 2008. Reprogramming of human somatic cells to pluripotency with defined factors. Nature,451: 141-146
    Parviz, F., Matullo, C., Garrison, W.D., Savatski, L., Adamson, J.W., Ning, G, Kaestner, K.H., Rossi, J.M., Zaret, K.S., Duncan, S.A.2003. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet,34:292-296
    Phillips, B.W., Hentze, H., Rust, W.L., Chen, Q.P., Chipperfield, H., Tan, E.K., Abraham, S., Sadasivam, A., Soong, P.L., Wang, S.T., Lim, R., Sun, W., Colman, A., Dunn, N.R.2007. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev,16:561-578
    Ptasznik, A., Beattie, G.M., Mally, M.I., Cirulli, V, Lopez, A., Hayek, A.1997. Phosphatidylinositol 3-kinase is a negative regulator of cellular differentiation. J Cell Biol,137:1127-1136
    Qiu, Y, Guo, M., Huang, S., Stein, R.2002. Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47. Mol Cell Biol,22:412-420
    Rada-Iglesias, A., Enroth, S., Ameur, A., Koch, C.M., Clelland, G.K., Respuela-Alonso, P., Wilcox, S., Dovey, O.M., Ellis, P.D., Langford, C.F., Dunham, I., Komorowski, J., Wadelius, C.2007. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res,17:708-719
    Rajagopal, J., Anderson, W.J., Kume, S., Martinez, O.I., Melton, D.A.2003. Insulin staining of ES cell progeny from insulin uptake. Science,299:363
    Ramiya, V.K., Maraist, M., Arfors, K.E., Schatz, D.A., Peck, A.B., Cornelius, J.G.2000. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med,6: 278-282
    Rescan, C., Le Bras, S., Lefebvre, V.H., Frandsen, U., Klein, T., Foschi, M., Pipeleers, D.G., Scharfmann, R., Madsen, O.D., Heimberg, H.2005. EGF-induced proliferation of adult human pancreatic duct cells is mediated by the MEK/ERK cascade. Lab Invest,85:65-74
    Roche, E., Sepulcre, P., Reig, J.A., Santana, A., Soria, B.2005. Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells. FASEB J,19:1341-1343
    Rogers, S.A., Chen, F., Talcott, M.R., Faulkner, C., Thomas, J.M., Thevis, M., Hammerman, M.R.2007. Long-term engraftment following transplantation of pig pancreatic primordia into non-immunosuppressed diabetic rhesus macaques. Xenotransplantation,14:591-602
    Rubio, D., Garcia-Castro, J., Martin, M.C., de la Fuente, R., Cigudosa, J.C., Lloyd, A.C., Bernad, A.2005. Spontaneous human adult stem cell transformation. Cancer Res,65:3035-3039
    Rulifson, I.C., Karnik, S.K., Heiser, P.W., ten Berge, D., Chen, H., Gu, X., Taketo, M.M., Nusse, R., Hebrok, M., Kim, S.K.2007. Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci USA,104:6247-6252
    Russ, H.A., Bar, Y., Ravassard, P., Efrat, S.2008. In vitro proliferation of cells derived from adult human beta-cells revealed by cell-lineage tracing. Diabetes,57:1575-1583
    Ryan, E.A., Paty, B.W., Senior, P.A., Bigam, D., Alfadhli, E., Kneteman, N.M., Lakey, J.R., Shapiro, A.M. 2005. Five-year follow-up after clinical islet transplantation. Diabetes,54:2060-2069
    Sander, M., Sussel, L., Conners, J., Scheel, D., Kalamaras, J., Dela Cruz, F., Schwitzgebel, V., Hayes-Jordan, A., German, M.2000. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development,127:5533-5540
    Schmied, B.M., Liu, G., Matsuzaki, H., Ulrich, A., Hernberg, S., Moyer, M.P., Weide, L., Murphy, L., Batra, S.K., Pour, P.M.2000. Differentiation of islet cells in long-term culture. Pancreas,20:337-347
    Schwitzgebel, V.M., Mamin, A., Brun, T., Ritz-Laser, B., Zaiko, M., Maret, A., Jornayvaz, F.R., Theintz, G.E., Michielin, O., Melloul, D., Philippe, J.2003. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab,88:4398-4406
    Schwitzgebel, V.M., Scheel, D.W., Conners, J.R., Kalamaras, J., Lee, J.E., Anderson, D.J., Sussel, L., Johnson, J.D., German, M.S.2000. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development,127:3533-3542
    Seaberg, R.M., Smukler, S.R., Kieffer, T.J., Enikolopov, G., Asghar, Z., Wheeler, M.B., Korbutt, G., van der Kooy, D.2004. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol,22:1115-1124
    Segev, H., Fishman, B., Ziskind, A., Shulman, M., Itskovitz-Eldor, J.2004. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells,22:265-274
    Serafimidis, I., Rakatzi, I., Episkopou, V., Gouti, M., Gavalas, A.2008. Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors. Stem Cells,26:3-16
    Shapiro, A.M., Ricordi, C., Hering, B.J., Auchincloss, H., Lindblad, R., Robertson, R.P., Secchi, A., Brendel, M.D., Berney, T., Brennan, D.C., Cagliero, E., Alejandro, R., Ryan, E.A., DiMercurio, B., Morel, P., Polonsky, K.S., Reems, J.A., Bretzel, R.G., Bertuzzi, F., Froud, T., Kandaswamy, R., Sutherland, D.E., Eisenbarth, G., Segal, M., Preiksaitis, J., Korbutt, G.S., Barton, F.B., Viviano, L., Seyfert-Margolis, V., Bluestone, J., Lakey, J.R.2006. International trial of the Edmonton protocol for islet transplantation. N Engl J Med,355:1318-1330
    Shi, Y., Hou, L., Tang, F., Jiang, W., Wang, P., Ding, M., Deng, H.2005. Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells,23:656-662
    Shih, C.C., Forman, S.J., Chu, P., Slovak, M.2007. Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev,16:893-902
    Shternhall-Ron, K., Quintana, F.J., Perl, S., Meivar-Levy, I., Barshack, I., Cohen, I.R., Ferber, S.2007. Ectopic PDX-1 expression in liver ameliorates type 1 diabetes. JAutoimmun,28:134-142
    Sipione, S., Eshpeter, A., Lyon, J.G., Korbutt, G.S., Bleackley, R.C.2004. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia,47:499-508
    Soria, B., Bedoya, F.J., Tejedo, J.R., Hmadcha, A., Ruiz-Salmeron, R., Lim, S., Martin, F.2008. Cell therapy for diabetes mellitus:an opportunity for stem cells? Cells Tissues Organs,188:70-77
    Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J.A., Martin, F.2000. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes,49: 157-162
    St-Onge, L., Sosa-Pineda, B., Chowdhury, K., Mansouri, A., Gruss, P.1997. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature,387:406-409
    Suckale, J., Solimena, M.2008. Pancreas islets in metabolic signaling--focus on the beta-cell. Front Biosci, 13:7156-7171
    Sugiyama, T., Rodriguez, R.T., McLean, G.W., Kim, S.K.2007. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci USA, 104:175-180
    Sussel, L., Kalamaras, J., Hartigan-O'Connor, D.J., Meneses, J.J., Pedersen, R.A., Rubenstein, J.L., German, M.S.1998. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development,125:2213-2221
    Suzuki, A., Nakauchi, H., Taniguchi, H.2004. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes,53:2143-2152
    Sykes, M.2007. Mechanisms of tolerance induced via mixed chimerism. Front Biosci,12:2922-2934
    Tada, S., Era, T., Furusawa, C., Sakurai, H., Nishikawa, S., Kinoshita, M., Nakao, K., Chiba, T.2005. Characterization of mesendoderm:a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development,132:4363-4374
    Taipale, J., Chen, J.K., Cooper, M.K., Wang, B., Mann, R.K., Milenkovic, L., Scott, M.P., Beachy, P.A. 2000. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature,406:1005-1009
    Takahashi, K., Yamanaka, S.2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell,126:663-676
    Tatarkiewicz, K., Lopez-Avalos, M.D., Yoon, K.H., Trivedi, N., Quickel, R.R., Bonner-Weir, S., Weir, G.C. 2003. Development and retroviral transduction of porcine neonatal pancreatic islet cells in monolayer culture. Dev Growth Differ,45:39-50
    Tateishi, K., He, J., Taranova, O., Liang, G., D'Alessio, A.C., Zhang, Y.2008. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem,283:31601-31607
    Teitelman, G., Alpert, S., Polak, J.M., Martinez, A., Hanahan, D.1993. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development,118:1031-1039
    Timper, K., Seboek, D., Eberhardt, M., Linscheid, P., Christ-Crain, M., Keller, U., Muller, B., Zulewski, H. 2006. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun,341:1135-1140
    Toso, C., Shapiro, A.M., Bowker, S., Dinyari, P., Paty, B., Ryan, E.A., Senior, P., Johnson, J.A.2007. Quality of life after islet transplant:impact of the number of islet infusions and metabolic outcome. Transplantation,84:664-666
    Treff, N.R., Vincent, R.K., Budde, M.L., Browning, V.L., Magliocca, J.F., Kapur, V, Odorico, J.S.2006. Differentiation of embryonic stem cells conditionally expressing neurogenin 3. Stem Cells,24: 2529-2537
    Umezawa, K., Hiroki, A., Kawakami, M., Naka, H., Takei, I., Ogata, T., Kojima, I., Koyano, T., Kowithayakorn, T., Pang, H.S., Kam, T.S.2003. Induction of insulin production in rat pancreatic acinar carcinoma cells by conophylline. Biomed Pharmacother,57:341-350
    Vaca, P., Berna, G, Martin, F., Soria, B.2003. Nicotinamide induces both proliferation and differentiation of embryonic stem cells into insulin-producing cells. Transplant Proc,35:2021-2023
    Van Hoof, D., D'Amour, K.A., German, M.S.2009. Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res,3:73-87
    Vasavada, R.C., Cavaliere, C., D'Ercole, A.J., Dann, P., Burtis, W.J., Madlener, A.L., Zawalich, K., Zawalich, W., Philbrick, W., Stewart, A.F.1996. Overexpression of parathyroid hormone-related protein in the pancreatic islets of transgenic mice causes islet hyperplasia, hyperinsulinemia, and hypoglycemia. JBiol Chem,271:1200-1208
    Villasenor, A., Chong, D.C., Cleaver, O.2008. Biphasic Ngn3 expression in the developing pancreas. Dev Dyn,237:3270-3279
    Wang, H., Wang, S., Hu, J., Kong, Y., Chen, S., Li, L.2009. Oct4 is expressed in Nestin-positive cells as a marker for pancreatic endocrine progenitor. Histochem Cell Biol,131:553-563
    Wang, R., Li, J., Yashpal, N.2004. Phenotypic analysis of c-Kit expression in epithelial monolayers derived from postnatal rat pancreatic islets. JEndocrinol,182:113-122
    Watanabe, M., Umeyama, K., Kawano, H.O., Izuno, N., Nagashima, H., Miki, K.2007. The production of a diabetic mouse using constructs encoding porcine insulin promoter-driven mutant human hepatocyte nuclear factor-lalpha.J Reprod Dev,53:189-200
    Weinberg, N., Ouziel-Yahalom, L., Knoller, S., Efrat, S., Dor, Y.2007. Lineage tracing evidence for in vitro dedifferentiation but rare proliferation of mouse pancreatic beta-cells. Diabetes,56:1299-1304
    Wells, J.M., Esni, F., Boivin, G.P., Aronow, B.J., Stuart, W., Combs, C., Sklenka, A., Leach, S.D., Lowy, A.M.2007. Wnt/beta-catenin signaling is required for development of the exocrine pancreas. BMC Dev Biol,7:4
    Wierup, N., Svensson, H., Mulder, H., Sundler, F.2002. The ghrelin cell:a novel developmentally regulated islet cell in the human pancreas. Regul Pept,107:63-69
    Xia, B., Zhan, X.R., Yi, R., Yang, B.2009. Can pancreatic duct-derived progenitors be a source of islet regeneration? Biochem Biophys Res Commun,383:383-385
    Yamagata, K., Nammo, T., Moriwaki, M., Ihara, A., Iizuka, K., Yang, Q., Satoh, T., Li, M., Uenaka, R., Okita, K., Iwahashi, H., Zhu, Q., Cao, Y., Imagawa, A., Tochino, Y, Hanafusa, T., Miyagawa, J., Matsuzawa, Y.2002. Overexpression of dominant-negative mutant hepatocyte nuclear fctor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes,51:114-123
    Young, H.E., Steele, T.A., Bray, R.A., Hudson, J., Floyd, J.A., Hawkins, K., Thomas, K., Austin, T., Edwards, C., Cuzzourt, J., Duenzl, M., Lucas, P.A., Black, A.C., Jr.2001. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec,264:51-62
    Zhan, X.R., Li, X.Y., Liu, X.M., Zhou, J.H., Yang, Y.L., Yi, R., Zhang, J., Yang, B.F.2009. Generation of insulin-secreting cells from adult rat pancreatic ductal epithelial cells induced by hepatocyte growth factor and betacellulin-delta4. Biochem Biophys Res Commun,382:375-380
    Zhang, C., Moriguchi, T., Kajihara, M., Esaki, R., Harada, A., Shimohata, H., Oishi, H., Hamada, M., Morito, N., Hasegawa, K., Kudo, T., Engel, J.D., Yamamoto, M., Takahashi, S.2005. MafA is a key regulator of glucose-stimulated insulin secretion. Mol Cell Biol,25:4969-4976
    Zhang, D., Jiang, W., Liu, M., Sui, X., Yin, X., Chen, S., Shi, Y., Deng, H.2009. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res, 19:429-438
    Zhao, L., Guo, M., Matsuoka, T.A., Hagman, D.K., Parazzoli, S.D., Poitout, V., Stein, R.2005. The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription. J Biol Chem,280: 11887-11894
    Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., Melton, D.A.2008. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature,455:627-632
    Zhou, Q., Law, A.C., Rajagopal, J., Anderson, W.J., Gray, P.A., Melton, D.A.2007. A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell,13:103-114
    Zulewski, H., Abraham, E.J., Gerlach, M.J., Daniel, P.B., Moritz, W., Muller, B., Vallejo, M., Thomas, M.K., Habener, J.F.2001. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes,50: 521-533

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700